首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Phage Mu is the most efficient transposable element known, its high efficiency being conferred by an enhancer DNA element. Transposition is the end result of a series of well choreographed steps that juxtapose the enhancer and the two Mu ends within a nucleoprotein complex called the ‘transpososome.’ The particular arrangement of DNA and protein components lends extraordinary stability to the transpososome and regulates the frequency, precision, directionality, and mechanism of transposition. The structure of the transpososome, therefore, holds the key to understanding all of these attributes, and ultimately to explaining the runaway genetic success of transposable elements throughout the biological world. This review focuses on the path of the DNA within the Mu transpososome, as uncovered by recent topological analyses. It discusses why Mu topology cannot be analyzed by standard methods, and how knowledge of the geometry of site alignment during Flp and Cre site-specific recombination was harnessed to design a new methodology called ‘difference topology.’ This methodology has also revealed the order and dynamics of association of the three interacting DNA sites, as well as the role of the enhancer in assembly of the Mu transpososome.  相似文献   

2.
3.
The higher-order DNA-protein complex that carries out the chemical steps of phage Mu transposition is organized by bridging interactions among three DNA sites, the left (L) and right (R) ends of Mu, and an enhancer element (E), mediated by the transposase protein MuA. A subset of the six subunits of MuA associated with their cognate sub-sites at L and R communicate with the enhancer to trigger the stepwise assembly of the functional transpososome. The DNA follows a well-defined path within the transpososome, trapping five supercoil nodes comprising two E-R crossings, one E-L crossing and two L-R crossings. The enhancer is a critical DNA element in specifying the unique interwrapped topology of the three-site LER synapse. In this study, we used multiple strategies to characterize Mu end-enhancer interactions to extend, modify and refine those inferred from earlier analyses. Directed placement of transposase subunits at their cognate sub-sites at L and R, analysis of the protein composition of transpososomes thus obtained, and their characterization using topological methods define the following interactions. R1-E interaction is essential to promote transpososome assembly, R3-E interaction contributes to the native topology of the transpososome, and L1-E and R2-E interactions are not required for assembly. The data on L2-E and L3-E interactions are not unequivocal. If they do occur, either one is sufficient to support the assembly process. Our results are consistent with two R-E and perhaps one L-E, being responsible for the three DNA crossings between the enhancer and the left and right ends of Mu. A 3D representation of the interwrapped complex (IW) obtained by modeling is consistent with these results. The model reveals straightforward geometric and topological relationships between the IW complex and a more relaxed enhancer-independent V-form of the transpososome assembled under altered reaction conditions.  相似文献   

4.
Assembly of the Mu transpososome is dependent on interactions of transposase subunits with the left (L) and right (R) ends of Mu and an enhancer (E). We have followed the order and dynamics of association of these sites within a series of transpososomes prior to and during formation of a three-site complex (LER), engagement of Mu ends by the transposase active site (type 0 complex), cleavage of the ends (type I complex) and their transfer to target DNA (type II complex). LER appears to be preceded by a two-site complex (ER) where E and R are interwrapped twice, as in the mature transpososome. At each stage thereafter, the overall topology of five DNA supercoils is retained: two between E and R, one between E and L and two between L and R. However, L-R interactions within LER appear to be flexible. Unexpectedly, the enhancer was seen to persist within the transpososome through cleavage and strand transfer of Mu ends to target DNA.  相似文献   

5.
A Mu transpososome assembled on negatively supercoiled DNA traps five supercoils by intertwining the left (L) and right (R) ends of Mu with an enhancer element (E). To investigate the contribution of DNA supercoiling to this elaborate synapse in which E and L cross once, E and R twice, and L and R twice, we have analyzed DNA crossings in a transpososome assembled on nicked substrates under conditions that bypass the supercoiling requirement for transposition. We find that the transposase MuA can recreate an essentially similar topology on nicked substrates, interwrapping both E-R and L-R twice but being unable to generate the single E-L crossing. In addition, we deduce that the functional MuA tetramer must contribute to three of the four observed crossings and, thus, to restraining the enhancer within the complex. We discuss the contribution of both MuA and DNA supercoiling to the 5-noded Mu synapse built at the 3-way junction.  相似文献   

6.
M Mizuuchi  K Mizuuchi 《The EMBO journal》2001,20(23):6927-6935
Initiation of phage Mu DNA transposition requires assembly of higher order protein-DNA complexes called Mu transpososomes containing the two Mu DNA ends and MuA transposase tetramer. Mu transpososome assembly is highly regulated and involves multiple DNA sites for transposase binding, including a transpositional enhancer called the internal activation sequence (IAS). In addition, a number of protein cofactors participate, including the target DNA activator MuB ATPase. We investigated the impact of the assembly cofactors on the kinetics of transpososome assembly with the aim of deciphering the reaction steps that are influenced by the cofactors. The transpositional enhancer IAS appears to have little impact on the initial pairing of the two Mu end segments bound by MuA. Instead, it accelerates the post-synaptic conformational step(s) that converts the reversible complex to the stable transpososome. The transpososome assembly stimulation by MuB does not require its stable DNA binding activity, which appears critical for directing transposition to sites distant from the donor transposon.  相似文献   

7.
Pathania S  Jayaram M  Harshey RM 《Cell》2002,109(4):425-436
The phage Mu transpososome is assembled by interactions of transposase subunits with the left (L) and right (R) ends of Mu and an enhancer (E) located in between. A metastable three-site complex LER progresses into a more stable type 0 complex in which a tetrameric transposase is poised for DNA cleavage. "Difference topology" has revealed five trapped negative supercoils within type 0, three contributed by crossings of E with L and R, and two by crossings of L with R. This is the most complex DNA arrangement seen to date within a recombination synapse. Contrary to the prevailing notion, the enhancer appears not to be released immediately following type 0 assembly. Difference topology provides a simple method for determining the ordered sequestration of DNA segments within nucleoprotein assemblies.  相似文献   

8.
9.
DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration versus disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the “joining” configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and may provide a mechanism to antagonize formation of single-end transposition products.  相似文献   

10.
11.
The Mutator transposable element system of maize was originally identified through its induction of mutations at an exceptionally high frequency and at a wide variety of loci. The Mu1 subfamily of transposable elements within this system are responsible for the majority of Mutator-induced mutations. Mu 1-related elements were isolated from active Mutator plants and their flanking DNA was characterized. Sequence analyses revealed perfect nine base target duplications directly flanking the insert for 13 of the 14 elements studied. Hybridizational studies indicated that Mu1-like elements insert primarily into regions of the maize genome that are of low copy number. This preferential selection of low copy number DNA as targets for Mu element insertion was not directed by any specific secondary structure(s) that could be detected in this study, but the 9-bp target duplications exhibited a discernibly higher than random match with the consensus sequence 5'-G-T-T-G-G/C-A-G-G/A-G-3'.  相似文献   

12.
We report a new cellular interaction between the infecting transposable phage Mu and the host Escherichia coli replication machinery during repair of Mu insertions, which involves filling‐in of short target gaps on either side of the insertion, concomitant with degradation of extraneous long flanking DNA (FD) linked to Mu. Using the FD as a marker to follow repair, we find that after transposition into the chromosome, the unrepaired Mu is indefinitely stable until the replication fork arrives at the insertion site, whereupon the FD is rapidly degraded. When the fork runs into a Mu target gap, a double strand end (DSE) will result; we demonstrate fork‐dependent DSEs proximal to Mu. These findings suggest that Pol III stalled at the transpososome is exploited for co‐ordinated repair of both target gaps flanking Mu without replicating the intervening 37 kb of Mu, disassembling the stable transpososome in the process. This work is relevant to all transposable elements, including retroviral elements like HIV‐1, which share with Mu the common problem of repair of their flanking target gaps.  相似文献   

13.
Mu transposition occurs within a large protein-DNA complex called a transpososome. This stable complex includes four subunits of MuA transposase, each contacting a 22-base pair recognition site located near an end of the transposon DNA. These MuA recognition sites are critical for assembling the transpososome. Here we report that when concentrations of Mu DNA are limited, the MuA recognition sites permit assembly of transpososomes in which non-Mu DNA substitutes for some of the Mu sequences. These "hybrid" transpososomes are stable to competitor DNA, actively transpose the non-Mu DNA, and produce transposition products that had been previously observed but not explained. The strongest activator of non-Mu transposition is a DNA fragment containing two MuA recognition sites and no cleavage site, but a shorter fragment with just one recognition site is sufficient. Based on our results, we propose that MuA recognition sites drive assembly of functional transpososomes in two complementary ways. Multiple recognition sites help physically position MuA subunits in the transpososome plus each individual site allosterically activates transposase.  相似文献   

14.
The Mu DNA transposition reaction proceeds through a three-site synaptic complex (LER), including the two Mu ends and the transpositional enhancer. We show that the LER contains highly stressed DNA regions in the enhancer and in the L1 transposase binding site. We propose that the L1 site acts as the keystone for assembly of a catalytically competent transpososome. Delivery of L1 through HU-mediated bending completes LER assembly, provides the trigger for necessary conformational transitions in transpososome formation, and allows target capture to occur. Relief of the stress at L1 and the enhancer may help drive Mu A tetramerization and engagement of the Mu ends by the transposase active site.  相似文献   

15.
H Savilahti  P A Rice    K Mizuuchi 《The EMBO journal》1995,14(19):4893-4903
The two chemical steps of phage Mu transpositional recombination, donor DNA cleavage and strand transfer, take place within higher order protein-DNA complexes called transpososomes. At the core of these complexes is a tetramer of MuA (the transposase), bound to the two ends of the Mu genome. While transpososome assembly normally requires a number of cofactors, under certain conditions only MuA and a short DNA fragment are required. DNA requirements for this process, as well as the stability and activity of the ensuing complexes, were established. The divalent cation normally required for assembly of the stable complex could be omitted if the substrate was prenicked, if the flanking DNA was very short or if the two flanking strands were non-complementary. The presence of a single nucleotide beyond the Mu genome end on the non-cut strand was critical for transpososome stability. Donor cleavage additionally required at least two flanking nucleotides on the strand to be cleaved. The flanking DNA double helix was destabilized, implying distortion of the DNA near the active site. Although donor cleavage required Mg2+, strand transfer took place in the presence of Ca2+ as well, suggesting a conformational difference in the active site for the two chemical steps.  相似文献   

16.
Bacteriophage Mu transposition requires two phage-encoded proteins, the transposase, Mu A, and an accessory protein, Mu B. Mu B is an ATP-dependent DNA-binding protein that is required for target capture and target immunity and is an allosteric activator of transpososome function. The recent NMR structure of the C-terminal domain of Mu B (Mu B223-312) revealed that there is a patch of positively charged residues on the solvent-exposed surface. This patch may be responsible for the nonspecific DNA binding activity displayed by the purified Mu B223-312 peptide. We show that mutations of three lysine residues within this patch completely abolish nonspecific DNA binding of the C-terminal peptide (Mu B223- 312). To determine how this DNA binding activity affects transposition we mutated these lysine residues in the full-length protein. The full-length protein carrying all three mutations was deficient in both strand transfer and allosteric activation of transpososome function but retained ATPase activity. Peptide binding studies also revealed that this patch of basic residues within the C-terminal domain of Mu B is within a region of the protein that interacts directly with Mu A. Thus, we conclude that this protein segment contributes to both DNA binding and protein-protein contacts with the Mu transposase.  相似文献   

17.
The Mu in vitro strand transfer reaction proceeds via two stable higher order nucleoprotein complexes, the Type 1 and Type 2 transpososomes. The Mu A protein is responsible for the structural and functional integrity of the Type 1 transpososome. We have investigated the quaternary structure of the Mu A protein within this complex by chemical cross-linking experiments and found that the basic structural unit is an A tetramer. Three Mu A binding sites in the transpososome are protected by DNase I footprinting: the outermost A binding sites L1 and R1, as well as R2. Genetic evidence is also presented which corroborates this result. Efficient formation of Type 1 complexes occurs in mini-Mus with the L3 or R3 sites deleted or when the L2 site has been substituted; but no reaction occurs in the absence of R2. The protection at the L1 and R1 sites extends 12-13 bp beyond the Mu-host junctions as seen by DNase I and methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] foot-printing, indicating Mu A contacts with the flanking host sequences in the transpososome but not on linear DNA; furthermore, hydroxyl radical footprinting shows an unprecedentedly large enhancement on the continuous strand, 2 bp beyond the nick site outside the Mu right end, which suggests that an altered DNA structure is induced upon Type 1 complex formation.  相似文献   

18.
Studies of several transposable genetic elements have pinpointed the importance of the transpososome, a nucleoprotein complex involving the transposon ends and a transposon-encoded enzyme--the transposase--as a key in regulating transposition. Transpososomes provide a precise architecture within which the chemical reactions involved in transposon displacement occur. Data are accumulating that suggest they are dynamic and undergo staged conformational changes to accommodate different steps in the transposition pathway. This has been underpinned by recent results obtained particularly with Tn5, Tn10 and bacteriophage Mu.  相似文献   

19.
The 37 kb transposable bacteriophage Mu genome encodes a transposase protein which can recognize and bind to a consensus sequence repeated three times at each extremity of its genome. A subset of this consensus sequence (5'-PuCGAAA(A)-3') is found in the ends of many class II prokaryotic transposable elements. These elements, like phage Mu, cause 5 bp duplications at the site of element insertion, and transpose by a cointegrate mechanism. Using the band retardation assay, we have found that crude protein extracts containing overexpressed Mu transposase can form high-affinity protein-DNA complexes with Mu att R and the ends of the class II elements Tn 3 (right) and IS101. No significant protein-DNA complex formation was observed with DNA fragments containing the right end of the element IS102, or a non-specific pBR322 fragment of similar size. These results suggest that the Mu transposase protein can specifically recognize the ends of other class II transposable elements and that these elements may be evolutionarily related.  相似文献   

20.
Bacteriophage Mu uses non-replicative transposition for integration into the host's chromosome and replicative transposition for phage propagation. Biochemical and structural comparisons together with evolutionary considerations suggest that the Mu transposition machinery might share functional similarities with machineries of the systems that are known to employ a hairpin intermediate during the catalytic steps of transposition. Model transposon end DNA hairpin substrates were used in a minimal-component in vitro system to study their proficiency to promote Mu transpososome assembly and subsequent MuA-catalyzed chemical reactions leading to the strand transfer product. MuA indeed was able to assemble hairpin substrates into a catalytically competent transpososome, open the hairpin ends and accurately join the opened ends to the target DNA. The hairpin opening and transposon end cleavage reactions had identical metal ion preferences, indicating similar conformations within the catalytic center for these reactions. Hairpin length influenced transpososome assembly as well as catalysis: longer loops were more efficient in these respects. In general, MuA's proficiency to utilize different types of hairpin substrates indicates a certain degree of flexibility within the transposition machinery core. Overall, the results suggest that non-replicative and replicative transposition systems may structurally and evolutionarily be more closely linked than anticipated previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号