首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triterpenoids belonging to the hopane family are widely distributed in prokaryotes. Three new hopanoids have now been isolated from the purple non-sulphur bacterium Rhodomicrobium vannielii and identified essentially by spectroscopic methods. The basic compound is the 35-aminobacteriohopane-32,33,34-triol, from which the other two hopanoids are derived by introduction of a tryptophanyl or an ornithinyl moiety linked to the amino group at C-35 via an amide linkage. This is the first report of hopanoids possessing an amino group in their side-chain and linked to aminoacyl residues.  相似文献   

2.
Human intestinal alanine aminopeptidase has been purified to greater than 90% homogeneity. The enzyme was released from mucosal cell membranes by Triton X-100 treatment. The native enzyme had a molecular weight of 206,000 in dilute buffer and 108,000 in the presence of sodium dodecyl sulfate. The enzyme was inhibited by chelators suggesting the presence of a metal ion in the enzyme. The most potent chelator inhibitor tested, o-phenanthroline, gave mixed kinetics (Ki = 67 micro M). Activity was restored by removal of the chelator. The enzyme was inhibited competitively by amino acids having hydrophobic side chains such as L-phenylalanine (Ki = 0.67 mM). Puromycin and methicillin also inhibited the enzyme in the competitive (Ki = 12.5 micro M) and noncompetitive (Ki = 4.6 mM) manner, respectively. Kinetic analysis of several amino acid beta-naphthylamides as substrates demonstrated the preference for substrates having hydrophobic or basic amino terminal residues with no beta-branching. L-Methionyl-beta-naphthylamide was the most tightly bound with L-alanyl-beta-naphthylamide was the most rapidly hydrolyzed.  相似文献   

3.
Two closely related kallikrein-like proteinases having little activity toward the standard synthetic amide substrates of tissue kallikreins were isolated from the rat submandibular gland. They were found to be the protein products of the rKlk2 (tonin) and the rKlk9 genes by amino acid sequence analysis (nomenclature of the genes and proteins of the kallikrein family is according to the proposal of the discussion panel from the participants of the KININ '91 meeting held Sept. 8-14, 1991, in Munich, Germany). These two proteinases of similar structure also had very similar physicochemical properties. They differed from other kallikrein-related proteinases in having high pHi values of 6.20 (rK2) and 6.85 (rK9). Kallikrein rK2 was purified as a single peptide chain, whereas rK9 appeared as a two-chain protein after reduction. Their enzymatic properties were also very similar and differed significantly from those of other rat kallikrein-related proteinases. Unlike the five other kallikrein-related proteinases we have purified so far, kallikrein rK9 was not inhibited by aprotinin. rK9 also differed from rK2 by its tissue localization. The prostate gland contained only rK9 where it was the major kallikrein-like component. The amino acids preferentially accommodated by the proteinase S3 to S2' subsites were identified using synthetic amide and protein substrates. Unlike other kallikrein-related proteinases, rK2 had a prevalent chymotrypsin-like specificity, whereas rK9 had both chymotrypsin-like and trypsin-like properties. Both rK2 and rK9 preferred a prolyl residue in position P2 of the substrate and did not accommodate bulky and hydrophobic residues at that position, as did most of the other kallikrein-related proteinases. This P2-proline-directed specificity is necessary for processing the precursors of several biologically active peptides. Subsites accommodating residues COOH-terminal to the scissile bond were also important in determining the overall substrate specificity of these proteinases. rK2 and rK9 both showed a preference for hydrophobic residues in P2'. Other subsites upstream of the S3 subsite were found to intervene in substrate binding and hydrolysis. The restricted specificity of rK2 and rK9 is consistent with the presence of an extended substrate binding site, and hence with a processing enzyme function. Their P1 specificities enabled both proteinases to release angiotensin II from angiotensinogen and from angiotensinogen I, but rK9 was at least 100 times less active than rK2 on both substrates. The substrate specificities of rK2 and rK9 were correlated with key amino acids defining their substrate binding site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In gramicidin S synthetase 2 (GS 2) from Bacillus brevis, L-proline, L-valine, L-ornithine, and L-leucine activations to aminoacyl adenylates are progressively inhibited by phenylglyoxal. The inactivation of GS 2 obeys pseudo-first-order kinetics. ATP completely prevents inactivation of GS 2 by phenylglyoxal, whereas amino acids only partially prevent it. In the presence of ATP, four arginine residues per mol of GS 2 are protected from modification by phenylglyoxal as determined by amino acid analysis and the incorporation of [7-14C]phenylgloxal into the enzyme protein, indicating that a single arginine residue is necessary for each amino acid activation. In isoleucyl tRNA synthetase from Escherichia coli, phenylglyoxal inhibits activation of L-isoleucine to isoleucyl adenylate. ATP completely prevents inactivation, although isoleucine only partially prevents it. One arginine residue of isoleucyl tRNA synthetase is protected by ATP from modification by phenylglyoxal, suggesting that a single arginine residue is essential for isoleucine activation. These results support the involvement of arginine residues in ATP binding with GS 2 or isoleucyl tRNA synthetase, and thus indicate that arginine residues of amino acid activating enzymes are essential for the formation of aminoacyl adenylates in both nonribosomal and ribosomal peptide biosynthesis.  相似文献   

5.
Molecular imprints were prepared using L-phenylalanine anilide as the print molecule and methacrylic acid as the functional monomer. Methacrylic acid interacts ionically with the primary amine of the print molecule and via hydrogen bonding with the amide function. In the HPLC mode such polymers were shown to exhibit efficient enantiomeric resolution of a racemic mixture of the original print molecule. Enantiomeric resolution was shown to be dependent on the ratio of methacrylic acid to print molecule in the pre-polymerization mixture and specific for the presence of both print molecule and functional monomer. Further analyses showed the importance of both the primary amino and amide functions in the correct stereochemistry for recognition and enantiomeric resolution of compounds on such polymers. Other amide derivatives of amino acids including p-nitroanilides, beta-naphthylamides and amides were recognized by such polymers, and enantiomeric resolution was obtained for amide derivatives of amino acid ranging from alanine to tryptophan on a single polymer. The implications of these findings with respect to the mechanism of recognition and the ability to predict enantiomeric resolution of molecules on molecularly imprinted polymers will be discussed.  相似文献   

6.
Comparative studies on substrate specificity of the soluble and membrane-bound aminopeptidases from bovine brain were carried out. A series of p-nitroanilides and beta-naphthylamides of amino acids, di- and tripeptides with the aminoterminal phenylalanine residue, as well as a biologically active pentapeptide--[Leu5]enkephalin--were used as substrates. The soluble and membrane-bound aminopeptidases manifested identical specificity towards the employed substrates. The aminopeptidases were equally effective towards the p-nitroanilides of amino acids and peptides, whereas beta-naphthylamides were more susceptible to hydrolysis by both aminopeptidases than p-nitroanilides and peptides. Taking into account physico-chemical characteristics of these enzymes, it was concluded that the soluble and membrane-bound aminopeptidases are quite similar or perhaps identical. Their role in the regulation of nervous system functioning was discussed. A comparison of specificities for brain aminopeptidases and leucine aminopeptidase from bovine lens led to the conclusion that they belong to different groups. This feature allows planning the synthesis of selective inhibitors.  相似文献   

7.
Critical ionizing groups in Aeromonas neutral protease   总被引:2,自引:0,他引:2  
Aeromonas neutral protease possesses two residues critical to its activity. One has a pKa of 5.5 in both the free enzyme and the enzyme-substrate complex and must be deprotonated for maximal activity. The other, which ionizes at pH 7.1 in the free enzyme and at pH 7.4 in the enzyme-substrate complex, must be protonated for optimal enzyme action. The protease is reversibly inhibited by aminoacyl hydroxamates, peptides containing a phenylalanyl residue, phosphoryl-L-phenylalanylglycylglycine, and by beta-phenylpropionyl-L-phenylalanine. The pH dependence of inhibition by the latter revealed that a residue with a pKa of 5.6 influences inhibitor binding. Compounds containing both a hydroxamido group and a chloroacetyl group are particularly effective in inactivating the enzyme, and inhibition is enhanced by hydrophobic residues. Thus, a 33-fold molar excess of chloroacetyl-N-hydroxy-L-phenylalanyl-L-alanyl-L-alanine amide rapidly inactivated Aeromonas neutral protease. Carbethoxylation experiments resulted in a 90% loss in activity which was fully reversible by hydroxylamine; spectral analysis indicated the involvement of a single histidine residue. Protection against both esterification and carbethoxylation was furnished by the presence of beta-phenylproprionyl-L-phenylalanine. Inactivation experiments suggest that a glutamic or aspartic acid and a histidine residue are responsible for the pKa values revealed by pH dependence studies.  相似文献   

8.
9.
Rat brain aminopeptidase activity was solubilized from membranes by incubation with thiols. This novel procedure resulted in the release of the same two aminopeptidases (MI and MII) previously shown to be solubilized by the nonionic detergent Triton X-100. The solubilized aminopeptidases MI and MII were resolved by ion-exchange chromatography and further purified by hydroxylapatite chromatography. Aminopeptidase MI was shown to hydrolyze only the beta-naphthylamides of arginine and lysine whereas aminopeptidase MII exhibited a broad specificity with respect to amino acid beta-naphthylamides. Only aminopeptidase MII hydrolyzed Leu-enkephalin at a significant rate, indicating that this enzyme can account for the membrane-bound enkephalin aminopeptidase activity. The enkephalin-degrading aminopeptidase is potently inhibited by opioid (alpha-neo-endorphin and dynorphin) as well as nonopioid (substance P, somatostatin, and angiotensin I) peptides in the range of 0.2-2.0 microM. The regional distribution of aminopeptidases MI and MII in rat brain are rather different, with aminopeptidase MII distribution more closely paralleling the distribution of opiate receptors.  相似文献   

10.
Amino acid residues at several locations in close primary vicinity to a substrate glutamine residue have been recognized as important determinants for the specificities of human plasma factor XIIIa and guinea pig liver transglutaminase (Gorman, J. J., and Folk, J. E. (1981) J. Biol. Chem. 256, 2712-2715). The present studies measure the influence on transglutaminase specificity of some changes in amino acid side chains in a small synthetic glutamine peptide amide, Leu-Gly-Leu-Gly-Gln-Gly-Lys-Val-Leu-GlyNH2, which was designed to contain most of the known elements needed for enzyme recognition. The results are in agreement with previous findings and show that full catalytic activity of each enzyme may be retained upon replacement of the lysine residue by certain other amino acid residues. Evidence is provided that serine in place of glycine at one or more positions causes a significant increase in specificity with factor XIIIa, but not with liver enzyme. The effective substrate property for factor XIIIa seen with the model peptide amide is lost upon reversal of the sequence Val-Leu. This is not the case with the liver enzyme even though replacement of either of these amino acids by alanine causes a pronounced loss in activity with this enzyme. These differences and the effects of various other substitutions in the model peptide amide on the enzymes' specificities points up the relatively stringent structural requirements of factor XIIIa and the rather broad requirements for liver transglutaminase.  相似文献   

11.
Acrosin purified from an acidic extract of ejaculated goat spermatozoa migrated as a single 42,000-Mr band in SDS/polyacrylamide-gel electrophoresis. Reduction and alkylation of caprine acrosin produced two polypeptides, one of Mr 40,000 (heavy chain) and the other of Mr 3700 (light chain). The light chain purified by reversed-phase h.p.l.c. was a glycosylated octadecapeptide with an amino acid sequence similar to that of the N-terminal 18 residues of porcine acrosin light chain (78% positional identity). The sequence of the N-terminal 37 amino acids of purified caprine acrosin heavy chain is similar to that of porcine acrosin heavy chain (70% positional identity through 37 residues). Studies with synthetic substrates and synthetic and natural proteinase inhibitors confirmed both the specificity of the purified proteinase for Arg-Xaa and Lys-Xaa bonds and a serine-proteinase mechanism. Purified caprine acrosin hydrolysed the 90 kDa and 65 kDa components, but did not hydrolyse the 55 kDa component of the porcine zona pellucida. The action of the enzyme on the porcine zona pellucida was indistinguishable from that previously reported for porcine acrosin.  相似文献   

12.
An aminopeptidase (EC 3.4.11.-) capmable of hydrolyzing L-alanyl-beta-naphthyl-amide and certain other aminoacyl beta-naphthylamides was purified to homogeneity from extracts of Exherichia coli K-12. The enzyme, designated aminopeptidase II, is a monomeric protein of mol. wt. 100 000. It exhibits a broad pH optimum in the range pH 7.0--9.0. Although Zn2+, Fe3+ and Cr3+ are strong inhibitors of enzyme activity, a metal requirement for catalysis could not be firmly established. Neither sulfhydryl reagents nor serine protease inhibitors affected enzyme activity.  相似文献   

13.
Disaccharide-specific glycosidases (diglycosidases) are unique glycoside hydrolases, as their substrate specificities differ from those of monosaccharide-specific beta-glycosidases (monoglycosidases), in spite of similarities in their sequences and reaction mechanisms. Diglycosidases selectively hydrolyse the beta-glycosidic bond between glycone and aglycone of disaccharide glycosides, but do not cleave the bond between two saccharides, and barely hydrolyse monosaccharide glycosides. We analysed the substrate recognition mechanisms of diglycosidases by computational and experimental methods, using furcatin hydrolase (FH) (EC 3.2.1.161) derived from Viburnum furcatum. Amino acid sequence comparisons and model structure building revealed two residues, Ala419 and Ser504 of FH, as candidates determining the substrate specificity. These residues were specifically conserved in the diglycosidases. The model structure suggested that Ala419 is involved in the aglycone recognition, whereas Ser504 recognizes the external saccharide of the glycone. Mutations at these sites drastically decreased the diglycosidase activity. The mechanism by which the diglycosidases acquired their substrate specificity is discussed, based on these observations.  相似文献   

14.
RNA minihelices and the decoding of genetic information   总被引:1,自引:0,他引:1  
P Schimmel 《FASEB journal》1991,5(8):2180-2187
The rules of the genetic code are determined by the specific aminoacylation of transfer RNAs by aminoacyl transfer RNA synthetase. A straightforward analysis shows that a system of synthetase-tRNA interactions that relies on anticodons for specificity could, in principle, enable most synthetases to distinguish their cognate tRNA isoacceptors from all others. Although the anticodons of some tRNAs are recognition sites for the cognate aminoacyl tRNA synthetases, for other synthetases the anticodon is dispensable for specific aminoacylation. In particular, alanine and histidine tRNA synthetases aminoacylate small RNA minihelices that reconstruct the part of their cognate tRNAs that is proximate to the amino acid attachment site. Helices with as few as six base pairs can be efficiently aminoacylated. The specificity of aminoacylation is determined by a few nucleotides and can be converted from one amino acid to another by the change of only a few nucleotides. These findings suggest that, for a subgroup of the synthetases, there is a distinct code in the acceptor helix of transfer RNAs that determines aminoacylation specificity.  相似文献   

15.
K S Hui  Y J Wang  A Lajtha 《Biochemistry》1983,22(5):1062-1067
A membrane-bound aminopeptidase was purified from rat brain, and its activity was assayed by high-pressure liquid chromatography with Met-enkephalin as the substrate. The enzyme was extracted with 1% Triton X-100 and purified by chromatography, successively on DEAE-Sepharose CL-6B, Bio-Gel HTP, and Sephadex G-200 columns. The overall purification was about 1200-fold, with 25% yield. The purified enzyme showed one band on disc gel electrophoresis and two bands on sodium dodecyl sulfate electrophoresis with molecular weights of 62 000 and 66 000. The aminopeptidase has a pH optimum of 7.0, a Km of 0.28 mM, and a Vmax of 45 mumol (mg of protein)-1 min-1 for Met-enkephalin. It releases tyrosine from Met-enkephalin, but it does not split the byproduct. It does not hydrolyze gamma- or beta-endorphin, or dynorphin, but it does hydrolyze neutral and basic aminoacyl beta-naphthylamides. The enzyme is inhibited by the aminopeptidase inhibitors amastatin, bestatin, and bestatin-Gly. Its properties, such as its subcellular localization, substrate specificity, pH optimum, and molecular weight, distinguish it from leucine aminopeptidase, aminopeptidase A, aminopeptidase B, aminopeptidase M, and the soluble aminopeptidase for enkephalin degradation.  相似文献   

16.
Endo-oligopeptidase A, highly purified from the cytosol fraction of bovine brain by immunoaffinity chromatography, has been characterised as a thiol endopeptidase. This enzyme, known to hydrolyse the Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin has been shown to produce, by a single cleavage, [Leu]enkephalin or [Met]enkephalin from small enkephalin-containing peptides. Enkephalin formation could be inhibited in a concentration dependent manner by the alternative substrate bradykinin. The optimal substrate size was found to be 8-13 amino acids, with enkephalin the only product released from precursors in which this sequence is immediately followed by a pair of basic residues. However, the specificity constants (kcat/Km) obtained for endo-oligopeptidase A hydrolysis of bradykinin, neurotensin and dynorphin B are of the same order. Taken together, these results indicate that the substrate amino acid sequence is not the only factor determining the cleavage site of this enzyme. Finally, endo-oligopeptidase A and metalloendopeptidase EC 3.4.24.15 are two different enzymes. The latter is not able to liberate enkephalins from metorphamide and dynorphin.  相似文献   

17.
Biochemical and molecular characterization of Staphylococcus xylosus lipase   总被引:1,自引:0,他引:1  
The Staphylococcus xylosus strain secretes a non-induced lipase in culture medium: S. xylosus lipase (SXL). Pure SXL is a monomeric protein (43 kDa). The 23 N-terminal amino acid residues were sequenced. This sequence is identical to that of Staphylococcus simulans lipase (SSL); in addition, it exhibits a high degree of homology with Staphylococcus aureus lipase (SAL NCTC 8530) sequences. The cloning and sequencing of gene part encoding the mature lipase shows one nucleotide difference with SSL, which corresponds to the change of one residue at a position 311. The lipase activity is maximal at pH 8.2 and 45 degrees C. SXL is able to hydrolyse triacylglycerols without chain length specificity. The specific activity of about 1900 U/mg was measured using tributyrin or triolein as substrate at pH 8.2 and at 45 degrees C in the presence of 2 mM CaCl2. In contrast to some previously characterized staphylococcal lipases, Ca2+ is not required to trigger the activity of SXL. SXL was found to be stable between pH 5 and pH 8.5. The enzyme maintains 50% of its activity after a 15-min incubation at 60 degrees C. Using tripropionin or vinyl esters as substrates, SXL does not present the interfacial activation phenomenon. Unlike many lipases, SXL is able to hydrolyse its substrate in the presence of bile salts or amphiphilic proteins. SXL is a serine enzyme, which is inhibited by THL.  相似文献   

18.
Amino acid sequence of calmodulin from wheat germ   总被引:6,自引:0,他引:6  
The complete amino acid sequence of calmodulin from wheat germ was determined by isolating and sequencing the cyanogen bromide and tryptic peptides. The protein consisted of 149 amino acid residues and its amino(N)-terminus was blocked with an acetyl group. Wheat germ calmodulin lacked tryptophan and contained 1 mol each of histidine, tyrosine, cysteine, and N epsilon-trimethyllysine residues per mol of the protein. A comparison of its amino acid sequence with that of bovine brain calmodulin indicated that there were eleven amino acid subsitutions other than amide assignments, two insertions and one deletion of amino acid residues in wheat germ calmodulin.  相似文献   

19.
Polypeptides that contain the sequence Asn-Pro undergo complete cleavage at this amide bond with ammonia. One cleavage product possesses Pro as the new amino terminus and the other Asn or isoAsn as the new C-terminus, the formation of the latter probably arising by way of a cyclic succinimide intermediate. Other Asn-X bonds where X = Tyr, Gln, Ile, Glu, Ala, Gly, Asn or Phe did not exhibit any peptide bond cleavage, whereas when X = Leu, Thr and Ser partial cleavage was observed. Asn residues not involved in chain-cleavage underwent deamidation to Asp as shown by MALDI-ToF mass spectrometry (MS) analysis. The partial conversion of in-chain Asp residues to isoAsp under the reaction conditions was inferred from RP-HPLC and MS analysis of reaction mixtures.  相似文献   

20.
Decatur SM 《Biopolymers》2000,54(3):180-185
The effect of N-acetylation on the conformation of alanine-rich helical peptides is examined using isotope-edited Fourier transform infrared (FTIR) spectroscopy. A series of peptides with sequence AA(AAKAA)(3)AAY has been prepared; each peptide incorporates four (13)C-labeled alanines. These peptides have two amide I' bands in their FTIR spectra: one corresponding to the (12)C amino acids, and one assigned to the (13)C amino acids. The intensity and frequency of the (13)C amide I' band varies systematically with the position of the labels in the sequence and the presence or absence of an N-acetyl capping group. The intensity of the (13)C amide I' band correlates with helix stability at the labeled residues as predicted by thermodynamic models of the helix-coil transition. These results suggest that FTIR spectroscopy combined with specific isotope labeling can be used to dissect the conformation of helical peptides at the residue level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号