首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553–658 Pa) and 4-week-old toddler piglet brain (692–811 Pa) from comparisons with measured in situ tissue strains. The more mature brain modulus was found to have significant strain and strain rate dependencies not observed with the infant brain. Age-appropriate FEMs were then used to simulate experimental TBI in infant (\(n=36\)) and preadolescent (\(n=17\)) piglets undergoing a range of rotational head loads. The experimental animals were evaluated for the presence of clinically significant traumatic axonal injury (TAI), which was then correlated with FEM-calculated measures of overall and white matter tract-oriented tissue deformations, and used to identify the metric with the highest sensitivity and specificity for detecting TAI. The best predictors of TAI were the tract-oriented strain (6–7 %), strain rate (38–40 s\(^{-1})\), and strain times strain rate (1.3–1.8 s\(^{-1})\) values exceeded by 90 % of the brain. These tract-oriented strain and strain rate thresholds for TAI were comparable to those found in isolated axonal stretch studies. Furthermore, we proposed that the higher degree of agreement between tissue distortion aligned with white matter tracts and TAI may be the underlying mechanism responsible for more severe TAI after horizontal and sagittal head rotations in our porcine model of nonimpact TAI than coronal plane rotations.  相似文献   

2.
This paper proposes a modified nonlinear viscoelastic Bilston model (Bilston et al., 2001, Biorheol., 38, pp. 335-345). for the modeling of brain tissue constitutive properties. The modified model can be readily implemented in a commercial explicit finite element (FE) code, PamCrash. Critical parameters of the model have been determined through a series of rheological tests on porcine brain tissue samples and the time-temperature superposition (TTS) principle has been used to extend the frequency to a high region. Simulations by using PamCrash are compared with the test results. Through the use of the TTS principle, the mechanical and rheological behavior at high frequencies up to 10(4) rads may be obtained. This is important because the properties of the brain tissue at high frequencies and impact rates are especially relevant to studies of traumatic head injury. The averaged dynamic modulus ranges from 130 Pa to 1500 Pa and loss modulus ranges from 35 Pa to 800 Pa in the frequency regime studied (0.01 rads to 3700 rads). The errors between theoretical predictions and averaged relaxation test results are within 20% for strains up to 20%. The FEM simulation results are in good agreement with experimental results. The proposed model will be especially useful for application to FE analysis of the head under impact loads. More realistic analysis of head injury can be carried out by incorporating the nonlinear viscoelastic constitutive law for brain tissue into a commercial FE code.  相似文献   

3.
The knowledge of in vivo brain tissue mechanical properties is essential in several biomedical engineering fields, such as injury biomechanics and neurosurgery simulation. Almost all existing available data have been obtained in vitro by invasive experimental protocols. However, the difference between in vivo and post-mortem mechanical properties remains poorly known, essentially due to the lack of a common method that could measure them both in vivo and ex vivo. In this study, we report the use of magnetic resonance elastography (MRE) for the non-invasive assessment of in vivo brain tissue viscoelastic properties and for the investigation of their evolution after the death. Experiments were performed on seven adult male rats. Shear storage and loss moduli were measured in vivo, just after death and at post-mortem time of approximately 24h. A significant increase in shear storage modulus G(') of approximately 100% was found to occur just after death (p=0.002), whereas no significant difference was found between in vivoG(') and G(') at 24h post-mortem time. No significant difference was found between shear loss modulus G(')in vivo and just after death, whereas a decrease of about 50% was found to occur after 24h (p=0.02). These results illustrate the ability of MRE to investigate some of the critical soft tissue biomechanics-related issues, as it can be used as a non-invasive tool for measuring soft tissue viscoelastic properties.  相似文献   

4.
Tendon functionality is related to its mechanical properties. Tendon damage leads to a reduction in mechanical strength and altered biomechanical behavior, and therefore leads to compromised ability to carry out normal functions such as joint movement and stabilization. Damage can also accumulate in the tissue and lead to failure. A noninvasive method with which to measure such damage potentially could quantify structural compromise from tendon injury and track improvement over time. In this study, tendon mechanics are measured before and after damage is induced by "overstretch" (strain exceeding the elastic limit of the tissue) using a traditional mechanical test system while ultrasonic echo intensity (average gray scale brightness in a B-mode image) is recorded using clinical ultrasound. The diffuse damage caused by overstretch lowered the stress at a given strain in the tissue and decreased viscoelastic response. Overstretch also lowered echo intensity changes during stress relaxation and cyclic testing. As the input strain during overstretch increased, stress levels and echo intensity changes decreased. Also, viscoelastic parameters and time-dependent echo intensity changes were reduced.  相似文献   

5.
In this study, the magnetic resonance (MR) elastography technique was used to estimate the dynamic shear modulus of mouse brain tissue in vivo. The technique allows visualization and measurement of mechanical shear waves excited by lateral vibration of the skull. Quantitative measurements of displacement in three dimensions during vibration at 1200 Hz were obtained by applying oscillatory magnetic field gradients at the same frequency during a MR imaging sequence. Contrast in the resulting phase images of the mouse brain is proportional to displacement. To obtain estimates of shear modulus, measured displacement fields were fitted to the shear wave equation. Validation of the procedure was performed on gel characterized by independent rheometry tests and on data from finite element simulations. Brain tissue is, in reality, viscoelastic and nonlinear. The current estimates of dynamic shear modulus are strictly relevant only to small oscillations at a specific frequency, but these estimates may be obtained at high frequencies (and thus high deformation rates), noninvasively throughout the brain. These data complement measurements of nonlinear viscoelastic properties obtained by others at slower rates, either ex vivo or invasively.  相似文献   

6.
Stress relaxation tests using a custom designed microindentation device were performed on ten anatomic regions of fresh porcine brain (postmortem time <3 h). Using linear viscoelastic theory, a Prony series representation was used to describe the shear relaxation modulus for each anatomic region tested. Prony series parameters fit to load data from indentations performed to ~10% strain differed significantly by anatomic region. The gray and white matter of the cerebellum along with corpus callosum and brainstem were the softest regions measured. The cortex and hippocampal CA1/CA3 were found to be the stiffest. To examine the large strain behavior of the tissue, multistep indentations were performed in the corona radiata to strains of 10%, 20%, and 30%. Reduced relaxation functions were not significantly different for each step, suggesting that quasi-linear viscoelastic theory may be appropriate for representing the nonlinear behavior of this anatomic region of porcine brain tissue. These data, for the first time, describe the dynamic and short time scale behavior of multiple anatomic regions of the porcine brain which will be useful for understanding porcine brain injury biomechanics at a finer spatial resolution than previously possible.  相似文献   

7.
The non-linear mechanical behaviour of porcine brain tissue in large shear deformations is determined. An improved method for rotational shear experiments is used, producing an approximately homogeneous strain field and leading to an enhanced accuracy. Results from oscillatory shear experiments with a strain amplitude of 0.01 and frequencies ranging from 0.04 to 16 Hz are given. The immediate loss of structural integrity, due to large deformations, influencing the mechanical behaviour of brain tissue, at the time scale of loading, is investigated. No significant immediate mechanical damage is observed for these shear deformations up to strains of 0.45. Moreover, the material behaviour during complex loading histories (loading-unloading) is investigated. Stress relaxation experiments for strains up to 0.2 and constant strain rate experiments for shear rates from 0.01 to 1 s(-1) and strains up to 0.15 are presented. A new differential viscoelastic model is used to describe the mechanical response of brain tissue. The model is formulated in terms of a large strain viscoelastic framework and considers non-linear viscous deformations in combination with non-linear elastic behaviour. This constitutive model is readily applicable in three-dimensional head models in order to predict the mechanical response of the intra-cranial contents due to an impact.  相似文献   

8.
This study evaluates the potential of electrical impedance spectroscopy (EIS) as a noninvasive technique for tracking the progression of radiation-induced damage in normal muscle tissue. Male Sprague-Dawley rats were irradiated locally to the gastrocnemius and biceps femoris muscle. Single doses were administered using a procedure that spares skin and bone. Complex impedance spectral measurements (taken at 50 frequency points between 1 kHz and 1 MHz) were made at monthly intervals using recessed disk electrodes applied to the skin. A histological scoring scheme was developed for evaluation of injury. A strong dose-dependent progression of injury evident in both spectral measurements and histological scoring has been observed. Latent time also appears to be dependent on dose with changes induced by 70 Gy evident by 2 months, changes induced by 90 Gy observed by 1 month, and dramatic changes found within 3 weeks at 150 Gy. Injury was morphologically comparable to the type of damage that occurs in response to small, fractionated doses, but on a much shorter time scale. Increased spectral shift was a consistent indicator of the extent of tissue injury at the time of measurement. The use of a large single dose resulted in an excellent model in terms of inducing a significant progression in tissue injury over a short post-treatment follow-up period in the muscle mass while also providing a consistent location for in vivo electrical impedance measurements. The results show that EIS can follow radiation-induced tissue change, suggesting that EIS has the potential to monitor the types of injury observed in late radiation damage of muscle tissue noninvasively.  相似文献   

9.
Nanoindentation has recently gained attention as a characterization technique for mechanical properties of biological tissues, such as bone, on the sub-micron level. However, optimal methods to characterize viscoelastic properties of bones are yet to be established. This study aimed to compare the time-dependent viscoelastic properties of bone tissue obtained with different nanoindentation methods. Bovine cortical and trabecular bone samples (n=8) from the distal femur and proximal tibia were dehydrated, embedded and polished. The material properties determined using nanoindentation were hardness and reduced modulus, as well as time-dependent parameters based on creep, loading-rate, dissipated energy and semi-dynamic testing under load control. Each loading protocol was repeated 160 times and the reproducibility was assessed based on the coefficient of variation (CV). Additionally, three well-characterized polymers were tested and CV values were calculated for reference.The employed methods were able to characterize time-dependent viscoelastic properties of bone. However, their reproducibility varied highly (CV 9–40%). The creep constant increased with increasing dwell time. The reproducibility was best with a 30 s creep period (CV 18%). The dissipated energy was stable after three repeated load cycles, and the reproducibility improved with each cycle (CV 23%). The viscoelastic properties determined with semi-dynamic test increased with increase in frequency. These measurements were most reproducible at high frequencies (CV 9–10%). Our results indicate that several methods are feasible for the determination of viscoelastic properties of bone material. The high frequency semi-dynamic test showed the highest precision within the tested nanoindentation protocols.  相似文献   

10.
Favism is a life-threatening hemolytic anemia resulting from the intake of fava beans by susceptible individuals with low erythrocytic glucose 6-phosphate dehydrogenase (G6PD) activity. However, little is known about the metabolomic changes in plasma and liver after the intake of fava beans in G6PD normal and deficient states. In this study, gas chromatography/mass spectrometry was used to analyze the plasma and liver metabolic alterations underlying the effects of fava beans in C3H- and G6PD-deficient (G6PDx) mice, and to find potential biomarkers and metabolic changes associated with favism. Our results showed that fava beans induced oxidative stress in both C3H and G6PDx mice. Significantly, metabolomic differences were observed in plasma and liver between the control and fava bean treated groups of both C3H and G6PDx mice. The levels of 7 and 21 metabolites in plasma showed significant differences between C3H-control (C3H-C)- and C3H fava beans-treated (C3H-FB) mice, and G6PDx-control (G6PDx-C)- and G6PDx fava beans-treated (G6PDx-FB) mice, respectively. Similarly, the levels of 7 and 25 metabolites in the liver showed significant differences between C3H and C3H-FB, and G6PDx and G6PDx-FB, respectively. The levels of oleic acid, linoleic acid, and creatinine were significantly increased in the plasma of both C3H-FB and G6PDx-FB mice. In the liver, more metabolic alterations were observed in G6PDx-FB mice than in C3H-FB mice, and were involved in a sugar, fatty acids, amino acids, cholesterol biosynthesis, the urea cycle, and the nucleotide metabolic pathway. These findings suggest that oleic acid, linoleic acid, and creatinine may be potential biomarkers of the response to fava beans in C3H and G6PDx mice and therefore that oleic acid and linoleic acid may be involved in oxidative stress induced by fava beans. This study demonstrates that G6PD activity in mice can affect their metabolic pathways in response to fava beans.  相似文献   

11.
目的:研究芸香苷对慢性脑低灌注导致大鼠认知功能障碍和脑损伤的影响。方法:采用双侧颈总动脉结扎法(bilateral common carotid artery occlusion,BCCAO)建立慢性脑低灌注大鼠模型,随机分为4组(n=10):生理盐水治疗模型组、芸香苷治疗模型组、生理盐水治疗假手术组、芸香苷治疗假手术组;连续腹腔注射芸香苷和生理盐水共12周。采用Morris水迷宫评定大鼠学习和记忆能力。采用分光光度法检测脑组织中枢胆碱能相关指标和氧化应激指标。应用免疫组织化学和El ISA方法检测脑组织炎症反应。采用Nissl染色法检测脑组织神经元缺失。结果:芸香苷治疗模型组大鼠的逃脱潜伏期较生理盐水治疗模型组明显减少(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗后显著提高了BCCAO大鼠脑组织中ACh水平(P0.01)和Ch AT活性(P0.01),并降低了ACh E活性(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗模型组显著增加了大鼠脑组织中SOD活性(P0.01)和GPX活性(P0.01),降低了MDA水平(P0.01)和蛋白质羰基化合物水平(P0.01)。芸香苷治疗模型组大鼠海马区GFAP-免疫阳性星型胶质细胞(P0.01)和Iba1-免疫阳性小胶质细胞(P0.01)面积百分比较生理盐水治疗模型组显著减少。芸香苷治疗模型组大鼠海马区正常神经元的数量较生理盐水治疗模型组大鼠显著增加(P0.01)。结论:芸香苷可改善慢性脑低灌注引起的大鼠认知功能障碍和脑损伤。  相似文献   

12.
The relationship between an initial mechanical event causing brain tissue deformation and delayed neurodegeneration in vivo is complex because of the multiplicity of factors involved. We have used a simplified brain surrogate based on rat hippocampal slices grown on deformable silicone membranes to study stretch-induced traumatic brain injury. Traumatic injury was induced by stretching the culture substrate, and the biological response characterized after 4 days. Morphological abnormalities consistent with traumatic injury in humans were widely observed in injured cultures. Synaptic function was significantly reduced after a severe injury. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated neuronal damage, prevented loss of microtubule-associated protein 2 immunoreactivity and attenuated reduction of synaptic function. In contrast, the NMDA receptor antagonists 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and GYKI53655, were neuroprotective in a moderate but not a severe injury paradigm. Nifedipine, an L-type voltage-dependent calcium channel antagonist was protective only after a moderate injury, whereas omega-conotoxin attenuated damage following severe injury. These results indicate that the mechanism of damage following stretch injury is complex and varies depending on the severity of the insult. In conclusion, the pharmacological, morphological and electrophysiological responses of organotypic hippocampal slice cultures to stretch injury were similar to those observed in vivo. Our model provides an alternative to animal testing for understanding the mechanisms of post-traumatic delayed cell death and could be used as a high-content screen to discover neuroprotective compounds before advancing to in vivo models.  相似文献   

13.
Computational models of the human brain are widely used in the evaluation and development of helmets and other protective equipment. These models are often attempted to be validated using cadaver tissue displacements despite studies showing neural tissue degrades quickly after death. Addressing this limitation, this study aimed to develop a technique for quantifying living brain motion in vivo using a closed head impact animal model of traumatic brain injury (TBI) called CHIMERA. We implanted radiopaque markers within the brain of three adult ferrets and resealed the skull while the animals were anesthetized. We affixed additional markers to the skull to track skull kinematics. The CHIMERA device delivered controlled, repeatable head impacts to the head of the animals while the impacts were fluoroscopically stereo-visualized. We observed that 1.5 mm stainless steel fiducials (∼8 times the density of the brain) migrated from their implanted positions while neutral density targets remained in their implanted position post-impact. Brain motion relative to the skull was quantified in neutral density target tests and showed increasing relative motion at higher head impact severities. We observed the motion of the brain lagged behind that of the skull, similar to previous studies. This technique can be used to obtain a comprehensive dataset of in vivo brain motion to validate computational models reflecting the mechanical properties of the living brain. The technique would also allow the mechanical response of in vivo brain tissue to be compared to cadaveric preparations for investigating the fidelity of current human computational brain models.  相似文献   

14.
Although a number of cytoskeletal derangements have been described in the setting of traumatic axonal injury (TAI), little is known of early structural changes that may serve to initiate a cascade of further axonal degeneration. Recent work by the authors has examined conformational changes in cytoskeletal constituents of neuronal axons undergoing traumatic axonal injury (TAI) following focal compression through confocal imaging data taken in vitro and in situ. The present study uses electron microscopy to understand and quantify in vitro alterations in the ultrastructural composition of microtubules and neurofilaments within neuronal axons of rats following focal compression. Standard transmission electron microscopy processing methods are used to identify microtubules, while neurofilament identification is performed using antibody labeling through gold nanoparticles. The number, density, and spacing of microtubules and neurofilaments are quantified for specimens in sham Control and Crushed groups with fixation at <1min following load. Our results indicate that the axon caliber dependency known to exist for microtubule and neurofilament metrics extends to axons undergoing TAI, with the exception of neurofilament spacing, which appears to remain constant across all Crushed axon diameters. Confidence interval comparisons between Control and Crushed cytoskeletal measures suggests early changes in the neurofilament spatial distributions within axons undergoing TAI may precede microtubule changes in response to applied loads. This may serve as a trigger for further secondary damage to the axon, representing a key insight into the temporal aspects of cytoskeletal degeneration at the component level, and suggests the rapid removal of neurofilament sidearms as one possible mechanism.  相似文献   

15.
Damage to axons and glial cells in the central nervous system (CNS) white matter is a nearly universal feature of traumatic brain injury, yet it is not clear how the tissue mechanical deformations are transferred to the cellular components of the CNS. Defining how cellular deformations relate to the applied tissue deformation field can both highlight cellular populations at risk for mechanical injury, and define the fraction of cells in a specific population that will exhibit damage. In this investigation, microstructurally based models of CNS white matter were developed and tested against measured transformations of the CNS tissue microstructure under simple elongation. Results show that axons in the unstretched optic nerves were significantly wavy or undulated, where the measured axonal path length was greater than the end-to-end distance of the axon. The average undulation parameter--defined as the true axonal length divided by the end-to-end length--was 1.13. In stretched nerves, mean axonal undulations decreased with increasing applied stretch ratio (lambda)--the mean undulation values decreased to 1.06 at lambda = 1.06, 1.04 at lambda = 1.12, and 1.02 at lambda = 1.25. A model describing the gradual coupling, or tethering, of the axons to the surrounding glial cells best fit the experimental data. These modeling efforts indicate the fraction of the axonal and glial populations experiencing deformation increases with applied elongation, consistent with the observation that both axonal and glial cell injury increases at higher levels of white matter injury. Ultimately, these results can be used in conjunction with computational simulations of traumatic brain injury to aid in establishing the relative risk of cellular structures in the CNS white matter to mechanical injury.  相似文献   

16.
This study considers modelling the brain due to rotation of the skull where, at lower frequencies, the shear property of the material is important. Investigations reported here cover the effect of elastic and viscoelastic (lossy) cerebral material, the effect of the Falx protruding into the brain, the gap around the Falx and the brain filled with non viscous fluid in addition to different models of the Falx with bending or membrane stiffness. Analytical benchmark formulations are also described for the simple 2D plane strain in a cylinder produced by a half-sine rotation on the outer periphery which allows numerical (Finite Element) models to be validated. The results show the importance of the material properties, duration of loading and amplitude of loading as well as the influence of the partition. The results are shown for predicted maximum Principal strains in the models, as this may well be indicative of whether damage of the brain tissue occurs.  相似文献   

17.
Supra-physiological temperatures are increasingly being used to treat many different soft need for injuries. To identify improved clinical treatments, however, there is a need for better information on the effect of the mechanics on the thermal damage process as well as the effect of the incurred damage on the subsequent mechanical properties. In this paper we report the first biaxial data on the stress relaxation behavior of a collagenous tissue before and after thermal damage. Based on a two-dimensional finite strain viscoelastic model, which incorporates an exponential elastic response, it is shown that the thermal damage can significantly decrease the characteristic time for stress relaxation and the stress residual.  相似文献   

18.
Liu Z  Bilston LE 《Biorheology》2002,39(6):735-742
Characterization of the mechanical properties of soft biological tissues is important for establishing the mechanical tolerances of the tissues, and for input to computational models. In this work, the viscoelastic properties of bovine liver tissue in shear loading have been measured using relaxation and constant shear rate loading. The tissue is nonlinearly viscoelastic for strains greater than 0.2%, has a yield strain of approximately 10, and shows moderate strain-rate sensitivity. The response can be modelled using a nonlinear viscoelastic differential model previously developed for brain tissue.  相似文献   

19.
Since the early seventies, the material properties of brain tissue have been studied using a variety of testing techniques. However, data reported in literature show large discrepancies even in the linear viscoelastic regime. In the current study, the effect of the sample preparation procedure and of post-mortem time on the mechanical response of porcine brain tissue is examined. Samples from the thalamus region were prepared with different techniques and were tested for different loading histories. Each sample was tested in oscillatory shear tests (1% strain amplitude, 1-10 Hz frequencies) followed by sequences of 5% strain loading-unloading cycles. The stress response to the loading-unloading cycles showed a clear dependency on post-mortem time, becoming more stiff with increasing time. This dependency was affected by the mechanical history induced by the preparation procedure.  相似文献   

20.

Background

Previous studies suggest that mechanical feedback could coordinate morphogenetic events in embryos. Furthermore, embryonic tissues have complex structure and composition and undergo large deformations during morphogenesis. Hence we expect highly non-linear and loading-rate dependent tissue mechanical properties in embryos.

Methodology/Principal Findings

We used micro-aspiration to test whether a simple linear viscoelastic model was sufficient to describe the mechanical behavior of gastrula stage Xenopus laevis embryonic tissue in vivo. We tested whether these embryonic tissues change their mechanical properties in response to mechanical stimuli but found no evidence of changes in the viscoelastic properties of the tissue in response to stress or stress application rate. We used this model to test hypotheses about the pattern of force generation during electrically induced tissue contractions. The dependence of contractions on suction pressure was most consistent with apical tension, and was inconsistent with isotropic contraction. Finally, stiffer clutches generated stronger contractions, suggesting that force generation and stiffness may be coupled in the embryo.

Conclusions/Significance

The mechanical behavior of a complex, active embryonic tissue can be surprisingly well described by a simple linear viscoelastic model with power law creep compliance, even at high deformations. We found no evidence of mechanical feedback in this system. Together these results show that very simple mechanical models can be useful in describing embryo mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号