首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
From cell-ECM interactions to tissue engineering   总被引:6,自引:0,他引:6  
  相似文献   

2.
The extracellular matrix (ECM) provides the principal means by which mechanical information is communicated between tissue and cellular levels of function. These mechanical signals play a central role in controlling cell fate and establishing tissue structure and function. However, little is known regarding the mechanisms by which specific structural and mechanical properties of the ECM influence its interaction with cells, especially within a tissuelike context. This lack of knowledge precludes formulation of biomimetic microenvironments for effective tissue repair and replacement. The present study determined the role of collagen fibril density in regulating local cell-ECM biomechanics and fundamental fibroblast behavior. The model system consisted of fibroblasts seeded within collagen ECMs with controlled microstructure. Confocal microscopy was used to collect multidimensional images of both ECM microstructure and specific cellular characteristics. From these images temporal changes in three-dimensional cell morphology, time- and space-dependent changes in the three-dimensional local strain state of a cell and its ECM, and spatial distribution of beta1-integrin were quantified. Results showed that fibroblasts grown within high-fibril-density ECMs had decreased length-to-height ratios, increased surface areas, and a greater number of projections. Furthermore, fibroblasts within low-fibril-density ECMs reorganized their ECM to a greater extent, and it appeared that beta1-integrin localization was related to local strain and ECM remodeling events. Finally, fibroblast proliferation was enhanced in low-fibril-density ECMs. Collectively, these results are significant because they provide new insight into how specific physical properties of a cell's ECM microenvironment contribute to tissue remodeling events in vivo and to the design and engineering of functional tissue replacements.  相似文献   

3.
Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the development of methods for smooth muscle tissue regeneration. For example, the urinary bladder wall (UBW) adaptation to spinal cord injury (SCI) includes extensive hypertrophy as well as increased collagen and elastin, all of which profoundly alter its mechanical response. In addition, the pro-fibrotic growth factor TGF-β1 is upregulated in pathologies of other smooth muscle tissues and may contribute to pathological remodeling outcomes. In the present study, we utilized an ex vivo organ culture system to investigate the response of UBW tissue under various strain-based mechanical stimuli and exogenous TGF-β1 to assess extracellular matrix (ECM) synthesis, mechanical responses, and bladder smooth muscle cell (BSMC) phenotype. Results indicated that a 0.5-Hz strain frequency triangular waveform stimulation at 15% strain resulted in fibrillar elastin production, collagen turnover, and a more compliant ECM. Further, this stretch regime induced changes in cell phenotype while the addition of TGF-β1 altered this phenotype. This phenotypic shift was further confirmed by passive strip biomechanical testing, whereby the bladder groups treated with TGF-β1 were more compliant than all other groups. TGF-β1 increased soluble collagen production in the cultured bladders. Overall, the 0.5-Hz strain-induced remodeling caused increased compliance due to elastogenesis, similar to that seen in early SCI bladders. Thus, organ culture of bladder strips can be used as an experimental model to examine ECM remodeling and cellular phenotypic shift and potentially elucidate BMSCs ability to produce fibrillar elastin using mechanical stretch either alone or in combination with growth factors.  相似文献   

4.
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.  相似文献   

5.
Chemical and mechanical stimulation, when properly utilized, positively influence both the differentiation of in vitro cultured stem cells and the quality of the deposited extracellular matrix (ECM). This study aimed to find if cell‐free extract from primary tenocytes can positively affect the development of a tissue‐engineered tendon construct, consisting of a human umbilical vein (HUV) seeded with mesenchymal stem cells (MSCs) subjected to cyclical mechanical stimulation. The tenocytic cell‐free extract possesses biological material from tendon cells that could potentially influence MSC tenocytic differentiation and construct development. We demonstrate that the addition of tenocytic extract in statically cultured tendon constructs increases ECM deposition and tendon‐related gene expression of MSCs. The incorporation of mechanical stimulation (2% strain for 30 min/day at 0.5 cycles/min) with tenocytic extract further improved the MSC seeded HUV constructs by increasing cellularity of the construct by 37% and the ultimate tensile strength by 33% compared to the constructs with only mechanical stimulation after 14 days. Furthermore, the addition of mechanical stimulation to the extract supplementation produced longitudinal ECM fibril alignment along with dense connective tissue, reminiscent of natural tendon.  相似文献   

6.
Tissue formation and healing both require cell proliferation and migration, but also extracellular matrix production and tensioning. In addition to restricting proliferation of damaged cells, increasing evidence suggests that cellular senescence also has distinct modulatory effects during wound healing and fibrosis. Yet, a direct role of senescent cells during tissue formation beyond paracrine signaling remains unknown. We here report how individual modules of the senescence program differentially influence cell mechanics and ECM expression with relevance for tissue formation. We compared DNA damage-mediated and DNA damage-independent senescence which was achieved through over-expression of either p16Ink4a or p21Cip1 cyclin-dependent kinase inhibitors in primary human skin fibroblasts. Cellular senescence modulated focal adhesion size and composition. All senescent cells exhibited increased single cell forces which led to an increase in tissue stiffness and contraction in an in vitro 3D tissue formation model selectively for p16 and p21-overexpressing cells. The mechanical component was complemented by an altered expression profile of ECM-related genes including collagens, lysyl oxidases, and MMPs. We found that particularly the lack of collagen and lysyl oxidase expression in the case of DNA damage-mediated senescence foiled their intrinsic mechanical potential. These observations highlight the active mechanical role of cellular senescence during tissue formation as well as the need to synthesize a functional ECM network capable of transferring and storing cellular forces.  相似文献   

7.
Cells respond to and actively remodel the extracellular matrix (ECM). The dynamic and bidirectional interaction between cells and ECM, especially their mechanical interactions, has been found to play an essential role in triggering a series of complex biochemical and biomechanical signal pathways and in regulating cellular functions and behaviours. The collagen gel contraction assay (CGCA) is a widely used method to investigate cell–ECM interactions in 3D environments and provides a mechanically associated readout reflecting 3D cellular contractility. In this review, we summarize various versions of CGCA, with an emphasis on recent high-throughput and low-consumption CGCA techniques. More importantly, we focus on the technique of force monitoring during the contraction of collagen gel, which provides a quantitative characterization of the overall forces generated by all the resident cells in the collagen hydrogel. Accordingly, we present recent biological applications of the CGCA, which have expanded from the initial wound healing model to other studies concerning cell–ECM interactions, including fibrosis, cancer, tissue repair and the preparation of biomimetic microtissues.  相似文献   

8.
The present work describes the influence of both vitamin C (VC) and mechanical stimulation on development of the extracellular matrix (ECM) and improvement in mechanical properties of a chondrocyte-agarose construct in a regenerating tissue disease model of hyaline cartilage. We used primary bovine chondrocytes and two types of VC, ascorbic acid (AsA) as an acidic form and ascorbic acid 2-phosphate (A2P) as a non-acidic form, and applied uniaxial compressive strain to the tissue model using a purpose-built bioreactor. When added to the medium in free-swelling culture conditions, A2P downregulated development of ECM and suppressed improvement of the tangent modulus more than AsA. By contrast, application of mechanical stimulation to the construct both increased the tangent modulus more than the free-swelling group containing A2P and enhanced the ECM network of inner tissue to levels nearly as high as the free-swelling group containing AsA. Thus, mechanical stimulation and strain appears to enhance the supply of nutrients and improve the synthesis of ECM via mechanotransduction pathways of chondrocytes. Therefore, we suggest that mechanical stimulation is necessary for homogenous development of ECM in a cell-associated construct with a view to implantation of a large-sized articular cartilage defect.  相似文献   

9.
Mechanical factors modulate the morphogenesis and regeneration of mesenchymally derived tissues via processes mediated by the extracellular matrix (ECM). In distraction osteogenesis, large volumes of new bone are created through discrete applications of tensile displacement across an osteotomy gap. Although many studies have characterized the matrix, cellular and molecular biology of distraction osteogenesis, little is known about relationships between these biological phenomena and the local physical cues generated by distraction. Accordingly, the goal of this study was to characterize the local physical environment created within the osteotomy gap during long bone distraction osteogenesis. Using a computational approach, we quantified spatial and temporal profiles of three previously identified mechanical stimuli for tissue differentiation-pressure, tensile strain and fluid flow-as well as another candidate stimulus-tissue dilatation (volumetric strain). Whereas pressure and fluid velocity throughout the regenerate decayed to less than 31% of initial values within 20 min following distraction, tissue dilatation increased with time, reaching steady state values as high as 43% strain. This dilatation created large reductions and large gradients in cell and ECM densities. When combined with previous findings regarding the effects of strain and of cell and ECM densities on cell migration, proliferation and differentiation, these results indicate two mechanisms by which tissue dilatation may be a key stimulus for bone regeneration: (1) stretching of cells and (2) altering cell and ECM densities. These results are used to suggest experiments that can provide a more mechanistic understanding of the role of tissue dilatation in bone regeneration.  相似文献   

10.
While it has become axiomatic that mechanical signals promote in vitro engineered tissue formation, the underlying mechanisms remain largely unknown. Moreover, efforts to date to determine parameters for optimal extracellular matrix (ECM) development have been largely empirical. In the present work, we propose a two-pronged approach involving novel theoretical developments coupled with key experimental data to develop better mechanistic understanding of growth and development of dense connective tissue under mechanical stimuli. To describe cellular proliferation and ECM synthesis that occur at rates of days to weeks, we employ mixture theory to model the construct constituents as a nutrient-cell-ECM triphasic system, their transport, and their biochemical reactions. Dynamic conditioning protocols with frequencies around 1 Hz are described with multi-scale methods to couple the dissimilar time scales. Enhancement of nutrient transport due to pore fluid advection is upscaled into the growth model, and the spatially dependent ECM distribution describes the evolving poroelastic characteristics of the scaffold-engineered tissue construct. Simulation results compared favorably to the existing experimental data, and most importantly, distinguish between static and dynamic conditioning regimes. The theoretical framework for mechanically conditioned tissue engineering (TE) permits not only the formulation of novel and better-informed mechanistic hypothesis describing the phenomena underlying TE growth and development, but also the exploration/optimization of conditioning protocols in a rational manner.  相似文献   

11.
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM.  相似文献   

12.
Marcus Michel 《Fly》2016,10(4):204-209
During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.  相似文献   

13.
Functional imaging of pericellular proteolysis in cancer cell invasion   总被引:5,自引:0,他引:5  
Wolf K  Friedl P 《Biochimie》2005,87(3-4):315-320
Proteolytic interactions between cells and extracellular matrix (ECM) are involved in many physiological and pathological processes, such as embryogenesis, wound healing, immune response, and cancer. The visualization of cell-mediated proteolysis towards ECM is thus required to understand basic mechanisms of tissue formation and repair, such as the breakdown and structural remodelling of ECM, inflammatory changes of tissue integrity, and the formation of proteolytic trails by moving cells. A panel of synergistic techniques for the visualization of pericellular proteolysis in live and fixed samples allow monitoring the of proteolytic tumor cell invasion in three-dimensional (3D) fibrillar collagen matrices in vitro. These include the quantification of collagenolysis by measuring the release of collagen fragments, the detection of protease expression and local activity by dequenching of fluorogenic substrate, and the staining of cleavage-associated neoepitopes together with changes in matrix structure. In combination, these approaches allow the high-resolution mapping of pericellular proteolysis towards ECM substrata including individual focal cleavage sites and the interplay between cell dynamics and alterations in the tissue architecture.  相似文献   

14.
The insufficient load-bearing capacity of today’s tissue- engineered (TE) cartilage limits its clinical application. Generally, cartilage TE studies aim to increase the extracellular matrix (ECM) content, as this is thought to determine the load-bearing properties of the cartilage. However, there are apparent inconsistencies in the literature regarding the correlation between ECM content and mechanical properties of TE constructs. In addition to the amount of ECM, the spatial inhomogeneities in ECM distribution at the tissue scale as well as at the cell scale may affect the mechanical properties of TE cartilage. The relative importance of such structural inhomogeneities on mechanical behavior of TE cartilage is unknown. The aim of the present study was, therefore, to theoretically elucidate the influence of these inhomogeneities on the mechanical behavior of chondrocyte-agarose TE constructs. A validated non-linear fiber-reinforced poro-elastic swelling cartilage model that can accommodate for effects of collagen reinforcement and swelling by proteoglycans was used. At the tissue scale, ECM was gradually varied from predominantly localized in the periphery of the TE construct toward an ECM-rich inner core. The effect of these inhomogeneities in relation to the total amount of ECM was also evaluated. At the cell scale, ECM was gradually varied from localized in the pericellular area, toward equally distributed throughout the interterritorial area. Results from the tissue-scale model indicated that localization of ECM in either the construct periphery or in the inner core may reduce construct stiffness compared with that of constructs with homogeneous ECM. Such effects are more significant at high ECM amounts. At the cell scale, localization of ECM around the cells significantly reduced the overall stiffness, even at low ECM amounts. The compressive stiffness gradually increased when ECM distribution became more homogeneous and the osmotic swelling pressure in the interterritorial area increased. We conclude that for the same amount of ECM content in TE cartilage constructs, superior mechanical properties can be achieved with more homogeneous ECM distribution at both tissue and cell scale. Inhomogeneities at the cell scale are more important than those at the tissue scale.  相似文献   

15.
The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branching morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnormal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine.The extracellular matrix (ECM) forms a milieu surrounding cells that reciprocally influences cellular function to modulate diverse fundamental aspects of cell biology (Hynes 2009). The diversity and sophistication of ECM components and their respective cell surface receptors are among the most salient features during metazoan evolution (Har-el and Tanzer 1993; Hutter et al. 2000; Whittaker et al. 2006; Engler et al. 2009; Huxley-Jones et al. 2009; Ozbek et al. 2010). The ECM is extremely versatile and performs many functions in addition to its structural role. As a major component of the microenvironment of a cell, the ECM takes part in most basic cell behaviors, from cell proliferation, adhesion and migration, to cell differentiation and cell death (Hynes 2009). This pleiotropic aspect of ECM function depends on the highly dynamic structure of ECM and its remodeling as an effective mechanism whereby diverse cellular behaviors can be regulated. This concept is particularly important when considering processes and cell behaviors that need to be deployed promptly and transiently and wherein cell–cell and cell–matrix interactions are constantly changing (Daley et al. 2008).ECM dynamics are a feature of tissues wherein radical remodeling occurs, such as during metamorphosis of insects and amphibians or remodeling of the adult bone and mammary gland, and in developmental processes, including neural crest migration, angiogenesis, tooth and skeletal development, branching morphogenesis, maturation of synapses, and the nervous system (Berardi et al. 2004; Fukumoto and Yamada 2005; Page-McCaw et al. 2007; Zimmermann and Dours-Zimmermann 2008).ECM dynamics can result from changes of ECM composition, for example, because of altered synthesis or degradation of one or more ECM components, or in architecture because of altered organization. Mounting evidence has shown how individual ECM components are laid down, cross-linked, and organized together via covalent and noncovalent modifications and how they can greatly influence the fundamental aspects of cell behavior (Lopez et al. 2008; Engler et al. 2009; Egeblad et al. 2010b). This higher level of ECM organization is also dynamic and subject to sustained remodeling as mediated by reciprocal interactions between the ECM and its resident cellular components (Daley et al. 2008). Understandably, ECM dynamics are tightly regulated to ensure normal development, physiology, and robustness of organ systems. This is achieved by redundant mechanisms to modulate the expression and function of ECM modifying enzymes at multiple levels. When such control mechanisms are corrupted, ECM dynamics become deregulated, leading to various human congenital defects and diseases, including cancer.Here, we examine the players involved in ECM remodeling and how they are tightly regulated to achieve a delicate balance between stability and remodeling of the ECM. We focus on the cellular and molecular mechanisms through which ECM dynamics influence cellular behaviors. We illustrate how a wide variety of cell behaviors can be deployed by exploiting the important roles of ECM dynamics to build vertebrate organs and maintain their functions, and how deregulation of ECM dynamics contributes to the initiation and progression of human cancer.  相似文献   

16.
Vertebrate axis patterning depends on cell and extracellular matrix (ECM) repositioning and proper cell-ECM interactions. However, there are few in vivo data addressing how large-scale tissue deformations are coordinated with the motion of local cell ensembles or the displacement of ECM constituents. Combining the methods of dynamic imaging and experimental biology allows both cell and ECM fate-mapping to be correlated with ongoing tissue deformations. These fate-mapping studies suggest that the axial ECM components "move" both as a composite meshwork and as autonomous particles, depending on the length scale being examined. Cells are also part of this composite, and subject to passive displacements resulting from tissue deformations. However, in contrast to the ECM, cells are self-propelled. The net result of cell and ECM displacements, along with proper ECM-cell adhesion, is the assembly of new tissue architecture. Data herein show that disruption of normal cell-ECM interactions during axis formation results in developmental abnormalities and a disorganization of the ECM. Our goal in characterizing the global displacement patterns of axial cells and ECM is to provide critical information regarding existing strain fields in the segmental plate and paraxial mesoderm. Deducing the mechanical influences on cell behavior is critical, if we are to understand vertebral axis patterning. Supplementary material for this article is available online at http://www.mrw.interscience.wiley.com/suppmat/1542-975X/suppmat/72/v72.266.html.  相似文献   

17.
Myocardial development is regulated by an elegantly choreographed ensemble of signaling events mediated by a multitude of intermediates that take a variety of forms. Cellular differentiation and maturation are a subset of vertically integrated processes that extend over several spatial and temporal scales to create a well-defined collective of cells that are able to function cooperatively and reliably at the organ level. Early efforts to understand the molecular mechanisms of cardiomyocyte fate determination focused primarily on genetic and chemical mediators of this process. However, increasing evidence suggests that mechanical interactions between the extracellular matrix (ECM) and cell surface receptors as well as physical interactions between neighboring cells play important roles in regulating the signaling pathways controlling the developmental processes of the heart. Interdisciplinary efforts have made it apparent that the influence of the ECM on cellular behavior occurs through a multitude of physical mechanisms, such as ECM boundary conditions, elasticity, and the propagation of mechanical signals to intracellular compartments, such as the nucleus. In addition to experimental studies, a number of mathematical models have been developed that attempt to capture the interplay between cells and their local microenvironment and the influence these interactions have on cellular self-assembly and functional behavior. Nevertheless, many questions remain unanswered concerning the mechanism through which physical interactions between cardiomyocytes and their environment are translated into biochemical cellular responses and how these signaling modalities can be utilized in vitro to fabricate myocardial tissue constructs from stem cell-derived cardiomyocytes that more faithfully represent their in vivo counterpart. These studies represent a broad effort to characterize biological form as a conduit for information transfer that spans the nanometer length scale of proteins to the meter length scale of the patient and may yield new insights into the contribution of mechanotransduction into heart development and disease.  相似文献   

18.
Cell adhesion is crucial for cells to not only physically interact with each other but also sense their microenvironment and respond accordingly. In fact, adherent cells can generate physical forces that are transmitted to the surrounding matrix, regulating the formation of cell–matrix adhesions. The main purpose of this work is to develop a computational model to simulate the dynamics of cell–matrix adhesions through a cohesive formulation within the framework of the finite element method and based on the principles of continuum damage mechanics. This model enables the simulation of the mechanical adhesion between cell and extracellular matrix (ECM) as regulated by local multidirectional forces and thus predicts the onset and growth of the adhesion. In addition, this numerical approach allows the simulation of the cell as a whole, as it models the complete mechanical interaction between cell and ECM. As a result, we can investigate and quantify how different mechanical conditions in the cell (e.g., contractile forces, actin cytoskeletal properties) or in the ECM (e.g., stiffness, external forces) can regulate the dynamics of cell–matrix adhesions.  相似文献   

19.
Cell mechanics studied by a reconstituted model tissue   总被引:11,自引:0,他引:11       下载免费PDF全文
Tissue models reconstituted from cells and extracellular matrix (ECM) simulate natural tissues. Cytoskeletal and matrix proteins govern the force exerted by a tissue and its stiffness. Cells regulate cytoskeletal structure and remodel ECM to produce mechanical changes during tissue development and wound healing. Characterization and control of mechanical properties of reconstituted tissues are essential for tissue engineering applications. We have quantitatively characterized mechanical properties of connective tissue models, fibroblast-populated matrices (FPMs), via uniaxial stretch measurements. FPMs resemble natural tissues in their exponential dependence of stress on strain and linear dependence of stiffness on force at a given strain. Activating cellular contractile forces by calf serum and disrupting F-actin by cytochalasin D yield "active" and "passive" components, which respectively emphasize cellular and matrix mechanical contributions. The strain-dependent stress and elastic modulus of the active component were independent of cell density above a threshold density. The same quantities for the passive component increased with cell number due to compression and reorganization of the matrix by the cells.  相似文献   

20.
Dynamic imaging of cellular interactions with extracellular matrix   总被引:6,自引:2,他引:4  
Adhesive and proteolytic interactions of cells with components of the extracellular matrix (ECM) are fundamental to morphogenesis, tissue assembly and remodeling, and cell migration as well as signal acquisition from tissue-bound factors. The visualization from fixed samples provides snapshot-like, static information on the cellular and molecular dynamics of adhesion receptor and protease functions toward ECM, such as interstitial fibrillar tissues and basement membranes. Recent technological developments additionally support the dynamic imaging of ECM scaffolds and the interaction behavior of cells contained therein. These include differential interference contrast, confocal reflection microscopy, optical coherence tomography, and multiphoton microscopy and second-harmonic generation imaging. Most of these approaches are combined with fluorescence imaging using derivates of GFP and/or other fluorescent dyes. Dynamic 3D imaging has revealed an unexpected degree of dynamics and turnover of cell adhesion and migration as well as basic mechanisms that lead to proteolytic remodeling of connective tissue by stromal cells and invading tumor cells.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00418-004-0682-0The Histochemistry and Cell Biology Lecture presented at the 12th International Congress of Histochemistry and Cytochemistry in La Jolla, California, USA, 24–28 July 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号