首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiscale models of cortical bone elasticity require a large number of parameters to describe the organization and composition of the tissue. We hypothesize that the macro-scale anisotropic elastic properties of different bones can be modeled retaining only two variable parameters, and setting the others to universal values identical for all bones. Cortical bone is regarded as a two-phase composite material: a dense mineralized matrix (ultrastructure) and a soft phase (pores). The ultrastructure is assumed to be a homogeneous and transversely isotropic tissue whose elastic properties in different directions are mutually dependent and can be scaled with a single parameter driving the overall rigidity. This parameter is taken to be the volume fraction of mineral f(ha). The pore network is modeled as an ensemble of water-filled cylinders and described only by the porosity p. The effective macroscopic elasticity tensor C(ij)(f(ha),p) is calculated with a multiscale micromechanics approach starting from existing models. The modeled stiffness coefficients compare favorably to four literature datasets which were chosen because they provide the full stiffness tensors of groups of human samples. Since the physical counterparts of f(ha) and p were unknown for the datasets, their values which allow the best fit of experimental tensors by the modeled ones were determined by optimization. Optimum values of f(ha) and p are found to be unique and realistic. These results suggest that a two-parameter model may be sufficient to model the elasticity of different samples of human femora and tibiae. Such a model would in particular be useful in large-scale parametric studies of bone mechanical response.  相似文献   

2.
A two-level micromechanical model of cortical bone based on a generalized self-consistent method was developed to take into consideration the transversely isotropic elasticity of many microstructural features in cortical bone, including Haversian canals, resorption cavities, and osteonal and interstitial lamellae. In the first level, a single osteon was modeled as a two-phase composite such that Haversian canals were represented by elongated pores while the surrounding osteonal lamellae were considered as matrix. In the second level, osteons and resorption cavities were modeled as multiple inclusions while interstitial lamellae were regarded as matrix. The predictions of cortical bone elasticity from this two-level micromechanical model were mostly in agreement with experimental data for the dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. However, variation in cortical bone elastic constants was greater in experimental data than in model predictions. This could be attributed to variations in the elastic properties of microstructural features in cortical bone. The present micromechanical model of cortical bone will be useful in understanding the contribution of cortical bone porosity to femoral neck fractures.  相似文献   

3.
Anisotropy is one of the most peculiar aspects of cortical bone mechanical behaviour, and the numerical approach can be successfully used to investigate aspects of bone tissue mechanics that analytical methods solve in approximate way or do not cover. In this work, nanoindentation experimental tests and finite element simulations were employed to investigate the elastic-inelastic anisotropic mechanical properties of cortical bone. The model allows for anisotropic elastic and post-yield behaviour of the tissue. A tension-compression mismatch and direction-dependent yield stresses are allowed for. Indentation experiments along the axial and transverse directions were simulated with the purpose to predict the indentation moduli and hardnesses along multiple orientations. Results showed that the experimental transverse-to-axial ratio of indentation moduli, equal to 0.74, is predicted with a ~3% discrepancy regardless the post-yield material behaviour; whereas, the transverse-to-axial hardness ratio, equal to 0.86, can be correctly simulated (discrepancy ~6% w.r.t. the experimental results) only employing an anisotropic post-elastic constitutive model. Further, direct comparison between the experimental and simulated indentation tests evidenced a good agreement in the loading branch of the indentation curves and in the peak loads for a transverse-to-axial yield stress ratio comparable to the experimentally obtained transverse-to-axial hardness ratio. In perspective, the present work results strongly support the coupling between indentation experiments and FEM simulations to get a deeper knowledge of bone tissue mechanical behaviour at the microstructural level. The present model could be used to assess the effect of variations of constitutive parameters due to age, injury, and/or disease on bone mechanical performance in the context of indentation testing.  相似文献   

4.
The thermodynamic restrictions on the elastic coefficients of linear orthotropic elasticity and linear transversely isotropy elasticity are recorded and it is shown that previously reported data for the elastic orthotropic constants of bone satisfy these thermodynamic restrictions.  相似文献   

5.
The elastic moduli of human subchondral, trabecular, and cortical bone tissue from a proximal tibia were experimentally determined using three-point bending tests on a microstructural level. The mean modulus of subchondral specimens was 1.15 GPa, and those of trabecular and cortical specimens was 4.59 GPa and 5.44 GPa respectively. Significant differences were found in the modulus values between bone tissues, which may have mainly resulted from the differences in the microstructures of each bone tissue rather than in the mineral density. Furthermore, the size-dependency of the modulus was examined using eight different sizes of cortical specimens (heights h = 100-1000 microns). While the modulus values for relatively large specimens (h greater than 500 microns) remained fairly constant (approximately 15 GPa), the values decreased as the specimens became smaller. A significant correlation was found between the modulus and specimen size. The surface area to volume ratio proved to be a key variable to explain the size-dependency.  相似文献   

6.
7.
The purpose of this study is to quantify the spatial distribution of acoustic velocities and elastic properties (elastic constants) on Human femoral cortical bone. Four cross sections (average thickness of 2.09+/-0.27 mm) have been cut transversally between 40% and 70% of the total length and between them parallelepiped samples in each quadrant have been cut. Ultrasonic technique in transmission with immersion focused transducers at 5 MHz and contact transducers 2.25 MHz were used on the cross sections and parallelepiped samples, respectively. The first technique allows relative spatial distribution of velocities to be obtained, meanwhile the second technique allows the direct assessment of elastic constants. For both techniques, bulk velocities were found to be lower at the posterior side with an increase along the length (from 40% to 70% total length) (p < 0.05). Densities and elastic constants show equivalent pattern of variation. These variations are mainly due the cortical porosity related to vascularisation environment. The spatial distribution of velocities exhibits significant radial variation from the endosteal to the periosteal region. This is in agreement with variation of the porosity at that location. Same range of velocities was obtained with both techniques. The range of longitudinal velocities values varies from 3548 to 3967 m/s and between 18.5 and 33.1 GPa for the bulk velocities and axial elastic constants, respectively. Our results are within the range with those found in the literature. However, it must be noted that the range of acoustic and elastic properties variation is concerning the same bone. So, our new results show the ability of the technique to quantify accurately local variation of acoustic and elastic properties (within the section and along the length) of human cortical bone. Furthermore, our immersion technique could be used to assess the spatial distribution of the elastic constants with the knowledge of spatial distribution of densities.  相似文献   

8.
In this paper, we try to predict the distribution of bone density and elastic constants in a human mandible, based on the stress level produced by mastication loads using a mathematical model of bone remodelling. These magnitudes are needed to build finite element models for the simulation of the mandible mechanical behavior. Such a model is intended for use in future studies of the stability of implant-supported dental prostheses. Various models of internal bone remodelling, both phenomenological and more recently mechanobiological, have been developed to determine the relation between bone density and the stress level that bone supports. Among the phenomenological models, there are only a few that are also able to reproduce the level of anisotropy. These latter have been successfully applied to long bones, primarily the femur. One of these models is here applied to the human mandible, whose corpus behaves as a long bone. The results of bone density distribution and level of anisotropy in different parts of the mandible have been compared with various clinical studies, with a reasonable level of agreement.  相似文献   

9.
Micromechanical estimates of the elastic constants for a single bone osteonal lamella and its substructures are reported. These estimates of elastic constants are accomplished at three distinct and organized hierarchical levels, that of a mineralized collagen fibril, a collagen fiber, and a single lamella. The smallest collagen structure is the collagen fibril whose diameter is the order of 20 nm. The next structural level is the collagen fiber with a diameter of the order of 80 nm. A lamella is a laminate structure, composed of multiple collagen fibers with embedded minerals and consists of several laminates. The thickness of one laminate in the lamella is approximately 130 nm. All collagen fibers in a laminate in the lamella are oriented in one direction. However, the laminates rotate relative to the adjacent laminates. In this work, all collagen fibers in a lamella are assumed to be aligned in the longitudinal direction. This kind of bone with all collagen fibers aligned in one direction is called a parallel fibered bone. The effective elastic constants for a parallel fibered bone are estimated by assuming periodic substructures. These results provide a database for estimating the anisotropic poroelastic constants of an osteon and also provide a database for building mathematical or computational models in bone micromechanics, such as bone damage mechanics and bone poroelasticity.  相似文献   

10.
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.  相似文献   

11.
We studied the elastic properties of bone to analyze its mechanical behavior. The basic principles of ultrasonic methods are now well established for varying isotropic media, particularly in the field of biomedical engineering. However, little progress has been made in its application to anisotropic materials. This is largely due to the complex nature of wave propagation in these media. In the present study, the theory of elastic waves is essential because it relates the elastic moduli of a material to the velocity of propagation of these waves along arbitrary directions in a solid. Transducers are generally placed in contact with the samples which are often cubes with parallel faces that are difficult to prepare. The ultrasonic method used here is original, a rough preparation of the bone is sufficient and the sample is rotated. Moreover, to analyze heterogeneity of the structure we measure velocities in different points on the sample. The aim of the present study was to determine in vitro the anisotropic elastic properties of cortical bones. For this purpose, our method allowed measurement of longitudinal and transverse velocities (C(L) and C(T)) in longitudinal (fiber direction) and the radial directions (orthogonal to the fiber direction) of compact bones. Young's modulus E and Poisson's ratio nu, were then deduced from the velocities measured considering the compact bone as transversely isotropic or orthotropic. The results are in line with those of other methods.  相似文献   

12.
13.
It has been proposed that the orthotropic elastic constants of cancellous bone depend upon a tensorial measure of anisotropy called fabric as well as the tissue's structural density. Cowin (1985, Mechanics Mater, 4, 137-147; 1986, J. biomech. Engng 108, 83-88) developed explicit relationships for the elastic constant, structural density and fabric relationship. In this study the orthotropic elastic moduli, structural density, and fabric components were measured for 11 cancellous bone specimens from five bovine femora and for 75 specimens from three human proximal tibiae and fitted to these relationships using a least squares analysis. The relationships explained between 72 and 94% of the variance in the elastic constants. The relationships between the elastic constants and squared or cubed power functions of structural density had better predictive value over the entire distribution of the data than did expressions with linear functions of structural density.  相似文献   

14.
This short study presents a simple, one-dimensional constitutive model for the cortical bone with haversian structure. The model is developed within the general framework of the continuum damage theory. The kinetic equation is derived (rather than assumed a priori) through consideration of the irreversible changes of the mesostructure. As a consequence the analytical results closely approximate experimental measurements even though the theory does not introduce a single experimentally unidentifiable material parameter.  相似文献   

15.
A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain ${D(\kappa)}$ , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.  相似文献   

16.
Cortical bone is a multiscale composite material. Its elastic properties are anisotropic and heterogeneous across its cross-section, due to endosteal bone resorption which might affect bone strength. The aim of this paper was to describe a homogenization method leading to the estimation of the variation of the elastic coefficients across the bone cross-section and along the bone longitudinal axis. The method uses the spatial variations of bone porosity and of the degree of mineralization of the bone matrix (DMB) obtained from the analysis of 3-D synchrotron micro-computed tomography images. For all three scales considered (the foam (100 nm), the ultrastructure (5 μm) and the mesoscale (500 μm)), the elastic coefficients were determined using the Eshelby’s inclusion problem. DMB values were used at the scale of the foam. Collagen was introduced at the scale of the ultrastructure and bone porosity was introduced at the mesoscale. The pores were considered as parallel cylinders oriented along the bone axis. Each elastic coefficient was computed for different regions of interest, allowing an estimation of its variations across the bone cross-section and along the bone longitudinal axis. The method was applied to a human femoral neck bone specimen, which is a site of osteoporotic fracture. The computed elastic coefficients for cortical bone were in good agreement with experimental results, but some discrepancies were obtained in the endosteal part (trabecular bone). These results highlight the importance of accounting for the heterogeneity of cortical bone properties across bone cross-section and along bone longitudinal axis.  相似文献   

17.
A continuous wave technique is described for measuring the nine independent orthotropic elastic coefficients from a single cubic specimen. The side dimensions of this cubic specimen are on the order of 5 mm. Because of the small size of the specimen, the spatial resolution of material inhomogeneity using this technique is quite good. Although it is possible to apply this technique to any elastic material such as woods or metals, the elastic properties of human and canine cortical femora are presented here. The orthotropic elastic coefficients and the variation of these coefficients are presented as a function of anatomical position.  相似文献   

18.
Many models that have been developed for cortical bone oversimplify much of the architectural and physical complexity. With SiNuPrOs model, a more complete approach is investigated: it is multiscale because it contains five structural levels and multi physic because it takes into account simultaneously structure (with various properties: elasticity, piezoelectricity, porous medium), fluid and mineralization process modelization. The multiscale aspect is modeled by using 18 structural parameters in a specific application of the mathematical theory of homogenization and 10 other physical parameters are necessary for the multi physic aspect. The modelization of collagen as a piezoelectric medium has needed the development of a new behaviour law allowing a better simulation of the effect of a medium considered as evolving during a mineralization process. Then the main interest of SiNuPrOs deals with the possibility to study, at each level of the cortical architecture, either the elastic properties or the fluid motion or the piezoelectric effects or both of them. All these possibilities constitute a very large work and all this mass of information (fluid aspects, even at the nanoscopic scale, piezoelectric phenomena and simulations) will be presented in several papers. This first one is only devoted to the presentation of this model with an application to the computation of elastic properties at the macroscopic scale. The computational methods have been packed into software also called SiNuPrOs and allowing a large number of predictive simulations corresponding to various different configurations.  相似文献   

19.
Many models that have been developed for cortical bone oversimplify much of the architectural and physical complexity. With SiNuPrOs model, a more complete approach is investigated: it is multiscale because it contains five structural levels and multi physic because it takes into account simultaneously structure (with various properties: elasticity, piezoelectricity, porous medium), fluid and mineralization process modelization. The multiscale aspect is modeled by using 18 structural parameters in a specific application of the mathematical theory of homogenization and 10 other physical parameters are necessary for the multi physic aspect. The modelization of collagen as a piezoelectric medium has needed the development of a new behaviour law allowing a better simulation of the effect of a medium considered as evolving during a mineralization process.

Then the main interest of SiNuPrOs deals with the possibility to study, at each level of the cortical architecture, either the elastic properties or the fluid motion or the piezoelectric effects or both of them. All these possibilities constitute a very large work and all this mass of information (fluid aspects, even at the nanoscopic scale, piezoelectric phenomena and simulations) will be presented in several papers. This first one is only devoted to the presentation of this model with an application to the computation of elastic properties at the macroscopic scale.

The computational methods have been packed into software also called SiNuPrOs and allowing a large number of predictive simulations corresponding to various different configurations.  相似文献   

20.
The technique of resonant ultrasound spectroscopy (RUS) was used to measure the second-order elastic constants of hydrated human dentin. Specimens were placed between two transducers, and the resonant frequencies of vibration were measured between 0.5 and 1.4 MHz. The elastic constants determined from the measured resonant frequencies in hydrated dentin exhibited slight hexagonal anisotropy, with the stiffest direction being perpendicular to the axis of the tubules (E11 = 25.1GPA) This hexagonal anisotropy was small (E33/E11 = 0.92), and almost disappeared when the specimens were dried. In addition, there was a pronounced anisotropy in the Poisson's ratio of wet dentin: v21 = 0.45; v31 = 0.29. With drying in air, this anisotropy vanished: v21 = v31 = 0.29. The isotropic Young's modulus of dried dentin was 28.1 GPa. RUS shows promise for determining the elastic constants in mineralized tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号