首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
《Bio Systems》2009,95(3):233-241
A computer study of the prediction of the protein crystal’s shape and polymorphism of crystal’s structures within the limits resulting from the exploration of the Miyazawa–Jernigan matrix is presented. In this study, a coarse-graining procedure was applied to prepare a two-dimensional growth unit, where instead of full atom representation of the protein a two-type (hydrophobic–hydrophilic, HP) aminoacidal representation was used. The interaction energies between hydrophobic (EHH) aminoacids were chosen from the well-known HP-type models (EHH[4,3,2.3,1]), whereas interaction energies between hydrophobic and hydrophilic aminoacids (EHP) as well as interaction energies between hydrophilic aminoacids (EPP) were chosen from the range: <1,1>, but not all values from this range fulfiled limitations resulting from the exploration of the Miyazawa–Jernigan matrix. Exploring every positively vetted combinations of energy interactions a polymorphism of the unit cell was observed what led to the fact that different final crystal’s shapes were obtained.  相似文献   

9.
10.
11.
12.
13.
14.
In this paper, we quantify the extent to which shoulder orientation, upper-arm electromyography (EMG), and forearm EMG are predictors of distal arm joint angles during reaching in eight subjects without disability as well as three subjects with a unilateral transhumeral amputation and targeted reinnervation. Prior studies have shown that shoulder orientation and upper-arm EMG, taken separately, are predictors of both elbow flexion/extension and forearm pronation/supination. We show that, for eight subjects without disability, shoulder orientation and upper-arm EMG together are a significantly better predictor of both elbow flexion/extension during unilateral (R2=0.72) and mirrored bilateral (R2=0.72) reaches and of forearm pronation/supination during unilateral (R2=0.77) and mirrored bilateral (R2=0.70) reaches. We also show that adding forearm EMG further improves the prediction of forearm pronation/supination during unilateral (R2=0.82) and mirrored bilateral (R2=0.75) reaches. In principle, these results provide the basis for choosing inputs for control of transhumeral prostheses, both by subjects with targeted motor reinnervation (when forearm EMG is available) and by subjects without target motor reinnervation (when forearm EMG is not available). In particular, we confirm that shoulder orientation and upper-arm EMG together best predict elbow flexion/extension (R2=0.72) for three subjects with unilateral transhumeral amputations and targeted motor reinnervation. However, shoulder orientation alone best predicts forearm pronation/supination (R2=0.88) for these subjects, a contradictory result that merits further study.  相似文献   

15.
16.
Studies are reported on the chemical reduction of the homobinuclear bis(μ-phosphido) metal complexes (CO)3Fe(μ-PR2)2Fe(CO)3 (R = Ph or Me), (NO)2-Fe(μ-PPh2)2Fe(NO)2 and (CO)4M(μ-PPh2)2M(CO)4 (M = Mo or W). Two reduction pathways have been observed which result in different two-electron transformations: (1) with Na or LiAlH4, electron transfer to yield the corresponding symmetric dianions of the type LnM(μ-PR2)2MLn2? without metalmetal bond and (2) with M′BR′3H(M′ = Li, Na, or K; R′ = Et or sec-Bu), hydride transfer to give monoanionic complexes of the type LnM(μ-PR2)(μ-L)MLn?1(PR2H)? or LnM(μ-PR2)MLn(PR2H)? (M = Fe, Mo, or W; L = CO or NO; R = Ph or Me). The monoanionic complexes can be deprotonated with n-BuLi at ?78 °C to the corresponding unsymmetric dianions LnM(μ-PR2)(μ-L)MLn?1(PR2)2? (M = Fe; L = CO or NO; R = Ph) or symmetric dianions LnM(μ-PR2)2MLn2? (M = Mo or W; L = CO; R = Ph). The unsymmetric dianions isomerize on slight warming to the symmetric dianions, which undergo protonation by CF3COOH to yield the aforementioned monoanions. Reactions of several members of these three classes of binuclear anions with CF3COOH, alkylating reagents, 1,1-diiodohydrocarbons and metal diiodo complexes have resulted in the synthesis of new binuclear and trinuclear compounds. Examples include (CO)3(H)Fe(μ-PPh2)Fe(CO)3(PPH2H), (CO)3Fe(μ-PPh2)(μ-C(R)O)Fe(CO)2(PPh2R) (R = Me, Et, n-Pr, or i-Pr), (CO)4M(μ-PPh2)2M(CO)3(C(R)Ome) (M = Mo or W; R = Me or Ph), (CO)2(η3?C3H5)Fe(μ?PPh2)?Fe(CO)3(PPh2C3H5), (CO)4M(μ?PPh2)2M(CO)3(C(R)Ome), (NO)2Fe(μ?CH2)(μ?Ph2PPPh2)Fe(NO)2, and Fe2Co(η5-C5H5)(CO)(NO)4(μ-PPh2)2. Synthetic and mechanistic studies on these reactions are presented.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号