首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a chain of simulations aimed at estimating the wear in a cervical disc implant and providing insight into the in vivo biomechanical performance of the implant. The simulation chain can start with determining a representative maximum range of motion (ROM) of a person's head. The ROM is used as motion input to a kinematic simulation of the cervical spine containing a disc implant. The cervical spine geometry is obtained from computed tomography (CT) scans and converted to STL format using reverse engineering software. The time histories of the loads imposed by the adjacent vertebrae on the implant, as well as the vertebral relative rotations can be extracted from the kinematic simulation. Alternatively, force and motion profiles prescribed by wear test protocols (e.g. ISO 18192-1 and ASTM F2423-05) can be used. The force and motion profiles are applied as boundary conditions to a non-linear finite element model (FEM) of the implant to determine the time-varying contact stress and slip velocity distributions at the interface between the two halves of the implant. The stresses and slip velocities are used in a linear wear model to estimate the wear rate distribution at the FEM's nodal points where contact occurs. Reverse engineering software is used to triangulate the contact surface so that the total wear volume can be calculated. The simulation chain's predicted wear rate shows good agreement with in vitro results in the literature. The simulation chain is thereby demonstrated to be suitable for comparative pre-experimental studies of spinal implant designs.  相似文献   

2.
A 16-station wear simulator of the pin-on-disc type, called RandomPOD, was designed, built, and validated. The primary area of application of the RandomPOD is wear studies of orthopaedic biomaterials. The type of relative motion between the bearing surfaces, generally illustrated as shapes of slide tracks, has been found to have a strong effect on the type and amount of wear produced. The computer-controlled RandomPOD can be programmed to produce virtually any slide track shape and load profile. In the present study, the focus is on the biomechanically realistic random variation in the track shape and load. In the reference test, the established combination of circular translation and static load was used. In addition, the combinations of random motion/static load, and circular translation/random load were included. The pins were conventional ultra-high molecular weight polyethylene (UHMWPE), the discs were polished CoCr, and the lubricant was diluted calf serum. The UHMWPE wear factor resulting from random motion was significantly higher than that resulting from circular translation. This was probably caused by the fact that in the random motion the direction of sliding changed more than in circular translation with the same sliding distance. The type of load, random vs. static, was unimportant with respect to the wear factor produced. The principal advantage of using the present random track is that possible unrealistic wear phenomena related to the use of fixed track shapes can be avoided.  相似文献   

3.
Joint simulators are important tools in wear studies of prosthetic joint materials. The type of motion in a joint simulator is crucial with respect to the wear produced. It is widely accepted that only multidirectional motion yields realistic wear for polyethylene acetabular cups. Multidirectionality, however, is a wide concept. The type of multidirectional motion varies considerably between simulators, which may explain the large differences in observed wear rates. At present, little is known about the relationship between the type of multidirectional motion and wear. One illustrative way to compare the motions of various hip simulators is to compute tracks made on the counterface by selected points of the surface of the femoral head and acetabular cup due to the cyclic relative motion. A new computation method, based on Euler angles, was developed, and used to compute slide tracks for the three-axis motion of the hip joint in walking, and for two hip simulators, the HUT-3 and the biaxial rocking motion. The slide track patterns resulting from the gait waveforms were found to be similar to those produced by the HUT-3 simulator. This paper is the first to include a verification of the computed simulator tracks. The tracks were verified in the two simulators using sharp pins, embedded in acetabular cups, engraving distinct grooves onto the femoral heads. The engravings were identical to the computed tracks. The results clearly differed from earlier computations by another research group. This study is intended to start a thorough investigation of the relationship between the type of multidirectional motion and wear.  相似文献   

4.
In an earlier paper, the authors presented the first verified method of computation of slide tracks in the relative motion between femoral head and acetabular cup of total hip prostheses. The method was applied for gait and for two hip simulator designs, and in a subsequent paper, for another eight designs. In the present paper, the track drawn by the resultant contact force, the so-called force track, was studied in depth. The variations of sliding distance, sliding velocity and direction of sliding during a cycle, all of which are important with respect to wear, were computed for gait and for 11 hip simulator designs. Moreover, the product of the instantaneous load and increment of sliding distance was numerically integrated over a cycle. This integral makes it possible to compare clinical wear rates with those produced by hip simulators in terms of a wear factor. For the majority of contemporary hip simulators, the integral has so far been unknown. The computations revealed considerable differences, which are likely to explain the substantial differences in wear produced by the simulators. With the most common head diameter, 28 mm, the ranges for sliding distance per cycle, mean sliding velocity, total change of direction of sliding and integral were: 19.7-34.3 mm, 19.7-49.0 mm/s, 360-1513 degrees, and 17.4-43.5 Nm, respectively.  相似文献   

5.
In an earlier paper, the authors presented a new method of computation of slide tracks in the relative motion between femoral head and acetabular cup of total hip prostheses. For the first time, computed tracks were verified experimentally and with an alternative method of computation. Besides being an efficient way to illustrate hip kinematics, the shapes of the slide tracks are known to be of fundamental importance regarding the wear behaviour of prostheses. The verified method was now applied to eight contemporary hip simulator designs. The use of correct motion waveforms and an Euler sequence of rotations in each case was again found to be essential. Considerable differences were found between the simulators. For instance, the shapes of the tracks drawn by the resultant contact force included a circle, ellipse, irregular oval, leaf, twig, and straight line. Computation of tracks correctly for the most widely used hip simulator, known as biaxial, was made possible by the insight that the device is actually three-axial. Slide track patterns have now been computed for virtually all contemporary hip simulators, and both for the heads and for the cups. This comparative analysis forms a valuable basis for studies on the relationship between the type of multidirectional motion and wear. These studies can produce useful information for the design of joint simulators, and improve the understanding of wear phenomena in prosthetic joints.  相似文献   

6.
On the basis of the current ASTM and ISO standard proposals, a simplified test procedure for spinal fixation implants has been developed. It comprises static and dynamic tests aimed at evaluating the stiffness and strength of various different internal implants. Different methods of mounting the pedicle screws to the test device are shown to significantly affect the characteristic values and failure mechanisms of the implants. The feasibility of the procedure was investigated by comparing 7 different internal fixation implants. The reproducible results revealed general differences associated with the material, dimensions and design, which latter in particular correlated with the specific failure mechanisms. For longer-term in situ duration, testing of these implants should be expanded to include an analysis of wear and corrosion properties.  相似文献   

7.
Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.  相似文献   

8.
Load-displacement properties of lower cervical spine motion segments   总被引:12,自引:0,他引:12  
The load-displacement behavior of 35 fresh adult cervical spine motion segments was measured in compression, shear, flexion, extension, lateral bending and axial torsion tests. Motion segments were tested both intact and with posterior elements removed. Applied forces ranged to 73.6 N in compression and to 39 N in shear, while applied moments ranged to 2.16 Nm. For each mode of loading, principal and coupled motions were measured and stiffnesses were calculated. The effect of disc degeneration on motion segment stiffnesses and the moments required for motion segment failure were also measured. In compression, the stiffnesses of the cervical motion segments were similar to those of thoracic and lumbar motion segments. In other modes of loading, cervical stiffnesses were considerably smaller than thoracic or lumbar stiffnesses. Removal of the posterior elements decreased cervical motion segment stiffnesses by as much as 50%. Degenerated cervical discs were less stiff in compression and stiffer in shear than less degenerated discs, but in bending or axial torsion, no statistically significant differences were evident. Bending moments causing failure were an order of magnitude lower than those for lumbar segments.  相似文献   

9.
Spinal range of motion is evaluated in assessing patients with back problems and monitoring outcomes, as well as in general fitness assessments. Yet, determinants of the substantial interindividual variation in spinal range of motion are not well understood. Substantial genetic effects on global measures of range of motion and hypermobility have been suggested from earlier studies, but genetic influences specifically on spinal range of motion have not been previously studied. The objectives of the present study were to investigate the relative role of genetic and environmental influences on lumbar range of motion in adult men and the pathways through which genes may influence range of motion. Thus we conducted a classic twin study of 300 monozygotic and dizygotic male twin pairs with consideration of covariates, using standard statistical methods. All subjects underwent a clinical examination, including general anthropometrics, lumbar range of motion, and lumbar MRI to assess disc degeneration, as well as an extensive interview on environmental and behavioral exposures and back pain history. We found the proportion of variance in lumbar range of motion attributable to genetic influences (heritability estimate) to be 47%. The extent of lumbar range of motion in flexion was predominantly determined by genetic influences (64%), while extension was influenced to a somewhat greater degree by environmental and behavioral factors. Statistically significant age-adjusted genetic correlations were found between lumbar extension and disc degeneration variables (r(a) = -0.38 to -0.43) and between flexion and body weight (r(a) = -0.33), suggesting two pathways through which genes influence lumbar range of motion.  相似文献   

10.

Background Context

There are few comparisons of Modic changes (MCs) in the lumbar and cervical spine.

Purpose

Compare the prevalence of MCs in the lumbar and cervical spine, and determine how MC prevalence depends on spinal pain, age, disc degeneration, spinal level, and the presence or absence of kyphosis.

Study Design

Retrospective clinical survey.

Materials and Methods

Magnetic resonance images (MRIs) were compared from five patient groups: 1. 1223 patients with low-back pain/radiculopathy only; 2. 1023 patients with neck pain/radiculopathy only; 3. 497 patients with concurrent low-back and neck symptoms; 4. 304 asymptomatic subjects with lumbar MRIs; and 5. 120 asymptomatic subjects with cervical MRIs.

Results

The prevalence of MCs was higher in those with spinal pain than in those without, both in the lumbar spine (21.0% vs 10.5%) and cervical spine (8.8% vs 3.3%). Type II MCs were most common and Type III were least common in all groups. The prevalence of lumbar MCs in people with back pain was little affected by the presence of concurrent neck pain, and the same was true for the prevalence of cervical MCs in people with neck pain with or without concurrent back pain. When symptomatic patients were reclassified into two groups (back pain, neck pain), the prevalence of lumbar MCs in people with back pain was greater than that of cervical MCs in people with neck pain. The prevalence of lumbar and cervical MCs increased with age, disc degeneration, (descending) spinal level, and increased kyphosis.

Conclusions

There is a significantly higher prevalence of MCs in patients with back and neck pain. The reported association with increased kyphosis (flat back) is novel.  相似文献   

11.
Wear testing of polyethylene in total joint replacements is common and required for any new device. Computational wear modelling has obvious utility in this context as it can be conducted with much greater economy than physical testing. Archard's law has become the accepted standard for wear simulation in total joints but it does not account for cross-shear, which is known to increase wear significantly relative to unidirectional sliding. The purpose of this study was to develop a robust cross-shear model applicable to any interface geometry under any kinematic conditions. The proposed metric, x *, is distinguished from existing cross-shear models by the fact that it measures cross-path motion incrementally throughout a motion cycle and quantifies cross-shear based on incremental changes in sliding direction. Validation showed strong support for the predictive capability of x * when applied to pin-on-disc test data.  相似文献   

12.
A polynomial modeling approach was developed to describe the contribution of individual passive spinal elements to the lumbar spinal motion segment flexion-extension motion. Flexion-extension moment-angle curves from porcine lumbar spines tested using a robotic testing system were described using sixth-order polynomials; the polynomials describing different dissection conditions were subtracted to describe the contribution of individual spinal elements to the motion segment flexion-extension properties. This modeling approach is a powerful and straightforward method for representing the mechanics of individual spinal tissues in biomechanical models and could easily be expanded to incorporate other features such as axial load.  相似文献   

13.
Various factors in addition to normal aging are reported to be associated with spinal osteoarthritis. The links between the risk factors and osteoarthritis are unclear. This study proposes an analysis of factors associated with spinal osteoarthritis using a collection of cervical and lumbar X-ray images, maintained by the US National Library of Medicine. Five hundred and forty-eight images of adults (60–74 years old, 242 males, 306 females) are analyzed. Six to nine anatomical points are selected by an experienced radiologist on each vertebra. Four dimensionless indexes are calculated: the anterior-to-posterior height ratio (APR), the disc space relative to posterior height of vertebra (DS) and the number of osteophytes. Correlations of these parameters are estimated with three anthropometric indexes: age, gender and body mass index. The univariate relationships are evaluated using one-way analysis of variance and Kruskal-Wallis test. Osteophytes are more frequent for men than for women. Men have lower APR from the levels L1 to L4 and lower DS at the levels C4 and C5. The lumbar levels L2 and L4 are more affected with age by changes in APR. Obese group has a higher DS at the level C3-C4 and a higher APR at the level L1. The analysis of images shows the predominant effect of osteoarthritis at the lower levels of the cervical and lumbar spine.  相似文献   

14.
This paper reports on the design and development of a multi-axis (up to 6 axes) mechanical tester for spinal research and testing. The developed spine tester allowed true motion to be simulated on a specimen in pure or combined modes. To demonstrate the capability of the new tester flexural stiffness properties of sheep lumbar motion segments were evaluated together wiith a non-contact speckle displacement measurement system. The flexural stiffness of the specimens was measured and compared under constrained and non-constrained testing conditions; with relieving of shear forces (non-constrained), it was found that the specimen behaved in a 'stiffer' manner.  相似文献   

15.
To study the effect of denucleation on the mechanical behavior of the human lumbar intervertebral disc through a 2mm incision, two groups of six human cadaver lumbar spinal units were tested in axial compression, axial rotation, lateral bending and flexion/extension after incremental steps of "partial" denucleation. Neutral zone, range of motion, stiffness, intradiscal pressure and energy dissipation were measured; the results showed that the contribution of the nucleus pulposus to the mechanical behavior of the intervertebral disc was more dominant through the neutral zone than at the farther limits of applied loads and moments.  相似文献   

16.
Due to the frequency of cervical spine injuries in canines, the purpose of this effort was to develop an EMG-driven dynamic model of the canine cervical spine to assess a biomechanical understanding that enables one to investigate the risk of neck disorders. A canine subject was recruited in this investigation in order to collect subject specific data. Reflective markers and a motion capture system were used for kinematic measurement; surface electrodes were used to record electromyography signals, and with the aid of force plate kinetics were recorded. A 3D model of the canine subject was reconstructed from an MRI dataset. Muscles lines of action were defined through a new technique with the aid of 3D white light scanner. The model performed well with a 0.73 weighted R2 value in all three planes. The weighted average absolute error of the predicted moment was less than 10% of the external moment. The proposed model is a canine specific forward-dynamics model that precisely tracks the canine subject head and neck motion, calculates the muscle force generated from the twelve major moment producing muscles, and estimates resulting loads on specific spinal tissues.  相似文献   

17.
In vitro spine flexibility testing has been performed using a variety of laboratory-specific loading apparatuses and conditions, making test results across laboratories difficult to compare. The application of pure moments has been well established for spine flexibility testing, but to our knowledge there have been no attempts to quantify differences in range of motion (ROM) resulting from laboratory-specific loading apparatuses. Seven fresh-frozen lumbar cadaveric motion segments were tested intact at four independent laboratories. Unconstrained pure moments of 7.5 Nm were applied in each anatomic plane without an axial preload. At laboratories A and B, pure moments were applied using hydraulically actuated spinal loading fixtures with either a passive (A) or controlled (B) XY table. At laboratories C and D, pure moments were applied using a sliding (C) or fixed ring (D) cable–pulley system with a servohydraulic test frame. Three sinusoidal load-unload cycles were applied at laboratories A and B while a single quasistatic cycle was applied in 1.5 Nm increments at laboratories C and D. Non-contact motion measurement systems were used to quantify ROM. In all test directions, the ROM variability among donors was greater than single-donor ROM variability among laboratories. The maximum difference in average ROM between any two laboratories was 1.5° in flexion-extension, 1.3° in lateral bending and 1.1° in axial torsion. This was the first study to quantify ROM in a single group of spinal motion segments at four independent laboratories with varying pure moment systems. These data support our hypothesis that given a well-described test method, independent laboratories can produce similar biomechanical outcomes.  相似文献   

18.
Wear particle accumulation is one of the main contributors to osteolysis and implant failure in hip replacements. Altered kinematics produce significant differences in wear rates of hip replacements in simulator studies due to varying degrees of multidirectional motion. Gait analysis data from 153 hip-replacement patients 10-years post-operation were used to model two- and three-dimensional wear paths for each patient. Wear paths were quantified in two dimensions using aspect ratios and in three dimensions using the surface areas of the wear paths, with wear-path surface area correlating poorly with aspect ratio. The average aspect ratio of the patients wear paths was 3.97 (standard deviation=1.38), ranging from 2.13 to 10.86. Sixty percent of patients displayed aspect ratios between 2.50 and 3.99. However, 13% of patients displayed wear paths with aspect ratios >5.5, which indicates reduced multidirectional motion. The majority of total hip replacement (THR) patients display gait kinematics which produce multidirectional wear paths, but a significant minority display more linear paths.  相似文献   

19.
The two main load bearing tissues of the intervertebral disc are the nucleus pulposus and the annulus fibrosus. Both tissues are composed of the same basic components, but differ in their organization and relative amounts. With degeneration, the clear distinction between the two tissues disappears. The changes in biochemical content lead to changes in mechanical behaviour of the intervertebral disc. The aim of the current study was to investigate if well-documented moderate degeneration at the biochemical and fibre structure level leads to instability of the lumbar spine. By taking into account biochemical and ultrastructural changes to the extracellular matrix of degenerating discs, a set of constitutive material parameters were determined that described the individual tissue behaviour. These tissue biomechanical models were then used to simulate dynamic behaviour of the degenerated spinal motion segment, which showed instability in axial rotation, while a stabilizing effect in the other two principle bending directions. When a shear load was applied to the degenerated spinal motion segment, no sign of instability was found. This study found that reported changes to the nucleus pulposus and annulus fibrosus matrix during moderate degeneration lead to a more stable spinal motion segment and that such biomechanical considerations should be incorporated into the general pathophysiological understanding of disc degeneration and how its progress could affect low back pain and its treatments thereof.  相似文献   

20.
目的:总结腰椎间盘突出症的临床特点及诊治要点。方法:回顾性分析260例腰椎间盘突出症手术患者的临床资料。结果:直腿抬高与影像学检查结果符合率为100%,治疗优良率这88.08%,有效率100%。结论:腰、下肢和臀部疼痛、下肢麻木、体位改变、运动障碍、感觉障碍、肌萎缩都是腰椎间盘突出症的主要临床表现;直腿抬高试验高试验可作为早期诊断的重要参考指标,要要根据患者体征、病程等具体情况选择适合的最佳治法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号