首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cryptochromes are blue light-activated photoreceptors found in multiple organisms with significant similarity to photolyases, a class of light-dependent DNA repair enzymes. Unlike photolyases, cryptochromes do not repair DNA and instead mediate blue light-dependent developmental, growth, and/or circadian responses by an as yet unknown mechanism of action. It has recently been shown that Arabidopsis cryptochrome-1 retains photolyase-like photoreduction of its flavin cofactor FAD by intraprotein electron transfer from tryptophan and tyrosine residues. Here we demonstrate that substitution of two conserved tryptophans that are constituents of the flavin-reducing electron transfer chain in Escherichia coli photolyase impairs light-induced electron transfer in the Arabidopsis cryptochrome-1 photoreceptor in vitro. Furthermore, we show that these substitutions result in marked reduction of light-activated autophosphorylation of cryptochrome-1 in vitro and of its photoreceptor function in vivo, consistent with biological relevance of the electron transfer reaction. These data support the possibility that light-induced flavin reduction via the tryptophan chain is the primary step in the signaling pathway of plant cryptochrome.  相似文献   

2.
Cryptochromes are blue light receptors with multiple signaling roles in plants and animals. Plant cryptochrome (cry1 and cry2) biological activity has been linked to flavin photoreduction via an electron transport chain comprising three evolutionarily conserved tryptophan residues known as the Trp triad. Recently, it has been reported that cry2 Trp triad mutants, which fail to undergo photoreduction in vitro, nonetheless show biological activity in vivo, raising the possibility of alternate signaling pathways. Here, we show that Arabidopsis thaliana cry2 proteins containing Trp triad mutations indeed undergo robust photoreduction in living cultured insect cells. UV/Vis and electron paramagnetic resonance spectroscopy resolves the discrepancy between in vivo and in vitro photochemical activity, as small metabolites, including NADPH, NADH, and ATP, were found to promote cry photoreduction even in mutants lacking the classic Trp triad electron transfer chain. These metabolites facilitate alternate electron transfer pathways and increase light-induced radical pair formation. We conclude that cryptochrome activation is consistent with a mechanism of light-induced electron transfer followed by flavin photoreduction in vivo. We further conclude that in vivo modulation by cellular compounds represents a feature of the cryptochrome signaling mechanism that has important consequences for light responsivity and activation.  相似文献   

3.
A blue light (cryptochrome) photoreceptor from Arabidopsis, cry1, has been identified recently and shown to mediate a number of blue light-dependent phenotypes. Similar to phytochrome, the cryptochrome photoreceptors are encoded by a gene family of homologous members with considerable amino acid sequence similarity within the N-terminal chromophore binding domain. The two members of the Arabidopsis cryptochrome gene family (CRY1 and CRY2) overlap in function, but their proteins differ in stability: cry2 is rapidly degraded under light fluences (green, blue, and UV) that activate the photoreceptor, but cry1 is not. Here, we demonstrate by overexpression in transgenic plants of cry1 and cry2 fusion constructs that their domains are functionally interchangeable. Hybrid receptor proteins mediate functions similar to cry1 and include inhibition of hypocotyl elongation and blue light-dependent anthocyanin accumulation; differences in activity appear to be correlated with differing protein stability. Because cry2 accumulates to high levels under low-light intensities, it may have greater significance in wild-type plants under conditions when light is limited.  相似文献   

4.
Yang HQ  Wu YJ  Tang RH  Liu D  Liu Y  Cashmore AR 《Cell》2000,103(5):815-827
Cryptochrome blue light photoreceptors share sequence similarity to photolyases, flavoproteins that mediate light-dependent DNA repair. However, cryptochromes lack photolyase activity and are characterized by distinguishing C-terminal domains. Here we show that the signaling mechanism of Arabidopsis cryptochrome is mediated through the C terminus. On fusion with beta-glucuronidase (GUS), both the Arabidopsis CRY1 C-terminal domain (CCT1) and the CRY2 C-terminal domain (CCT2) mediate a constitutive light response. This constitutive photomorphogenic (COP) phenotype was not observed for mutants of cct1 corresponding to previously described cry1 alleles. We propose that the C-terminal domain of Arabidopsis cryptochrome is maintained in an inactive state in the dark. Irradiation with blue light relieves this repression, presumably through an intra- or intermolecular redox reaction mediated through the flavin bound to the N-terminal photolyase-like domain.  相似文献   

5.
Shalitin D  Yu X  Maymon M  Mockler T  Lin C 《The Plant cell》2003,15(10):2421-2429
Cryptochromes are photolyase-like blue/UV-A light receptors that regulate various light responses in animals and plants. Arabidopsis cryptochrome 1 (cry1) is the major photoreceptor mediating blue light inhibition of hypocotyl elongation. The initial photochemistry underlying cryptochrome function and regulation remain poorly understood. We report here a study of the blue light-dependent phosphorylation of Arabidopsis cry1. Cry1 is detected primarily as unphosphorylated protein in etiolated seedlings, but it is phosphorylated in plants exposed to blue light. Cry1 phosphorylation increases in response to increased fluence of blue light, whereas the phosphorylated cry1 disappears rapidly when plants are transferred from light to dark. Light-dependent cry1 phosphorylation appears specific to blue light, because little cry1 phosphorylation is detected in seedlings treated with red light or far-red light, and it is largely independent from phytochrome actions, because no phytochrome mutants tested significantly affect cry1 phosphorylation. The Arabidopsis cry1 protein expressed and purified from insect cells is phosphorylated in vitro in a blue light-dependent manner, consistent with cry1 undergoing autophosphorylation. To determine whether cry1 phosphorylation is associated with its function or regulation, we isolated and characterized missense cry1 mutants that express full-length CRY1 apoprotein. Mutant residues are found throughout the CRY1 coding sequence, but none of these inactive cry1 mutant proteins shows blue light-induced phosphorylation. These results demonstrate that blue light-dependent cry1 phosphorylation is closely associated with the function or regulation of the photoreceptor and that the overall structure of cry1 is critical to its phosphorylation.  相似文献   

6.
Cryptochromes are blue-light photoreceptors sharing sequence similarity to photolyases, a class of flavoenzymes catalyzing repair of UV-damaged DNA via electron transfer mechanisms. Despite significant amino acid sequence similarity in both catalytic and cofactor-binding domains, cryptochromes lack DNA repair functions associated with photolyases, and the molecular mechanism involved in cryptochrome signaling remains obscure. Here, we report a novel ATP binding and autophosphorylation activity associated with Arabidopsis cry1 protein purified from a baculovirus expression system. Autophosphorylation occurs on serine residue(s) and is absent in preparations of cryptochrome depleted in flavin and/or misfolded. Autophosphorylation is stimulated by light in vitro and oxidizing agents that act as flavin antagonists prevent this stimulation. Human cry1 expressed in baculovirus likewise shows ATP binding and autophosphorylation activity, suggesting this novel enzymatic activity may be important to the mechanism of action of both plant and animal cryptochromes.  相似文献   

7.
Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light-activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities.  相似文献   

8.
Cryptochrome (Cry) photoreceptors share high sequence and structural similarity with DNA repair enzyme DNA-photolyase and carry the same flavin cofactor. Accordingly, DNA-photolyase was considered a model system for the light activation process of cryptochromes. In line with this view were recent spectroscopic studies on cryptochromes of the CryDASH subfamily that showed photoreduction of the flavin adenine dinucleotide (FAD) cofactor to its fully reduced form. However, CryDASH members were recently shown to have photolyase activity for cyclobutane pyrimidine dimers in single-stranded DNA, which is absent for other members of the cryptochrome/photolyase family. Thus, CryDASH may have functions different from cryptochromes. The photocycle of other members of the cryptochrome family, such as Arabidopsis Cry1 and Cry2, which lack DNA repair activity but control photomorphogenesis and flowering time, remained elusive. Here we have shown that Arabidopsis Cry2 undergoes a photocycle in which semireduced flavin (FADH(.)) accumulates upon blue light irradiation. Green light irradiation of Cry2 causes a change in the equilibrium of flavin oxidation states and attenuates Cry2-controlled responses such as flowering. These results demonstrate that the active form of Cry2 contains FADH(.) (whereas catalytically active photolyase requires fully reduced flavin (FADH(-))) and suggest that cryptochromes could represent photoreceptors using flavin redox states for signaling differently from DNA-photolyase for photorepair.  相似文献   

9.
Cryptochrome blue-light photoreceptors are found in both plants and animals and have been implicated in numerous developmental and circadian signaling pathways. Nevertheless, no action spectrum for a physiological response shown to be entirely under the control of cryptochrome has been reported. In this work, an action spectrum was determined in vivo for a cryptochrome-mediated high-irradiance response, the blue-light-dependent inhibition of hypocotyl elongation in Arabidopsis. Comparison of growth of wild-type, cry1cry2 cryptochrome-deficient double mutants, and cryptochrome-overexpressing seedlings demonstrated that responsivity to monochromatic light sources within the range of 390 to 530 nm results from the activity of cryptochrome with no other photoreceptor having a significant primary role at the fluence range tested. In both green- and norflurazon-treated (chlorophyll-deficient) seedlings, cryptochrome activity is fairly uniform throughout its range of maximal response (390-480 nm), with no sharply defined peak at 450 nm; however, activity at longer wavelengths was disproportionately enhanced in CRY1-overexpressing seedlings as compared with wild type. The action spectrum does not correlate well with the absorption spectra either of purified recombinant cryptochrome photoreceptor or to that of a second class of blue-light photoreceptor, phototropin (PHOT1 and PHOT2). Photoreceptor concentration as determined by western-blot analysis showed a greater stability of CRY2 protein under the monochromatic light conditions used in this study as compared with broad band blue light, suggesting a complex mechanism of photoreceptor activation. The possible role of additional photoreceptors (in particular phytochrome A) in cryptochrome responses is discussed.  相似文献   

10.
Photolyases and cryptochromes are evolutionarily related flavoproteins with distinct functions. While photolyases can repair UV-induced DNA lesions in a light-dependent manner, cryptochromes regulate growth, development and the circadian clock in plants and animals. Here we report about two photolyase-related proteins, named PhrA and PhrB, found in the phytopathogen Agrobacterium tumefaciens. PhrA belongs to the class III cyclobutane pyrimidine dimer (CPD) photolyases, the sister class of plant cryptochromes, while PhrB belongs to a new class represented in at least 350 bacterial organisms. Both proteins contain flavin adenine dinucleotide (FAD) as a primary catalytic cofactor, which is photoreduceable by blue light. Spectral analysis of PhrA confirmed the presence of 5,10-methenyltetrahydrofolate (MTHF) as antenna cofactor. PhrB comprises also an additional chromophore, absorbing in the short wavelength region but its spectrum is distinct from known antenna cofactors in other photolyases. Homology modeling suggests that PhrB contains an Fe-S cluster as cofactor which was confirmed by elemental analysis and EPR spectroscopy. According to protein sequence alignments the classical tryptophan photoreduction pathway is present in PhrA but absent in PhrB. Although PhrB is clearly distinguished from other photolyases including PhrA it is, like PhrA, required for in vivo photoreactivation. Moreover, PhrA can repair UV-induced DNA lesions in vitro. Thus, A. tumefaciens contains two photolyase homologs of which PhrB represents the first member of the cryptochrome/photolyase family (CPF) that contains an iron-sulfur cluster.  相似文献   

11.
Cryptochromes are widely distributed blue light photoreceptors involved in numerous signaling functions in plants and animals. Both plant and animal-type cryptochromes are found to bind ATP and display intrinsic autokinase activity; however the functional significance of this activity remains a matter of speculation. Here we show in purified preparations of Arabidopsis cry1 that ATP binding induces conformational change independently of light and increases the amount and stability of light-induced flavin radical formation. Nucleotide binding may thereby provide a mechanism whereby light responsivity in organisms can be regulated through modulation of cryptochrome photoreceptor conformation.  相似文献   

12.
Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA(4) in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA(4) content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs.  相似文献   

13.
Cryptochromes are blue-light absorbing flavoproteins with multiple signaling roles. In plants, cryptochrome (cry1, cry2) biological activity has been linked to flavin photoreduction via an electron transport chain to the protein surface comprising 3 evolutionarily conserved tryptophan residues known as the ‘Trp triad.’ Mutation of any of the Trp triad residues abolishes photoreduction in isolated cryptochrome protein in vitro and therefore had been suggested as essential for electron transfer to the flavin. However, photoreduction of the flavin in Arabidopsis cry2 proteins occurs in vivo even with mutations in the Trp triad, indicating the existence of alternative electron transfer pathways to the flavin. These pathways are potentiated by metabolites in the intracellular environment including ATP, ADP, AMP, and NADH. In the present work we extend these observations to Arabidopsis cryptochrome 1 and demonstrate that Trp triad substitution mutants at W400F and W324F positions which are not photoreduced in vitro can be photoreduced in whole cell extracts, albeit with reduced efficiency. We further show that the flavin signaling state (FADH°) is stabilized in an in vivo context. These data illustrate that in vivo modulation by metabolites in the cellular environment may play an important role in cryptochrome signaling, and are discussed with respect to possible effects on the conformation of the C-terminal domain to generate the biologically active conformational state.  相似文献   

14.
Zuo Z  Liu H  Liu B  Liu X  Lin C 《Current biology : CB》2011,21(10):841-847
Cryptochromes are blue light receptors that mediate light regulation of gene expression in all major evolution lineages, but the molecular mechanism underlying cryptochrome signal transduction remains not fully understood. It has been reported that cryptochromes suppress activity of the multifunctional E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) to regulate gene expression in response to blue light. But how plant cryptochromes mediate light suppression of COP1 activity remains unclear. We report here that Arabidopsis CRY2 (cryptochrome 2) undergoes blue light-dependent interaction with the COP1-interacting protein SUPPRESSOR OF PHYTOCHROME A 1 (SPA1). We demonstrate that SPA1 acts genetically downstream from CRY2 to mediate blue light suppression of the COP1-dependent proteolysis of the flowering-time regulator CONSTANS (CO). We further show that blue light-dependent CRY2-SPA1 interaction stimulates CRY2-COP1 interaction. These results reveal for the first time a wavelength-specific mechanism by which a cryptochrome photoreceptor mediates light regulation of protein degradation to modulate developmental timing in Arabidopsis.  相似文献   

15.
The cryptochrome 1 (cry1) photoreceptor is responsible for the majority of the inhibitory effect of blue light on hypocotyl elongation, but phytochrome photoreceptors also contribute to the response through a phenomenon known as coaction. In Arabidopsis thaliana the participation of phytochromes A and B (phyA and phyB) in the early phase of cry1 action was investigated by determining the effects of phyA, phyB and hy1 mutations on a cry1-dependent membrane depolarization, which is caused by the activation of plasma-membrane anion channels within seconds of blue light treatment. High-resolution growth measurements were also performed to determine the timing of the requirement for phytochrome in cry1-mediated growth inhibition, which is causally linked to the preceding anion-channel activation. A null mutation in PHYA impaired the membrane depolarization and prevented the early cry1-dependent phase of growth inhibition as effectively and with the same time course as mutations in CRY1. Thus, phyA is necessary for cry1/cry2 to activate anion channels within the first few seconds of blue light and to suppress hypocotyl elongation for at least 120 min. This finding furthers the notion of an intimate mechanistic association between the cry and phy receptors in mediating light responses. The absence of phyB did not affect the depolarization or growth inhibition during this time frame. Instead, double mutant analyses showed that the phyB mutation suppressed the early growth phenotypes of both phyA and cry1 seedlings. This result is consistent with the emerging view that the prevailing growth rate of a stem is a compromise between light-dependent inhibitory and promotive influences. It appears that phyB opposes the cry1/phyA-mediated inhibition by promoting growth during at least the first 120 min of blue light treatment.  相似文献   

16.
Cryptochromes are a class of flavoprotein blue-light signaling receptors found in plants, animals, and humans that control plant development and the entrainment of circadian rhythms. In plant cryptochromes, light activation is proposed to result from photoreduction of a protein-bound flavin chromophore through intramolecular electron transfer. However, although similar in structure to plant cryptochromes, the light-response mechanism of animal cryptochromes remains entirely unknown. To complicate matters further, there is currently a debate on whether mammalian cryptochromes respond to light at all or are instead activated by non-light-dependent mechanisms. To resolve these questions, we have expressed both human and Drosophila cryptochrome proteins to high levels in living Sf21 insect cells using a baculovirus-derived expression system. Intact cells are irradiated with blue light, and the resulting cryptochrome photoconversion is monitored by fluorescence and electron paramagnetic resonance spectroscopic techniques. We demonstrate that light induces a change in the redox state of flavin bound to the receptor in both human and Drosophila cryptochromes. Photoreduction from oxidized flavin and subsequent accumulation of a semiquinone intermediate signaling state occurs by a conserved mechanism that has been previously identified for plant cryptochromes. These results provide the first evidence of how animal-type cryptochromes are activated by light in living cells. Furthermore, human cryptochrome is also shown to undergo this light response. Therefore, human cryptochromes in exposed peripheral and/or visual tissues may have novel light-sensing roles that remain to be elucidated.  相似文献   

17.
P F Heelis  A Sancar 《Biochemistry》1986,25(25):8163-8166
Escherichia coli DNA photolyase contains a stable flavin neutral blue radical that is involved in photosensitized repair of pyrimidine dimers in DNA. We have investigated the effect of illumination on the radical using light of lambda greater than 520 nm from either a camera flash or laser. We find that both types of irradiations result in the photoreduction of the flavin radical with a quantum yield of 0.10 +/- 0.02. While photoreduction with the camera flash is minimal in the absence of an electron donor (dithiothreitol), laser flash photolysis at 532 nm reduces the flavin to the same extent in the presence or absence or an electron donor. Thus, it is concluded that the primary step in photoreduction involves an electron donor that is a constituent of the enzyme itself. Laser flash photolysis produces a transient absorption band at 420 nm that probably represents the absorption of the lowest excited doublet state (2(1)IIII*) of the radical and decays with first-order kinetics with k1 = 0.8 X 10(6) s-1. The photoreduction data combined with the results of recent studies on the activity of dithionite-reduced enzyme suggest that electron donation by excited states of E-FADH2 is the mechanism of flavin photosensitized dimer repair by E. coli DNA photolyase.  相似文献   

18.
Green light induces shade avoidance symptoms   总被引:2,自引:0,他引:2  
  相似文献   

19.
Cryptochromes are flavoproteins that are evolutionary related to the DNA photolyases but lack DNA repair activity. Drosophila cryptochrome (dCRY) is a blue light photoreceptor that is involved in the synchronization of the circadian clock with the environmental light-dark cycle. Until now, spectroscopic and structural studies on this and other animal cryptochromes have largely been hampered by difficulties in their recombinant expression. We have therefore established an expression and purification scheme that enables us to purify mg amounts of monomeric dCRY from Sf21 insect cell cultures. Using UV-visible spectroscopy, mass spectrometry, and reversed phase high pressure liquid chromatography, we show that insect cell-purified dCRY contains flavin adenine dinucleotide in its oxidized state (FAD(ox)) and residual amounts of methenyltetrahydrofolate. Upon blue light irradiation, dCRY undergoes a reversible absorption change, which is assigned to the conversion of FAD(ox) to the red anionic FAD(.) radical. Our findings lead us to propose a novel photoreaction mechanism for dCRY, in which FAD(ox) corresponds to the ground state, whereas the FAD(.) radical represents the light-activated state that mediates resetting of the Drosophila circadian clock.  相似文献   

20.
It has recently been realized that animal cryptochromes (CRYs) fall into two broad groups. Type 1 CRYs, the prototype of which is the Drosophila CRY, that is known to be a circadian photoreceptor. Type 2 CRYs, the prototypes of which are human CRY 1 and CRY 2, are known to function as core clock proteins. The mechanism of photosignaling by the Type 1 CRYs is not well understood. We recently reported that the flavin cofactor of the Type 1 CRY of the monarch butterfly may be in the form of flavin anion radical, FAD(*-), in vivo. Here we describe the purification and characterization of wild-type and mutant forms of Type 1 CRYs from fruit fly, butterfly, mosquito, and silk moth. Cryptochromes from all four sources contain FAD(ox) when purified, and the flavin is readily reduced to FAD(*-) by light. Interestingly, mutations that block photoreduction in vitro do not affect the photoreceptor activities of these CRYs, but mutations that reduce the stability of FAD(*-) in vitro abolish the photoreceptor function of Type 1 CRYs in vivo. Collectively, our data provide strong evidence for functional similarities of Type 1 CRYs across insect species and further support the proposal that FAD(*-) represents the ground state and not the excited state of the flavin cofactor in Type 1 CRYs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号