首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Load-bearing characteristics of articular cartilage are impaired during tissue degeneration. Quantitative microscopy enables in vitro investigation of cartilage structure but determination of tissue functional properties necessitates experimental mechanical testing. The fibril-reinforced poroviscoelastic (FRPVE) model has been used successfully for estimation of cartilage mechanical properties. The model includes realistic collagen network architecture, as shown by microscopic imaging techniques. The aim of the present study was to investigate the relationships between the cartilage proteoglycan (PG) and collagen content as assessed by quantitative microscopic findings, and model-based mechanical parameters of the tissue. Site-specific variation of the collagen network moduli, PG matrix modulus and permeability was analyzed. Cylindrical cartilage samples (n=22) were harvested from various sites of the bovine knee and shoulder joints. Collagen orientation, as quantitated by polarized light microscopy, was incorporated into the finite-element model. Stepwise stress-relaxation experiments in unconfined compression were conducted for the samples, and sample-specific models were fitted to the experimental data in order to determine values of the model parameters. For comparison, Fourier transform infrared imaging and digital densitometry were used for the determination of collagen and PG content in the same samples, respectively. The initial and strain-dependent fibril network moduli as well as the initial permeability correlated significantly with the tissue collagen content. The equilibrium Young's modulus of the nonfibrillar matrix and the strain dependency of permeability were significantly associated with the tissue PG content. The present study demonstrates that modern quantitative microscopic methods in combination with the FRPVE model are feasible methods to characterize the structure-function relationships of articular cartilage.  相似文献   

6.
We have earlier developed a handheld ultrasound indentation instrument for the diagnosis of articular cartilage degeneration. In ultrasound indentation, cartilage is compressed with the ultrasound transducer. Tissue thickness and deformation are calculated from the A-mode ultrasound signal and the stress applied is registered with the strain gauges. In this study, the applicability of the ultrasound indentation instrument to quantify site-dependent variation in the mechano-acoustic properties of bovine knee cartilage was investigated. Osteochondral blocks (n=6 per site) were prepared from the femoral medial condyle (FMC), the lateral facet of the patello-femoral groove (LPG) and the medial tibial plateau (MTP). Cartilage stiffness (dynamic modulus, E(dyn)), as obtained with the ultrasound indentation instrument in situ, correlated highly linearly (r=0.913, p<0.01) with the values obtained using the reference material-testing device in vitro. Reproducibility (standardized coefficient of variation) of the ultrasound indentation measurements was 5.2%, 1.7% and 3.1% for E(dyn), ultrasound reflection coefficient of articular surface (R) and thickness, respectively. E(dyn) and R were site dependent (p<0.05, Kruskall-Wallis H test). E(dyn) was significantly higher (p<0.05, Kruskall-Wallis Post Hoc test) in LPG (mean+/-SD: 10.1+/-3.1MPa) than in MTP (2.9+/-1.4MPa). In FMC, E(dyn) was 4.6+/-1.3MPa. R was significantly (p<0.05) lower at MTP (2.0+/-0.7%) than at other sites (FMC: 4.2+/-0.9%; LPG: 4.4+/-0.8%). Cartilage glycosaminoglycan concentration, as quantified with the digital densitometry, correlated positively with E(dyn) (r=0.678, p<0.01) and especially with the equilibrium Young's modulus (reference device, r=0.874, p<0.01) but it was not associated with R (r=0.294, p=0.24). We conclude that manual measurements are reproducible and the instrument may be used for detection of cartilage quality in situ. Especially, combined measurement of thickness, E(dyn) and R provides valuable diagnostic information on cartilage status.  相似文献   

7.
Mechanical behavior of articular cartilage was characterized in unconfined compression to delineate regimes of linear and nonlinear behavior, to investigate the ability of a fibril-reinforced biphasic model to describe measurements, and to test the prediction of biphasic and poroelastic models that tissue dimensions alter tissue stiffness through a specific scaling law for time and frequency. Disks of full-thickness adult articular cartilage from bovine humeral heads were subjected to successive applications of small-amplitude ramp compressions cumulating to a 10 percent compression offset where a series of sinusoidal and ramp compression and ramp release displacements were superposed. We found all equilibrium behavior (up to 10 percent axial compression offset) to be linear, while most nonequilibrium behavior was nonlinear, with the exception of small-amplitude ramp compressions applied from the same compression offset. Observed nonlinear behavior included compression-offset-dependent stiffening of the transient response to ramp compression, nonlinear maintenance of compressive stress during release from a prescribed offset, and a nonlinear reduction in dynamic stiffness with increasing amplitudes of sinusoidal compression. The fibril-reinforced biphasic model was able to describe stress relaxation response to ramp compression, including the high ratio of peak to equilibrium load. However, compression offset-dependent stiffening appeared to suggest strain-dependent parameters involving strain-dependent fibril network stiffness and strain-dependent hydraulic permeability. Finally, testing of disks of different diameters and rescaling of the frequency according to the rule prescribed by current biphasic and poroelastic models (rescaling with respect to the sample's radius squared) reasonably confirmed the validity of that scaling rule. The overall results of this study support several aspects of current theoretical models of articular cartilage mechanical behavior, motivate further experimental characterization, and suggest the inclusion of specific nonlinear behaviors to models.  相似文献   

8.
At mechanical equilibrium, articular cartilage is usually characterized as an isotropic elastic material with no interstitial fluid flow. In this study, the equilibrium properties (Young's modulus, aggregate modulus and Poisson's ratio) of bovine humeral, patellar and femoral cartilage specimens (n=26) were investigated using unconfined compression, confined compression, and indentation tests. Optical measurements of the Poisson's ratio of cartilage were also carried out. Mean values of the Young's modulus (assessed from the unconfined compression test) were 0.80+/-0.33, 0.57+/-0.17 and 0.31+/-0.18MPa and of the Poisson's ratio (assessed from the optical test) 0.15+/-0.06, 0.16+/-0.05 and 0.21+/-0.05 for humeral, patellar, and femoral cartilages, respectively. The indentation tests showed 30-79% (p<0.01) higher Young's modulus values than the unconfined compression tests. In indentation, values of the Young's modulus were independent of the indenter diameter only in the humeral cartilage. The mean values of the Poisson's ratio, obtained indirectly using the mathematical relation between the Young's modulus and the aggregate modulus in isotropic material, were 0.16+/-0.06, 0.21+/-0.05, and 0.26+/-0.08 for humeral, patellar, and femoral cartilages, respectively. We conclude that the values of the elastic parameters of the cartilage are dependent on the measurement technique in use. Based on the similar values of Poisson's ratios, as determined directly or indirectly, the equilibrium response of articular cartilage under unconfined and confined compression is satisfactorily described by the isotropic elastic model. However, values of the isotropic Young's modulus obtained from the in situ indentation tests are higher than those obtained from the in vitro unconfined or confined compression tests and may depend on the indenter size in use.  相似文献   

9.
Articular cartilage is a multicomponent, poroviscoelastic tissue with nonlinear mechanical properties vital to its function. A consequent goal of repair or replacement of injured cartilage is to achieve mechanical properties in the repair tissue similar to healthy native cartilage. Since fresh healthy human articular cartilage (HC) is not readily available, we tested whether swine cartilage (SC) could serve as a suitable substitute for mechanical comparisons. To a first approximation, cartilage tissue and surgical substitutes can be evaluated mechanically as viscoelastic materials. Stiffness measurements (dynamic modulus, loss angle) are vital to function and are also a non-destructive means of evaluation. Since viscoelastic material stiffness is strongly strain rate dependent, stiffness was tested under different loading conditions related to function. Stiffness of healthy HC and SC specimens was determined and compared using two non-destructive, mm-scale indentation test modes: fast impact and slow sinusoidal deformation. Deformation resistance (dynamic modulus) and energy handling (loss angle) were determined. For equivalent anatomic locations, there was no difference in dynamic modulus. However, the HC loss angle was ~35% lower in fast impact and ~12% higher in slow sinusoidal mode. Differences seem attributable to age (young SC, older HC) but also to species anatomy and biology. Test mode-related differences in human-swine loss angle support use of multiple function-related test modes. Keeping loss angle differences in mind, swine specimens could serve as a standard of comparison for mechanical evaluation of e.g. engineered cartilage or synthetic repair materials.  相似文献   

10.
Osteoarthritis (OA) is a multifactorial disease, resulting in diarthrodial joint wear and eventually destruction. Swelling of cartilage, which is proportional to the amount of collagen damage, is an initial event of cartilage degeneration, so damage to the collagen fibril network is likely to be one of the earliest signs of OA cartilage degeneration. We propose that the local stresses and strains in the collagen fibrils, which cause the damage, cannot be determined dependably without taking the local arcade-like collagen-fibril structure into account. We investigate this using a poroviscoelastic fibril-reinforced FEA model. The constitutive fibril properties were determined by fitting numerical data to experimental results of unconfined compression and indentation tests on samples of bovine patellar articular cartilage. It was demonstrated that with this model the stresses and strains in the collagen fibrils can be calculated. It was also exhibited that fibrils with different orientations at the same location can be loaded differently, depending on the local architecture of the collagen network. To the best of our knowledge, the present model is the first that can account for these features. We conclude that the local stresses and strains in the articular cartilage are highly influenced by the local morphology of the collagen-fibril network.  相似文献   

11.
A quasilinear viscoelastic model was used to develop relaxation and creep forms for a constitutive law for soft tissues. Combined relaxation and cyclic test data as well as preconditioned and nonpreconditioned creep data were used to demonstrate the approach for normal bovine articular cartilage. Values for mechanical parameters in the analytical models were determined using a generalized least squares method.  相似文献   

12.
Articular cartilage is often characterized as an isotropic elastic material with no interstitial fluid flow during instantaneous and equilibrium conditions, and indentation testing commonly used to deduce material properties of Young's modulus and Poisson's ratio. Since only one elastic parameter can be deduced from a single indentation test, some other test method is often used to allow separate measurement of both parameters. In this study, a new method is introduced by which the two material parameters can be obtained using indentation tests alone, without requiring a secondary different type of test. This feature makes the method more suitable for testing small samples in situ. The method takes advantages of the finite layer effect. By indenting the sample twice with different-sized indenters, a nonlinear equation with the Poisson's ratio as the only unknown can be formed and Poisson's ratio obtained by solving the nonlinear equation. The method was validated by comparing the predicted Poisson's ratio for urethane rubber with the manufacturer's supplied value, and comparing the predicted Young's modulus for urethane rubber and an elastic foam material with modulii measured by unconfined compression. Anisotropic and nonhomogeneous finite-element (FE) models of the indentation were developed to aid in data interpretation. Applying the method to bovine patellar cartilage, the tissue Young's modulus was found to be 1.79 +/- 0.59 MPa in instantaneous response and 0.45 +/- 0.26 MPa in equilibrium, and the Poisson's ratio 0.503 +/- 0.028 and 0.463 +/- 0.073 in instantaneous and equilibrium, respectively. The equilibrium Poisson's ratio obtained in our work was substantially higher than those derived from biphasic indentation theory and those optically measured in an unconfined compression test. The finite element model results and examination of viscoelastic-biphasic models suggest this could be due to viscoelastic, inhomogeneity, and anisotropy effects.  相似文献   

13.
The depth dependence of material properties of articular cartilage, known as the zonal differences, is incorporated into a nonlinear fibril-reinforced poroelastic model developed previously in order to explore the significance of material heterogeneity in the mechanical behavior of cartilage. The material variations proposed are based on extensive observations. The collagen fibrils are modeled as a distinct constituent which reinforces the other two constituents representing proteoglycans and water. The Young's modulus and Poisson's ratio of the drained nonfibrillar matrix are so determined that the aggregate compressive modulus for confined geometry fits the experimental data. Three nonlinear factors are considered, i.e. the effect of finite deformation, the dependence of permeability on dilatation and the fibril stiffening with its tensile strain. Solutions are extracted using a finite element procedure to simulate unconfined compression tests. The features of the model are then demonstrated with an emphasis on the results obtainable only with a nonhomogeneous model, showing reasonable agreement with experiments. The model suggests mechanical behaviors significantly different from those revealed by homogeneous models: not only the depth variations of the strains which are expected by qualitative analyses, but also, for instance, the relaxation-time dependence of the axial strain which is normally not expected in a relaxation test. Therefore, such a nonhomogeneous model is necessary for better understanding of the mechanical behavior of cartilage.  相似文献   

14.
Articular cartilage is a multi-phasic, composite, fibre-reinforced material. Therefore, its mechanical properties are determined by the tissue microstructure. The presence of cells (chondrocytes) and collagen fibres within the proteoglycan matrix influences, at a local and a global level, the material symmetries. The volumetric concentration and shape of chondrocytes, and the volumetric concentration and spatial arrangement of collagen fibres have been observed to change as a function of depth in articular cartilage. In particular, collagen fibres are perpendicular to the bone-cartilage interface in the deep zone, their orientation is almost random in the middle zone, and they are parallel to the surface in the superficial zone. The aim of this work is to develop a model of elastic properties of articular cartilage based on its microstructure. In previous work, we addressed this problem based on Piola's notation for fourth-order tensors. Here, mathematical tools initially developed for transversely isotropic composite materials comprised of a statistical orientation of spheroidal inclusions are extended to articular cartilage, while taking into account the dependence of the elastic properties on cartilage depth. The resulting model is transversely isotropic and transversely homogeneous (TITH), the transverse plane being parallel to the bone-cartilage interface and the articular surface. Our results demonstrate that the axial elastic modulus decreases from the deep zone to the articular surface, a result that is in good agreement with experimental findings. Finite element simulations were carried out, in order to explore the TITH model's behaviour in articular cartilage compression tests. The force response, fluid flow and displacement fields obtained with the TITH model were compared with the classical linear elastic, isotropic, homogeneous (IH) model, showing that the IH model is unable to predict the non-uniform behaviour of the tissue. Based on considerations that the mechanical stability of the tissue depends on its topological and microstructural properties, our long-term goal is to clearly understand the stability conditions in topological terms, and the relationship with the growth and remodelling mechanisms in the healthy and diseased tissue.  相似文献   

15.
Indentation tests are commonly used to determine the mechanical behaviour of articular cartilage with varying properties, thickness, and geometry. This investigation evaluated the effect of changing geometric parameters on the properties determined from creep indentation tests. Finite element analyses simulated the indentation behaviour of two models, an excised cylindrical specimen of cartilage with either normal and repair qualities and an osteochondral defect represented as a cylindrical region of repair cartilage integrated with a surrounding layer of normal tissue. For each model, the ratios of indenter radius to cartilage height (a/h=0.5,1.5) and cartilage radius to indenter radius (r/a=2,5) were varied. The vertical displacement of the cartilage under the indenter obtained through finite element analysis was fitted to a numerical algorithm to determine the aggregate modulus, permeability, and Poisson's ratio. Indentation behaviours of cartilage specimens for either model with a/h=1.5 were not affected by r/a for values of 2 and 5. Aggregate modulus was not greatly affected by the geometric changes studied. Permeability was affected by changes in the ratio of specimen to indenter radii for a/h=0.5. These findings suggest that experimental configurations of excised cylindrical specimens, also representing osteochondral defects with no or unknown degree of integration, where the cartilage layer has a/h=0.5 should not have r/a values on the order of 2 for confidence in the mechanical properties determined. Indentation of osteochondral defects where the repair cartilage is fully integrated to the surrounding cartilage can be performed with confidence for all cases tested.  相似文献   

16.
ObjectiveThe objective is to clarify the effects of Notch/p38MAPK signaling pathway on articular cartilage defect recovery by BMSCs tissue and provide a basis for clinical treatments of articular cartilage defects.MethodsA total of 96 healthy male rabbits (weighed 1.5–2.0 kg) that were fully-grown were selected and grouped as the no-treatment group, the model group, and the treatment group in a random manner. Each group included 32 rabbits in total. The no-treatment group was fed without any interventions. The model group and the treatment group were constructed into rabbit knee-joint articular cartilage defect models. In addition, rabbits in the treatment group were given intervention treatments with Notch inhibitor (DAPT) combined with p38MAPK inhibitor (SB203580). The general conditions of rabbits in each group and the conditions of the stained articular cartilage tissue samples were observed, the proliferation of chondrocytes of rabbits in each group was compared.Results(1) After drug interventions, in contrast to the rabbits in the model group, the general conditions and the chondrocyte recovering situations of rabbits in the treatment group were obviously improved; (2) 8 weeks after model construction, the articular cartilage empty bone lacuna rate of rabbits in the treatment group was (12.13 ± 1.81)%, which was obviously lower than the synchronous (21.55 ± 3.07)% articular cartilage empty bone lacuna rate of rabbits in the model group, and there was a statistical significance in the differences (P < 0.05); (3) the absorbance value (OD value) of chondrocytes in the treatment group was (0.34 ± 0.015), which was obviously higher than the (0.10 ± 0.020) OD value of chondrocytes in the model group, and there was a statistical significance in the differences (P < 0.05).ConclusionThe inhibition of Notch/p38MAPK signaling pathway can promote the recovery of articular cartilage by BMSCs tissue, accelerate the proliferation of chondrocytes, and contribute to the recovery of knee-joint injuries in rabbits, which provides a reliable basis for clinical treatments of articular cartilage defects.  相似文献   

17.
An important indicator of osteoarthritis (OA) progression is the loss of proteoglycan (PG) aggregates from the cartilage tissue. Using the indentation creep test, two analytical methods, as previously developed by Lu et al. [Lu, X. L., Miller, C., Chen, F. H., Guo, X. E., Mow, V. C., 2007. The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation. Journal of Biomechanics 40, 2434-2441 (EPub).], for predicting the fixed charge density (FCD) of goat knee articular cartilage in the normal (control) and degenerated states were compared: (1) a "dual-stage" method to calculate FCD from the mechanical properties of the tissue when tested in isotonic and hypertonic solutions; and (2) a "single-stage" method to predict FCD (as in (1)) assuming an intrinsic Poisson's ratio of 0.05 in the hypertonic state. A biochemical analysis using 1,9-dimethylmethylene blue (DMMB) assay was conducted to directly measure PG content, and hence FCD. The association between the FCD and the aggregate modulus of the tissue was also explored. The mean (+/-S.D.) FCD values measured using the dual-stage method were the closest (control: 0.129+/-0.039, degenerated: 0.046+/-029) to the DMMB results (control: 0.125+/-0.034, degenerated: 0.057+/-0.024) as compared to those of the single-stage method (control: 0.147+/-0.035, degenerated: 0.063+/-0.026). The single-stage method was more reliable (r(2)=0.81) when compared to the dual-stage method (r(2)=0.79). A prediction of FCD from the aggregate modulus generated the least reliable FCD prediction (r(2)=0.68). Because both the dual- and single-stage methods provided reliable FCD estimates for normal and degenerated tissue, the less time-consuming single-stage method was concluded to be the ideal technique for predicting FCD and hence PG content of the tissue.  相似文献   

18.
19.
20.
Our preliminary indentation experiments showed that the equilibrium elastic modulus of murine tibial cartilage increased with decreasing indenter size: flat-ended 60 deg conical tips with end diameters of 15 microm and 90 microm gave 1.50+/-0.82 MPa (mean+/-standard deviation) and 0.55+/-0.11 MPa, respectively (p<0.01). The goal of this paper is to determine if the dependence on tip size is an inherent feature of the equilibrium elastic modulus of cartilage as measured by indentation. Since modulus values from nonindentation tests are not available for comparison for murine cartilage, bovine cartilage was used. Flat-ended conical or cylindrical tips with end diameters ranging from 5 microm to 4 mm were used to measure the equilibrium elastic modulus of bovine patellar cartilage. The same tips were used to test urethane rubber for comparison. The equilibrium modulus of the bovine patellar cartilage increased monotonically with decreasing tip size. The modulus obtained from the 2 mm and 4 mm tips (0.63+/-0.21 MPa) agreed with values reported in the literature; however, the modulus measured by the 90 microm tip was over two and a half times larger than the value obtained from the 1000 microm tip. In contrast, the elastic modulus of urethane rubber obtained using the same 5 microm-4 mm tips was independent of tip size. The equilibrium elastic modulus of bovine patellar cartilage measured by indentation depends on tip size. This appears to be an inherent feature of indentation of cartilage, perhaps due to its inhomogeneous structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号