首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Extraction and detergent/lipid activation of dolichol kinase   总被引:1,自引:0,他引:1  
The CTP-dependent dolichol kinase from bovine liver microsomes was optimally extracted using either 0.5% sodium deoxycholate or 0.5% Triton X-100 containing 0.5 M NH4Cl. All activity was found in the supernatant fraction following high-speed centrifugation. This fraction was depleted of phospholipid (phospholipid remaining, less than 5% of total) by gel chromatography of the 0.5% deoxycholate extract. This partially purified enzyme was maximally activated 9- or 53-fold over controls in the presence of 0.1% deoxycholate or 0.1% Triton X-100, respectively. Stimulation of the kinase was also observed with mixtures of dimyristoylphosphatidylcholine and deoxycholate. The level of stimulation by these mixtures was up to 20-fold higher than that observed in controls having deoxycholate alone. Dimyristoylphosphatidylcholine alone was not stimulatory. A 1:1 molar ratio of Triton X-100 or deoxycholate to dimyristoylphosphatidylcholine was optimal for enzyme activation. The half-maximum velocity of the dephospholipidated enzyme at 1:1 molar ratio of detergent to dimyristoylphosphatidylcholine was obtained at 150 or 550 microM CTP in the presence of deoxycholate or Triton X-100, respectively. It has been observed, therefore, that dolichol kinase may be extracted from liver microsomes, depleted of endogenous phospholipids and activated by specific molar ratios of detergent to phospholipid.  相似文献   

2.
The enzyme guanylate cyclase is present in both particulate and soluble form in rat lung homogenates. As previously reported, the soluble enzyme can be activated by preincubation in the presence of O2. The inactive (nonactivated) soluble enzyme is also stimulated by nonionic detergents, in the order Tween 20 > Lubrol PX > Triton X-67 > Triton X-100. The activated enzyme, however, was inhibited by these detergents in the reverse order. Sodium deoxycholate and lysolecithin were potent inhibitors of both inactive and activated enzyme. The activity of the particulate enzyme was stimulated by Lubrol PX > Triton X-100 > Triton X-67 > Tween 20. At a low concentration of lysolecithin or deoxycholate the particulate activity was increased; however, when detergent/protein > 1, inhibition was seen. In the case of deoxycholate, the inhibition could be reversed if excess deoxycholate was removed either by chromatography or by forming mixed micelles with Lubrol PX; however, deoxycholate inhibition of the soluble enzyme was irreversible. The stimulation by detergents of the particulate enzyme was apparently the result of solubilization. The effects upon the activity of the soluble enzyme were interpreted in terms of a model which assumes two hydrophobic regions on the enzyme surface. The two regions differ in hydrophobicity with the more hydrophobic region only being exposed as a result of activation. Interaction of a nonionic detergent with the less hydrophobic region stimulates activity, while interaction with the more hydrophobic region results in inhibition.  相似文献   

3.
1. Two phospholipase activities, provisionally designated as phospholipase activity I and phospholipase activity II, were found to be present in the mucosal homogenates of rat small intestine. These phospholipase activities were present in the membraneous particle fraction and were characterized in this study without further purification, using phosphatidylcholine as a substrate. Phospholipase activity I was assayed at pH 5.9 in the absence of deoxycholate, whereas phospholipase activity II was assayed at pH 9.4 in the presence of deoxycholate. Phospholipase activity I was more easily inactivated by heat treatment and trypsin digestion than phospholipase activity II. Both phospholipase activities were inhibited by diisopropyl-fluorophosphate but not by SH-binding reagents. 2. Phospholipase activity I had a pH optimum at 5.9. A sigmoid curve was obtained when the amount of the enzyme preparation was plotted against the phospholipase activity I. The unusually low activity found at low enzyme concentrations was enhanced by addition of the heat-inactivated enzyme preparation to a level where a linear relationship was found between the amount of enzyme and the activity. The effector present in the enzyme preparation was tentatively identified as fatty acid(s). The addition of oleic acid or linoleic acid to the incubation mixture enhanced the phospholipase activity I. At 1 mM levels of these fatty acids the highest activity was obtained when 1.5 mM phosphatidylcholine was used as a substrate. 3. The phospholipase activity II increased on addition of deoxycholate. In the presence of 5 mM deoxycholate, a pH optimum was found at 9.6. It was found that the maximal extent of hydrolysis of phosphatidylcholine in the incubation mixture was dependent on the concentration of deoxycholate. This indicates that deoxycholate facilitates the action of phospholipase activity II, presumably by forming deoxycholate-phosphatidylcholine mixed micelles. Phospholipase activity II was found to deacylate specifically the 2-acyl moiety of phospholipids.  相似文献   

4.
K T Sein  T T Maw 《Enzyme》1978,23(1):70-72
Glucose-6-phosphatase levels were measured in livers and kidneys of control mice and mice fasted for 24, 48, and 72 h, respectively. The enzyme was assayed with and without deoxycholate supplementation. When assayed in the absence of deoxycholate, significant increases in liver enzyme levels was observed after fasting for 48 and 72 h, respectively. For the kidney enzyme, a significant increase was observed only after 48 h fasting. When the enzyme was assayed in the presence of 4.8 mmol/l deoxycholate, fasting-induced increases of liver enzyme levels were further potentiated, but no significant differences were observed in kidney enzyme levels between fasted and control mice.  相似文献   

5.
Abstract— The distributions of NADH2 dehydrogenase, NADH, cytochrome c reductase and cytochrome oxidase have been determined utilizing synaptosomal isolation techniques. Deoxycholate was used to determine compartmentation and/or ‘latency’ of these activities. NADPH, dehydrogenase proved to be a soluble and mitochondrial enzyme and the activity of this enzyme was not appreciably changed by deoxycholate treatment. NADHg cytochrome c reductase proved to be a mitochondrial enzyme with considerable activity in microsomal fractions. Deoxycholate treatment increased activity in the synaptosomal fraction 8.3-fold. A bimodal activation pattern was observed with synaptosomal and mitochondrial NADH, cyrochrome c reductase upon exposure to increasing concentrations of deoxycholate, with enhancement of activity at 0.25 % (w/v) and 0.50 % (w/v) deoxycholate. The enzyme was stable at concentrations of deoxycholate less than 0.25% (w/v) but was irreversibly inactivated at concentrations higher than 0.25% (w/v). The mechanism of this activation pattern appeared to be a combination of enzyme release and inactivation. Similar results were not observed in liver mitochondria. Cytochrome oxidase, a known mitochondrial marker, exhibited a 17-fold increase in synaptosomal activity with deoxycholate treatment. The synaptosomal cytochrome oxidase activity after deoxycholate treatment approached the activity in the free mitochondrial fraction. The percentage of mitochondrial protein in synaptosomal fractions was estimated to be about 30 per cent from a comparison of the respective total (deoxycholate-treated) activities. On the basis of these data we suggest that the synaptosomal fraction possesses a relatively sizable energy-producing potential which may be of significance in vivo.  相似文献   

6.
The 5'-nucleotidase localized in rat liver plasma membranes was purified to a single protein, which contained phospholipid. The molecular weight and the sedimentation constant were about 150 000 and 7 S in the presence of sodium deoxycholate, while the enzyme protein was aggregated when the preparation was dialyzed thoroughly. The purified 5'-nucleotidase exhibited the same properties as the 5'-nucleotidase in plasma membranes. The 5'-nucleotidase activity was increased by the addition of various bile salts or by the solubilization of membranes with trypsin, papain or phospholipase C. The solubilized and aggregated forms of the enzyme showed different substrate specificity for nucleotides, pH optimum, heat stability and Km. The purified enzyme catalyzed an exchange reaction between AMP and adenosine, which was diminished by the addition of sodium deoxycholate.  相似文献   

7.
Soluble lactate dehydrogenase (EC 1.1.1.27) extracted from brain, skeletal and cardiac muscle and liver of rats, and purified isoenzymes LDH-1 and LDH-5, were incubated with sodium deoxycholate. Deoxycholate almost totally inactivated isoenzyme LDH-5 (A4), whereas it left isoenzyme LDH-1 (B4) unaffected. Tissue lactate dehydrogenase was inactivated to different degrees depending on the origin of the enzyme. Electrophoretic isoenzyme studies of tissue lactate dehydrogenase showed the loss of activity to be quantitatively related to the overall percentage of subunit A distributed among the homotetramer LDH-5 and the heterotetramers LDH-2, LDH-3 and LDH-4. It was concluded that subunit A of lactate dehydrogenase interacts selectively with deoxycholate, irrespective of its association with subunit B. Distinct changes in electrophoretic mobilities of deoxycholate-treated isoenzymes strongly indicated an indiscriminate binding of deoxycholate by all LDH isoenzymes, probably through hydrophobic interactions. The results suggest that the inactivation of the enzyme is non-competitive, but the basis of the selectivity of deoxycholate towards subunit A is not known at present.  相似文献   

8.
Hydrolytic activities of human alkaline phosphatase isozymes were investigated using phosphatidases with various fatty acyl chains (egg phosphatidate and dioleoyl, distearoyl, dipalmitoyl, dimyristoyl and dilauroyl phosphatidates). In the presence of sodium deoxycholate, purified human placental and intestinal alkaline phosphatases hydrolyzed all the phosphatidates examined. The hydrolytic activity was maximal in the presence of 10 g/l sodium deoxycholate. Of the phosphatidates, dilauroyl phosphatidate was the best substrate. Using the same unit of the enzyme, the phosphatidate hydrolytic activity of placental alkaline phosphatase was 2- to 3-times higher than that of the intestinal enzyme. In contrast, liver alkaline phosphatase did not hydrolyze phosphatidates with long fatty acyl chains (C16-18) even in the presence of sodium deoxycholate. The liver enzyme hydrolyzed dimyristoyl and dilauroyl phosphatidates very slowly. These results show that the phosphatidates with long fatty acyl chains were useful to differentiate placental and intestinal alkaline phosphatases from the liver enzyme, and suggest that the former enzymes play a different physiological role from the liver enzyme.  相似文献   

9.
Summary NADPH oxidase from stimulated guinea pig granulocytes was extracted with deoxycholate. The solubilized enzyme was stable in 20% glycerol. Solubilized enzyme was free of myeloperoxidase activity. The properties of the deoxycholate solubilized enzyme indicated that it is a high molecular weight complex with a flavoprotein, calmodulin and cytochrome b possibly forming part of the complex. Maximum activity was between pH 7.0 and 7.5. The Km value was 15.8 µM for NADPH and 434 µM for NADH indicating that NADPH is the preferential substrate.  相似文献   

10.
Abstract— The properties of Ca2+-dependent phosphatidylinositol-phosphodiesterase in membrane fractions and supernatants prepared from rat brain have been examined with the aim of providing firm evidence for the existence of a membrane-bound activity distinct from the soluble enzyme found in the cytosol (EC 3.1.4.10). The soluble enzyme is either stimulated or inhibited at pH 7.0 by deoxycholate depending on the ratio of detergent to substrate. The effects of deoxycholate are pH dependent and result in a shift of the enzyme optimum to a higher pH if the enzyme is assayed in the presence of deoxycholate. The soluble enzyme cannot hydrolgse membrane-bound phosphatidylinositol (in 32P-labelled rat liver microsomes) unless deoxycholate is present. The pH optimum is 6.7 for this detergent-dependent hydrolysis and this is probably dependent on the ionization of deoxycholic acid. The lactate dehydrogenase (EC 1.1.1.27) content of rat brain membrane fractions has been measured to estimate the contamination of these fractions by supernatant phosphatidylinositol-phosphodiesterase. No evidence has been found for phosphatidylinositol-phosphodiesterase activities that cannot be explained by such contamination. It is concluded that all the properties of calcium-dependent phospha-tidylinositol-phosphodicsterase in rat brain can be explained by the existence of only the solublc cyto-plasmic enzyme: no evidence confirming a distinct membrane-bound activity has been obtained.  相似文献   

11.
Human erythrocyte acetylcholinesterase preparations which vary in lipid content, from lipid-rich to lipid-poor, have been successfully prepared using deoxycholate. It was found that the lipid content of the enzyme decreased gradually as the deoxycholate concentration used in its preparation was increased. The binding of lipid to lipid-poor preparations of the enzyme has been investigated. It was found that the activity of such preparations was highly dependent on their phospholipid contents. Maximum specific activity was associated with a fixed phospholipid content. The lipid-poor enzyme was highly activated by addition of either endogenous(membrane) or exogenous lipid. Based on the data presented, it was concluded that acetylcholinesterase is a phospholipoprotein, and its activity is highly dependent on its phospholipid component.  相似文献   

12.
Electrophoretic patterns of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from rat erythrocyte were studied. The enzyme was solubilized by the following treatments: a) Triton X-100, b) sodium deoxycholate, or c) ultrasonic irradiation. When the erythrocyte membrane was solubilized by Triton X-100 at concentrations higher than 0.3%, by 10 mM sodium deoxycholate, or by ultrasonic irradiation for more than 5 min, a single band of acetylcholinesterase activity appeared in the gel. Two bands of activity were stained in the gel when the membrane was solubilized by Triton X-100 at concentrations between 0.1--0.2%, or by ultrasound for 5 min. Electrophoretic patterns of acetylcholinesterase from rats fed a fat-sufficient diet were similar to those for the enzyme from animals fed a fat-free diet. The recombination of lipids with the enzyme eluted from the gels confirmed the "phenotypic allosteric desensitization phenomenon".  相似文献   

13.
1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in specific ratios may be useful in the purification of adenylate cyclase and other intrinsic membrane proteins.  相似文献   

14.
In earlier studies of the membrane-bound penicillinase of Bacillus licheniformis 749/C, the enzyme present in the vesicles that were released during protoplast formation and the enzyme retained in the plasma membrane of protoplasts appeared to differ (i) in their behavior on gel permeation chromatography in the presence or absence of deoxycholate and (ii) in their tendency to convert to the hydrophilic exoenzyme (Sargent and Lampen, 1970). We have now shown that these vesicle preparations contain a soluble, heat-sensitive enzyme(s) that is released along with the vesicles during protoplast formation. The enzyme will convert the vesicle penicillinase to a form that resembles exopenicillinase, and this conversion can be inhibited by deoxycholate under certain circumstances. Sedimentation of such vesicle preparations at 100,000 X g produces vesicles which contain penicillinase that behaves as the plasma membrane enzyme obtained from protoplasts. Exopenicillinases released by growing cells at pH 6.5 and by washed cells or protoplasts at pH 9.0 have the same NH2-terminal residues (lysine and some glutamic acid); in addition, the various release systems show a parallel sensitivity to inhibition by deoxycholate, quinacrine, chloroquine, and o-phenanthroline. The formation of exopenicillinase (by cleavage of the membrane-bound enzyme) may well be dependent on the action of the releasing enzyme.  相似文献   

15.
Phosphoinositide phospholipase C activity was investigated in human melanoma grown as solid tumor xenografts in nude mice. The enzyme was dependent on calcium for activity and was stimulated by the detergent deoxycholate. The pH optimum was 5.5 in the absence of detergent, and in the presence of deoxycholate two pH maxima were present, 5.5 and 7.2. Phospholipase C activity was inhibited by the sulfhydryl reagent dithionitrobenzoate with an IC50 in the micromolar range. Phospholipase C activity was distributed widely in mouse tissues. The enzyme showed a progressive increase in activity from heart, liver, lung, colon, spleen, to brain tissue. Mouse and human melanomas grown as solid tumors had higher phospholipase C activity than mouse brain. The relatively high activity of this enzyme in melanoma may suggest a biological role for phospholipase C in solid tumor growth.  相似文献   

16.
A phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate to release inositol trisphosphate was detected in a sedimentable fraction from celery and from some other higher plants. The particulate enzyme also hydrolyses phosphatidylinositol, whereas the soluble phosphatidylinositol phosphodiesterase described previously [Irvine, Letcher & Dawson (1980) Biochem. J. 192, 279-283] acts only on phosphatidylinositol, and we were unable to detect activity of this soluble activity on phosphatidylinositol 4,5-bisphosphate. Activity of the particulate enzyme is markedly enhanced in the presence of deoxycholate, but not of other detergents; the particulate enzyme can also be solubilized by extraction with deoxycholate.  相似文献   

17.
Summary Methyl deoxycholate attached to lactate dehydrogenase can enhance the catalytic activity of the enzyme towards pyruvate. The Km value of the pyruvate remained unaltered. However, the specific activity of the enzyme was enhanced by about twenty percent. In the basic medium, the modified enzyme was found to be inactivated faster than the native enzyme.  相似文献   

18.
1. The respiratory nitrate reductase of Klebsiella aerogenes was solubilized from the bacterial membranes by deoxycholate and purified further by means of gel chromatography in the presence of deoxycholate, and anion-exchange chromatography. 2. Dependent on the isolation procedure two different homogeneous forms of the enzyme, having different subunit compositions, can be obtained. These forms are designated nitrate reductase I and nitrate reductase II. Both enzyme preparations are isolated as tetramers having sedimentation constants (s20,w) of 22.1 S and 21.7 S for nitrate reductase I and II, respectively. The nitrate reductase I tetramer has a molecular weight of about 106. 3. In the presence of deoxycholate both enzyme preparations dissociate reversibly into their respective monomeric forms. The monomeric form of nitrate reductase I has a molecular weight of about 260 000 and a sedimentation constant of 9.8 S. For nitrate reductase II these values are 180 000 and 8.5 S, respectively. 4. Nitrate reductase I consists of three different subunits, having molecular weights of 117 000; 57 000 and 52 000, which are present in a 1:1:2 molar ratio, respectively. Nitrate reductase II contains only the subunits with a molecular weight of 117 000 and 57 000 in a equimolar ratio. 5. Treatment at pH 9.5 in the presence of deoxycholate and 0.05 M NaCl or ageing removes the 52 000 Mr subunit from nitrate reductase I. This smallest subunit, in contrast to the other subunits, is a basic protein. 6. The 52 000 Mr subunit has no catalytic function in the intramolecular electron transfer from reduced benzylviologen to nitrate. However, it appears to have a structural function since nitrate reductase II, which lacks this subunit, is much more labile than nitrate reductase I. Inactivation of nitrate reductase II can be prevented by the presence of deoxycholate. 7. The spectrum of the enzyme resembles that of iron-sulfur proteins. No cytochromes or contaminating enzyme activities are present in the purified enzyme. Only reduced benzylviologen was found to be capable of acting as an electron donor. 8. p-Chlormercuribenzoate enhances the enzymatic activity at concentrations of 0.1 mM and lower. At higher p-chlormercuribenzoate concentrations the enzymatic activity is inhibited non-competitively with either nitrate or benzylviologen as a substrate. The inhibition is not counteracted by cysteine.  相似文献   

19.
Optimal induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenase in 100-ml cultures grown to stationary phase was achieved by the addition of metabolizable bile salt inducers: chenodeoxycholate, 7-ketolithocholate or cholate at 2.5-3 h after inoculation. Bile salt addition prior to or after this period markedly reduced the enzyme levels induced. However, when the non-metabolizable inducers deoxycholate and 12-ketolithocholate were similarly added, no significant differences in enzyme levels were observed between addition at 2.5-3 h or at earlier times. The ability of both metabolizable and non-metabolizable bile salts to induce the enzymes fell markedly when additions were made later than approximately 3.5 h. Kinetic studies using 1-l cultures suggest that in a larger culture a somewhat earlier inducer addition period is optimal. When ranked according to the level of enzymes induced the order in decreasing induction power was: chenodeoxycholate, 7-ketolithocholate, deoxycholate, 12-ketolithocholate and cholate. Mixtures of cholate and suboptimal concentrations of deoxycholate induced the culture better than the sum of the two concentrations individually. The end product, ursodeoxycholate, was very effective in blocking the induction by chenodeoxycholate or deoxycholate. Ursocholate (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoate) was less effective. Cultures when grown for 3 h with various bile salts or none, then centrifuged and recultured for a further 3 h in fresh medium containing chenodeoxycholate, all yielded identical enzyme levels within experimental error. We conclude that exposure of the organism to bile salt inducer in the last 3 h of culture was important, while the history of the culture prior to this time was unimportant in the induction process.  相似文献   

20.
G F Rush  J B Hook 《Life sciences》1984,35(2):145-153
Rat renal microsomes catalyzed the glucuronidation of l-naphthol, 4-methylumbelliferone and p-nitrophenol, whereas morphine and testosterone conjugation were not detected. In contrast, all five substrates were conjugated by hepatic microsomes; the activity was typically 5-10 times greater than with renal microsomes. Renal microsomal UDP-glucuronyltransferase toward l-naphthol was fully activated (six-fold) by 0.03% deoxycholate while the hepatic enzyme was fully activated (eight-fold) by 0.05% deoxycholate. Full activation of hepatic UDP-glucuronyltransferase occurred when microsomes had been preincubated at 0 C with deoxycholate for 20 min. This effect of preincubation was not observed with renal microsomes. The presence of 0.25M sucrose in the buffers during renal microsomal preparation resulted in a two-fold greater rate of l-naphthol conjugation in both unactivated and activated microsomes than renal microsomes prepared in phosphate buffers alone. Preparation of hepatic microsomes with or without 0.25M sucrose had no effect on UDP-glucuronyltransferase activity. Unactivated (-deoxycholate) renal enzyme was activated when incubations were done at a low pH (5.7), whereas fully activated (0.03% deoxycholate) renal microsomal UDP-glucuronyltransferase displayed a pH optimum at 6.5. Renal microsomal UDP-glucuronyltransferase activity toward l-naphthol, p-nitrophenol and 4-methylumbelliferone was induced by pretreatment of rats with beta-naphthoflavone and trans-stilbene oxide but not by phenobarbital or 3-methylcholanthrene. These data demonstrate that renal UDP-glucuronyltransferases are different from the hepatic enzymes with regard to biochemical properties, substrate specificity and in response to chemical inducers of xenobiotic metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号