首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Image registration, the process of transforming images such that homologous structures optimally overlap, provides the pre-processing foundation for pixel-level functional image analysis. The purpose of this study was to compare the performances of seven methods of within-subjects pedobarographic image registration: (1) manual, (2) principal axes, (3) centre of pressure trajectory, (4) mean squared error, (5) probability-weighted variance, (6) mutual information, and (7) exclusive OR. We assumed that foot-contact geometry changes were negligibly small trial-to-trial and thus that a rigid-body transformation could yield optimum registration performance. Thirty image pairs were randomly selected from our laboratory database and were registered using each method. To compensate for inter-rater variability, the mean registration parameters across 10 raters were taken as representative of manual registration. Registration performance was assessed using four dissimilarity metrics (#4-7 above). One-way MANOVA found significant differences between the methods (p<0.001). Bonferroni post-hoc tests revealed that the centre of pressure method performed the poorest (p<0.001) and that the principal axes method tended to perform more poorly than remaining methods (p<0.070). Average manual registration was not different from the remaining methods (p=1.000). The results suggest that a variety of linear registration methods are appropriate for within-subjects pedobarographic images, and that manual image registration is a viable alternative to algorithmic registration when parameters are averaged across raters. The latter finding, in particular, may be useful for cases of image peculiarities resulting from outlier trials or from experimental manipulations that induce substantial changes in contact area or pressure profile geometry.  相似文献   

2.
《Journal of Asia》2014,17(4):837-844
Helicoverpa armigera (Hübner) is one of the most important pests of a wide range of agricultural crops worldwide. Resistance of 10 tomato cultivars (‘Primoearly,’ ‘Riogrand,’ ‘CaljN3,’ ‘Kingstone,’ ‘Earlyurbana,’ ‘Petomech,’ ‘EarlyurbanaY,’ ‘Mobil,’ ‘Imprial’ and ‘Petoearly’) to H. armigera was evaluated under laboratory conditions at 25 ± 1 °C, 60 ± 5% RH and a photoperiod of 16:8 (L:D) hours using age-stage, two-sex life table parameters. The larval period ranged from 19.96 on ‘Riogrand’ to 24.58 days on ‘Imprial.’ The insects reared on ‘Imprial’ had the longest total preoviposition period (44.80 days) and those reared on ‘Riogrand’ had the shortest one (35.44 days). The longest adult longevity for female and male was observed on ‘EarlyurbanaY’ (14.40 days) and ‘Kingstone’ (15.00 days), respectively. Using age-stage, two-sex life table, the value of the net reproductive rate (R0) varied from 7.8 on ‘Imprial’ to 186.9 offspring per individual on ‘Petomech.’ The lowest value of the intrinsic rate of increase (r) and finite rate of increase (λ) was on ‘Imprial’ (0.0410 and 1.0423 day 1, respectively) and the highest was on ‘Petomech’ (0.1274 and 1.1359 day 1, respectively). The mean generation time (T) on different cultivars varied from 39.9 to 48.2 days. The results revealed that ‘Petomech’ was the most susceptible (suitable) and ‘Imprial’ was the most resistant (unsuitable) cultivar to this pest among the tomato cultivars tested.  相似文献   

3.
The growth of the maxillary canine teeth of the babirusa (genus Babyrousa) was studied on a sample of 149 adult male babirusa skulls from twenty-two international museum and private collections. Skulls from Buru, Sulawesi and the Togian Islands were represented. The continuous growth process was summarised into five stages (‘A’–‘E’) according to the position of the tip of the tooth over the bones of the skull. The supracutaneous portion of the tooth grew in a curve-linear fashion dorso-caudally, and was orientated such that the tips grew towards the midline of the cranium. The teeth of Sulawesi and Togian babirusa grew more dorsally over the nasal and frontal bones. Measurements were made on a subset of 45 teeth from Sulawesi babirusa skulls. The subcutaneous portion of the maxillary canine tooth (n = 22) increased in size from 37.3 mm (95% CI: 29.9–44.4 mm) in growth stage ‘B’ to 54.3 mm (49.4–59.2 mm) in growth stage ‘E’ as the erupted portion of the tooth (n = 19) lengthened from 81.3 mm (43.8–118.9 mm) in growth stage ‘A’ to 215.3 mm (177.8–252.9 mm) in growth stage ‘E’. The apical end of the tooth was open and thin-walled. The lumen of the tooth was filled with a cone of well vascularised dental pulp that extended almost to the tip of the tooth. The angle of curvature of the tooth within the alveolus (n = 22) decreased from 19.8 (17.3–22.3) degrees in growth stage ‘B’ to 7.4 (5.7–9.0) degrees in growth stage ‘E’. The corresponding supracutaneous angle of curvature (n = 25) reduced from 36.8 (33.6–40.1) degrees in growth stage ‘A’ to 10.7 (8.6–12.8) degrees in growth stage ‘E’.  相似文献   

4.
PurposeTo show the usefulness of topographic 2D megavoltage images (MV2D) for the localization of breast cancer patients treated with TomoDirect (TD), a radiotherapy treatment technique with fixed-angle beams performed on a TomoTherapy system.MethodsA method was developed to quickly localize breast cancer patients treated with TD by registering the MV2D images produced before a TD treatment with reference images reconstructed from a kilovoltage CT simulation scanner and by using the projection of the beam-eye-view TD treatment field. Dose and image quality measurements were performed to determine the optimal parameters for acquiring MV2D images. A TD treatment was simulated on a chest phantom equipped with a breast attachment. MVCT and MV2D images were performed for 7 different shifted positions of the phantom and registered by 10 different operators with the simulation kilovoltage CT images.ResultsCompared to MVCT, MV2D imaging reduces the dose by a factor of up to 45 and the acquisition time by a factor of up to 49. Comparing the registration shift values obtained for the phantom images obtained with MVCT in the coarse mode to those obtained with MV2D, the mean difference is 1.0 ± 1.1 mm, −1.1 mm ± 1.1, and −0.1 ± 2.2 mm, respectively, in the lateral, longitudinal, and vertical directions.ConclusionsWith dual advantages (very fast imaging and a potentially reduced dose to the heart and contralateral organs), MV2D topographic images may be an attractive alternative to MVCT for the localization of breast cancer patients treated with TomoDirect.  相似文献   

5.
《IRBM》2009,30(3):128-132
This work presents guidelines for a computationally efficient implementation of multiscale image filters based on eigenanalysis of the Hessian matrix, for the enhancement of tubular structures. Our focus is the application to 3D medical images of blood vessels. The method uses matrix trace, determinant and sign to discard voxels unlikely to belong to vessels, prior to the calculation of the Hessian eigenvalues. As example of time savings, we provide results obtained in four computed tomography datasets (300 × 300 × 300 voxels) containing coronary and pulmonary arteries. The test based on the Hessian trace avoided the computation of the eigenvalues in half of the voxels on average, while the test combining the Hessian determinant and sign eliminated up to 10% additional voxels. The actual time savings depend on the algorithm used to compute the eigenvalues for the remaining voxels. With a very fast algorithm using a closed-form solution, the computational time was reduced from 20.5 to 12.5 seconds per scale, but the time gained thanks to the more complex of the two tests was negligible. However, this fast algorithm is prone to numerical instabilities. Accurate computation of the eigenvalues requires the use of iterative or hybrid algorithms. In this case, both tests produce time savings and the computational time can be reduced by several minutes per scale.  相似文献   

6.
The aim of this study was to quantify the tibio-femoral contact point (CP) locations in healthy and osteoarthritic (OA) subjects during a weight-bearing squat using stand-alone biplanar X-ray images.Ten healthy and 9 severe OA subjects performed quasi-static squats. Bi-planar X-ray images were recorded at 0°, 15°, 30°, 45°, and 70° of knee flexion. A reconstruction/registration process was used to create 3D models of tibia, fibula, and femur from bi-planar X-rays and to measure their positions at each posture. A weighted centroid of proximity algorithm was used to calculate the tibio-femoral CP locations. The accuracy of the reconstruction/registration process in measuring the quasi-static kinematics and the contact parameters was evaluated in a validation study.The quasi-static kinematics data revealed that in OA knees, adduction angles were greater (p<0.01), and the femur was located more medially relative to the tibia (p<0.01). Similarly, the average CP locations on the medial and lateral tibial plateaus of the OA patients were shifted (6.5±0.7 mm; p<0.01) and (9.6±3.1 mm; p<0.01) medially compared to the healthy group. From 0° to 70° flexion, CPs moved 8.1±5.3 mm and 8.9±5.3 mm posteriorly on the medial and lateral plateaus of healthy knees; while in OA joints CPs moved 10.1±8.4 mm and 3.6±2.8 mm posteriorly. The average minimum tibio-femoral bone-to-bone distances of the OA joints were lower in both compartments (p<0.01).The CPs in the OA joints were located more medially and displayed a higher ratio of medial to lateral posterior translations compared to healthy joints.  相似文献   

7.
We determined the probability of individuals having the ‘optimal’ mitochondrial biogenesis related endurance polygenic profile, and compared the endurance polygenic profile of Israeli (Caucasian) endurance athletes (n = 74), power athletes (n = 81), and non-athletes (n = 240). We computed a mitochondrial biogenesis related ‘endurance genotype score’ (EGS, scoring from 0 to 100) from the accumulated combination of six polymorphisms in the PPARGC1A-NRF-TFAM pathway. Some of the variant alleles of the polymorphisms studied were so infrequent, that the probability of possessing an ‘optimal’ EGS (= 100) was 0% in the entire study population. However, the EGS was significantly higher (P < 0.001) in endurance athletes (38.9 ± 17.1) compared with controls (30.6 ± 12.4) or power athletes (29.0 ± 11.2). In summary, although the probability of an individual possessing a theoretically ‘optimal’ genetic background for endurance sports is very low, in general endurance athletes have a polygenic profile that is more suitable for mitochondrial biogenesis.  相似文献   

8.
PurposeThe aim of this study was to test the feasibility and dosimetric accuracy of a method that employs planning CT-to-MVCT deformable image registration (DIR) for calculation of the daily dose for head and neck (HN) patients treated with Helical Tomotherapy (HT).MethodsFor each patient, the planning kVCT (CTplan) was deformably registered to the MVCT acquired at the 15th therapy session (MV15) with a B-Spline Free Form algorithm using Mattes mutual information (open-source software 3D Slicer), resulting in a deformed CT (CTdef). On the same day as MVCT15, a kVCT was acquired with the patient in the same treatment position (CT15). The original HT plans were recalculated both on CTdef and CT15, and the corresponding dose distributions were compared; local dose differences <2% of the prescribed dose (DD2%) and 2D/3D gamma-index values (2%-2 mm) were assessed respectively with Mapcheck SNC Patient software (Sun Nuclear) and with 3D-Slicer.ResultsOn average, 87.9% ± 1.2% of voxels were found for DD2% (on average 27 slices available for each patient) and 94.6% ± 0.8% of points passed the 2D gamma analysis test while the 3D gamma test was satisfied in 94.8% ± 0.8% of body’s voxels.ConclusionsThis study represents the first demonstration of the dosimetric accuracy of kVCT-to-MVCT DIR for dose of the day computations. The suggested method is sufficiently fast and reliable to be used for daily delivered dose evaluations in clinical strategies for adaptive Tomotherapy of HN cancer.  相似文献   

9.
PurposeAn investigation was carried out into the effect of three image registration techniques on the diagnostic image quality of contrast-enhanced magnetic resonance angiography (CE-MRA) images.MethodsWhole-body CE-MRA data from the lower legs of 27 patients recruited onto a study of asymptomatic atherosclerosis were processed using three deformable image registration algorithms. The resultant diagnostic image quality was evaluated qualitatively in a clinical evaluation by four expert observers, and quantitatively by measuring contrast-to-noise ratios and volumes of blood vessels, and assessing the techniques' ability to correct for varying degrees of motion.ResultsThe first registration algorithm (‘AIR’) introduced significant stenosis-mimicking artefacts into the blood vessels' appearance, observed both qualitatively (clinical evaluation) and quantitatively (vessel volume measurements). The two other algorithms (‘Slicer’ and ‘SEMI’), based on the normalised mutual information (NMI) concept and designed specifically to deal with variations in signal intensity as found in contrast-enhanced image data, did not suffer from this serious issue but were rather found to significantly improve the diagnostic image quality both qualitatively and quantitatively, and demonstrated a significantly improved ability to deal with the common problem of patient motion.ConclusionsThis work highlights both the significant benefits to be gained through the use of suitable registration algorithms and the deleterious effects of an inappropriate choice of algorithm for contrast-enhanced MRI data. The maximum benefit was found in the lower legs, where the small arterial vessel diameters and propensity for leg movement during image acquisitions posed considerable problems in making accurate diagnoses from the un-registered images.  相似文献   

10.
IntroductionAccurate activity quantification is applied in radiation dosimetry. Planar images are important for quantification of whole-body images, enabling assessment of biodistribution from radionuclide administrations. We evaluated the effect of tumour geometry on quantification accuracy of 123I planar phantom studies, including various tumour sizes, tumour-liver distances and two tumour-background ratios.Methods and materialsAn in-house manufactured abdominal phantom was equipped with a liver, different size cylindrical tumours, and a rod for tumour-liver distance variation. The geometric mean method with scatter and attenuation corrections was used for image processing. Scatter and attenuation corrections were made using the triple energy window scatter correction technique and a printed transmission sheet source, respectively. Region definitions for tumour activity distribution compensated for the partial volume effect (PVE). Activity measured in the dose calibrator served as reference for determining quantification accuracy.ResultsThe smallest tumour had the largest percentage deviation with an average activity underestimation of 34.6 ± 1.2%. Activity values for the largest tumour were overestimated by 3.1 ± 3.0%. PVE compensation improved quantification accuracy for all tumour sizes yielding accuracies of <12.4%. Scatter contribution to the tumours from the liver had minimal effect on quantification accuracy at tumour-liver distances >3 cm. With PVE compensation, increased tumour-background ratio resulted in a percentage increase of up to 26.3%.ConclusionWhen applying relevant corrections for scatter, attenuation and PVE without background activity, quantification accuracy of <13% was obtained. We demonstrated the successful implementation of a practical technique to obtain quantitative information from 123I planar images.  相似文献   

11.
Several segmentation methods of lesion uptake in 18F-FDG PET imaging have been proposed in the literature. Their principles are presented along with their clinical results. The main approach proposed in the literature is the thresholding method. The most commonly used is a constant threshold around 40% of the maximum uptake within the lesion. This simple approach is not valid for small (< 4 or 5 mL), poorly contrasted positive tissue (SUV < 2) or lesion in movement. To limit these problems, more complex thresholding algorithms have been proposed to define the optimal threshold value to be applied to segment the lesion. The principle is to adapt the threshold following a fitting model according to one or two characteristic image parameters. Those algorithms based on iterative approaches to find the optimal threshold value are preferred as they take into account patient data. The main drawback is the need of a calibration step depending on the PET device, the acquisition conditions and the algorithm used for image reconstruction. To avoid this problem, some more sophisticated segmentation methods have been proposed in the literature: derivative methods, watershed and pattern recognition algorithms. The delineation of positive tissue on FDG-PET images is a complex problem, always under investigation.  相似文献   

12.
The objective of this study is to develop an automatic clip localization procedure for breast cancer patient setup based on Digital Tomosynthesis (DTS) and to characterize its performance with respect to the overall registration accuracy and robustness. The study was performed under an IRB-approved protocol for 12 breast cancer patients with surgical clips implanted around the tumor cavity. The registration of DTS images to planning CTs was performed using an automatic algorithm developed to overcome specific challenges of localization and registration of clips in the breast setup images. The automatic method consisted of auto-segmentation (intensity-based thresholding with a priori knowledge about clip size and location to distinguish clips from bony features) and auto-registration of the segmented clip clusters. To determine the inherent accuracy and robustness of the registration algorithm, additional simulated DTS data was analyzed. The developed algorithm is efficient in removing false positives and negatives and provides an accuracy of better than 2.3 mm for 60° and 3.3 mm for 40° DTS. When incorporated in clinical software, this algorithm helps to facilitate fast and accurate setup evaluation with minimal dose delivered to patients.  相似文献   

13.
PurposeThe aim of the present investigation was to evaluate the dosimetric variation regarding the analytical anisotropic algorithm (AAA) relative to other algorithms in lung stereotactic body radiation therapy (SBRT). We conducted a multi-institutional study involving six institutions using a secondary check program and compared the AAA to the Acuros XB (AXB) in two institutions.MethodsAll lung SBRT plans (128 patients) were generated using the AAA, pencil beam convolution with the Batho (PBC-B) and adaptive convolve (AC). All institutions used the same secondary check program (simple MU analysis [SMU]) implemented by a Clarkson-based dose calculation algorithm. Measurement was performed in a heterogeneous phantom to compare doses using the three different algorithms and the SMU for the measurements. A retrospective analysis was performed to compute the confidence limit (CL; mean ± 2SD) for the dose deviation between the AAA, PBC, AC and SMU. The variations between the AAA and AXB were evaluated in two institutions, then the CL was acquired.ResultsIn comparing the measurements, the AAA showed the largest systematic dose error (3%). In calculation comparisons, the CLs of the dose deviation were 8.7 ± 9.9% (AAA), 4.2 ± 3.9% (PBC-B) and 5.7 ± 4.9% (AC). The CLs of the dose deviation between the AXB and the AAA were 1.8 ± 1.5% and −0.1 ± 4.4%, respectively, in the two institutions.ConclusionsThe CL of the AAA showed much larger variation than the other algorithms. Relative to the AXB, larger systematic and random deviations still appeared. Thus, care should be taken in the use of AAA for lung SBRT.  相似文献   

14.
Image registration has been used to support pixel-level data analysis on pedobarographic image data sets. Some registration methods have focused on robustness and sacrificed speed, but a recent approach based on external contours offered both high computational processing speed and high accuracy. However, since contours can be influenced by local perturbations, we sought more global methods. Thus, we propose two new registration methods based on the Fourier transform, cross-correlation and phase correlation which offer high computational speed. We found out that both proposed methods revealed high accuracy for the similarity measures considered, using control geometric transformations. Additionally, both methods revealed high computational processing speed which, combined with their accuracy and robustness, allows their implementation in near-real-time applications. Furthermore, we found that the current methods were robust to moderate levels of noise, and consequently, do not require noise removal procedure like the contours method does.  相似文献   

15.
Traditional pedobarographic analyses subsample pressure data over a number of discrete anatomical regions of interest (ROIs). To our knowledge, the sensitivity of these data to ROI boundary definitions has not been previously addressed. Eight subjects each performed 20 trials of self-paced walking; commercial software was used to define 10 ROIs for each of the 160 total peak pressure images, and regional peak pressures (RPPs) were extracted for each image (total: 1600 values). We then asked three specific questions regarding RPP sensitivity to ROI boundary definition: (1) Is the ROI centroid representative of the RPP location? (2) How frequently do RPPs lie on the ROI boundary? and (3) By how much do RPP values change if the ROI boundary is changed by one pixel (resolution: 5.08×7.62 mm)? We found that the RPP locations differed from the ROI centroid in 80% of the cases and that the RPPs lay on the ROI boundary with a probability of 65%. We also found that a single-pixel change in the ROI boundary caused a mean RPP change of 10.8%. The most sensitive region was the midfoot for which a single-pixel ROI change yielded a median 29.4% change in RPP. These results indicate that RPP data are biased by regionalization schemes, which delineate pressure fields based on anatomy rather than on the field's geometric properties, and ultimately that regionalization may constitute a poor method of quantifying complex pressure fields. RPP sensitivity should be considered when making statistical inferences regarding foot function.  相似文献   

16.
PurposeAccurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins.Materials and methodsThe internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors.ResultsThe mean 3D vector at initial set-up was 6.6 ± 2.3 mm, which was significantly reduced to 1.6 ± 0.8 mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3 mm in the LR, SI and AP directions, respectively.ConclusionsOn-line image guidance with the ITV–CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT.  相似文献   

17.
A 2-year field experiment was performed with lachenalia (‘Namakwa’, ‘Ronina,’ ‘Rosabeth’ and ‘Rupert’) to study the effects of planting density on leaf formation, inflorescence quality and bulb production. Bulbs 6.0 cm in circumference were planted at a spacing of 2.0 × 5.0 cm, 3.0 × 7.0 cm and 5.0 × 10.0 cm, and cultivated in the open air in Polish conditions in 2009 and 2010. The spacing affected the number of leaves only in lachenalia ‘Namakwa’ in 2010. In the other cases, the bulbs formed 2–3 leaves. Plant height increased with the high-density treatment, but flower yield and the total time to the beginning of flowering were independent of planting density. The cultivars proved to differ in terms of the time of blooming: ‘Namakwa’ and ‘Ronina’ flowered earlier (after 63–73 days) than ‘Rosabeth’ and ‘Rupert’ (after 82–90 days). Plant arrangement had little effect on inflorescence length and the number of florets. Irrespective of the spacing, lachenalia ‘Rupert’ seemed to be the most floriferous — one bulb produced even 30 flowers. Lower planting density influenced advantageously the quality of bulbs (circumference and weight), without affecting their quantity (number of bulbs from one plant).  相似文献   

18.
We successfully enriched a novel anaerobic ammonium-oxidizing (anammox) bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and produced hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20–45 °C with a maximum activity at 37 °C. The maximum specific growth rate (μmax) was 0.0082 h?1 at 37 °C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5 ± 2.5 μM. The anammox activity was inhibited by nitrite (IC50 = 11.6 mM) but not by formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). The enriched anammox bacterium shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The enriched bacterium showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its 16S rRNA gene sequence. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.  相似文献   

19.
PurposeEPID-based in vivo dosimetry (IVD) has been implemented for stereotactic body radiotherapy treatments of non-small cell lung cancer to check both isocenter dose and the treatment reproducibility comparing EPID portal images.Methods15 patients with lung tumors of small dimensions and treated with volumetric modulated arc therapy were enrolled for this initial experience. IVD tests supplied ratios R between in vivo reconstructed and planned isocenter doses. Moreover a γ-like analysis between daily EPID portal images and a reference one, in terms of percentage of points with γ-value smaller than 1, Pγ<1, and mean γ-values, γmean, using a local 3%–3 mm criteria, was adopted to check the treatment reproducibility. Tolerance levels of 5% for R ratio, Pγ<1 higher than 90% and γmean lower than 0.67 were adopted.ResultsA total of 160 EPID images, two images for each therapy session, were acquired during the treatment of the 15 patients. The overall mean of the R ratios was equal to 1.005 ± 0.014 (1 SD), with 96.9% of tests within ± 5%. The 2 D image γ-like analysis showed an overall γmean of 0.39 ± 0.12 with 96.1% of tests within the tolerance level, and an average Pγ<1 value equal to 96.4 ± 3.6% with 95.4% of tests with Pγ<1 > 90%. Paradigmatic discrepancies were observed in three patients: a set-up error and a patient morphological change were identified thanks to CBCT image analysis whereas the third discrepancy was not fully justified.ConclusionsThis procedure can provide improved patient safety as well as a first step to integrate IVD and CBCT dose recalculation.  相似文献   

20.
Acoustic heart signals, generated by the mechanical processes of the cardiac cycle, carry significant information about the underlying functioning of the cardiovascular system. We describe a computational analysis framework for identifying distinct morphologies of heart sounds and classifying them into physiological states. The analysis framework is based on hierarchical clustering, compact data representation in the feature space of cluster distances and a classification algorithm. We applied the proposed framework on two heart sound datasets, acquired during controlled alternations of the physiological conditions, and analyzed the morphological changes induced to the first heart sound (S1), and the ability to predict physiological variables from the morphology of S1. On the first dataset of 12 subjects, acquired while modulating the respiratory pressure, the algorithm achieved an average accuracy of 82 ± 7% in classifying the level of breathing resistance, and was able to estimate the instantaneous breathing pressure with an average error of 19 ± 6%. A strong correlation of 0.92 was obtained between the estimated and the actual breathing efforts. On the second dataset of 11 subjects, acquired during pharmacological stress tests, the average accuracy in classifying the stress stage was 86 ± 7%. The effects of the chosen raw signal representation, distance metrics and classification algorithm on the performance were studied on both real and simulated data. The results suggest that quantitative heart sound analysis may provide a new non-invasive technique for continuous cardiac monitoring and improved detection of mechanical dysfunctions caused by cardiovascular and cardiopulmonary diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号