首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local pressure values for the cervical joint in a cadaveric model.  相似文献   

2.
Inappropriate lordotic angle of lumbar fusion cage could be associated with cage damage or subsidence. The biomechanical influence of cage lordotic angle on lumbar spine has not been fully investigated. Four surgical finite element models were constructed by inserting cages with various lordotic angles at L3-L4 disc space. The four motion modes were simulated. The range of motion (ROM) decreased with increased lordotic angle of cage in flexion, extension, and rotation, whereas it was not substantially changed in bending. The maximum stress in cage decreased with increased lordotic angle of cage in all motion modes. The maximum stress in endplate at surgical level increased with increased lordotic angle of cage in flexion and rotation, whereas it was not substantially changed in extension and bending. The facet joint force (FJF) was much smaller than that for the intact conditions in extension, bending, and rotation, while it was not substantially changed in flexion. In conclusion, the ROM, stresses in the cage and endplate at surgical level are sensitive to the lordotic angle of cage. The increased cage lordotic angle may provide better stability and reduce the risk of cage damage, whereas it may increase the risk of subsidence in flexion and rotation.  相似文献   

3.
Ultimate strength of the lumbar spine in flexion--an in vitro study   总被引:2,自引:0,他引:2  
The ultimate strength in flexion of 16 lumbar functional spinal units (FSU) was determined. The specimens were exposed to a combined static load of bending and shearing in the sagittal plane until overt rupture occurred (simulated flexion-distraction injuries). The biomechanical response of the FSU was measured with a force and moment platform. Mechanical displacement gauges were used to measure vertical displacements (flexion angulation) of the specimens. Photographs were taken after each loading step for determination of horizontal displacements and the centre of rotation. The lumbar FSU could resist a combination of bending moment and shear force of 156 Nm and 620 N respectively, before complete disruption occurred. The tension force acting on the posterior structures was 2.8 kN. The flexion angulation just before failure was 20 degrees and the anterior horizontal displacement between the upper and lower vertebrae was 9 mm. The centre of rotation was located in the posterior part of the lower vertebral body. The bone mineral content in the vertebrae appeared to be a good predictor of ultimate strength of the lumbar FSU. Knowledge of the biomechanical response of the lumbar spine under different static traumatic loads is a first step to better understand the injury mechanisms of the spine in traffic accidents.  相似文献   

4.
The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2–C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.  相似文献   

5.
The head is kinematically constrained to the torso through the spine and thus, the spine dictates the amount of output head angular motion expected from an input impact. Here, we investigate the spinal kinematic constraint by analyzing the head instantaneous center of rotation (HICOR) with respect to the torso in head/neck sagittal extension and coronal lateral flexion during mild loads applied to 10 subjects. We found the mean HICOR location was near the C5-C6 intervertebral joint in sagittal extension, and T2-T3 intervertebral joint in coronal lateral flexion. Using the impulse-momentum relationship normalized by subject mass and neck length, we developed a non-dimensional analytical ratio between output angular velocity and input linear impulse as a function of HICOR location. The ratio was 0.65 and 0.50 in sagittal extension and coronal lateral flexion respectively, implying 30% greater angular velocities in sagittal extension given an equivalent impulse. Scaling to subject physiology also predicts larger required impulses given greater subject mass and neck length to achieve equivalent angular velocities, which was observed experimentally. Furthermore, the HICOR has greater motion in sagittal extension than coronal lateral flexion, suggesting the head and spine can be represented with a single inverted pendulum in coronal lateral flexion, but requires a more complex representation in sagittal extension. The upper cervical spine has substantial compliance in sagittal extension, and may be responsible for the complex motion and greater extension angular velocities. In analyzing the HICOR, we can gain intuition regarding the neck’s role in dictating head motion during external loading.  相似文献   

6.
The influence of the different lumbar spinal ligaments on intersegmental rotation is not fully understood. In order to explore this effect, a finite element model of the functional spinal unit L3/L4 was loaded with pure moments in the three main anatomic planes. The two extremes--minimum and maximum--ligament stiffness values reported in the literature were applied. After virtual transection of each of the spinal ligaments in turn, the intersegmental rotation and forces in the remaining ligaments were calculated. On flexion, the highest force was found for the posterior longitudinal ligament; on extension and lateral bending for the anterior longitudinal ligament; and on axial rotation for the facet capsular ligament. The strongest influence on intersegmental rotation is exerted by the interspinous ligament on flexion, by the anterior longitudinal ligament on extension and lateral bending, and by the facet capsular ligaments on axial rotation. Ligament stiffness has a strong influence on intersegmental rotation and forces in the ligaments, so that finite element models of spinal segments must be validated by experimental data. This study should help to elucidate the role of the various ligaments.  相似文献   

7.
Traumatic injuries of the spine are mostly the consequence of rapid overload e.g. impact loading. In vitro investigations on this topic usually encompass biomechanical testing using frozen/thawed specimens and employ quasi-static loading conditions. It is generally accepted that a freezing/thawing cycle does not alter mechanical properties for slow loading rates. However, this has never been investigated for high impact velocities. In order to assess the effects of freezing/thawing and the influence of different impact velocities, we loaded 27 fresh and 15 frozen/thawed cadaveric rabbit spinal segments (intervertebral disc with one third of the adjacent vertebrae) with different impact energies and velocities using a custom-made, dropped-weight loading device. Endplate fractures were assessed by micro-CT scans. Specimen dimensions (disk, bone, and total height) and vertebrae bone density (BV/TV) were compared pre- and post-trauma. Energy absorption by spinal segments was quantified by measuring the initial ball rebound. We found that freezing/thawing increased endplate fracture frequency and decreased the energy absorption of the segments. Higher impact velocities increased the energy absorption, while higher impact energy increased both energy absorption and fracture frequency. Two conclusions are drawn: first, under impact loading, freezing alters permanently the biomechanical response, and second, for different impact velocities, different fracture initiation mechanisms apply. Therefore, quasi-static loading of frozen/thawed spinal segments is not a valid model for traumatic endplate injuries. However, caution should be exercised in extrapolating these findings to human vertebrae until tests on larger vertebrae are performed.  相似文献   

8.
The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2-L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix compressive/shear stresses and anulus fibers strain. The mechanical responses with respect to the two most-relevant variables were then regressed linearly using the response surface quadratic model. Axial force and sagittal rotation were identified as the most-relevant variables for mechanical responses. The procedure developed can be used to find the critical loading for finite element models with multi input variables. The derived meta-models can be used to predict the risk associated with various loading parameters and in setting safer load limits.  相似文献   

9.
A combined approach involving optimization and the finite element technique was used to predict biomechanical parameters in the lumbar spine during static lifting in the sagittal plane. Forces in muscle fascicles of the lumbar region were first predicted using an optimization-based force model including the entire lumbar spine. These muscle forces as well as the distributed upper body weight and the lifted load were then applied to a three-dimensional finite element model of the thoracolumbar spine and rib cage to predict deformation, the intradiskal pressure, strains, stresses, and load transfer paths in the spine. The predicted intradiskal pressures in the L3-4 disk at the most deviated from the in vivo measurements by 8.2 percent for the four lifting cases analyzed. The lumbosacral joint flexed, while the other lumbar joints extended for all of the four lifting cases studied (rotation of a joint is the relative rotation between its two vertebral bodies). High stresses were predicted in the posterolateral regions of the endplates and at the junctions of the pedicles and vertebral bodies. High interlaminar shear stresses were found in the posterolateral regions of the lumbar disks. While the facet joints of the upper two lumbar segments did not transmit any load, the facet joints of the lower two lumbar segments experienced significant loads. The ligaments of all lumbar motion segments except the lumbosacral junction provided only marginal moments. The limitations of the current model and possible improvements are discussed.  相似文献   

10.
The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2–L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix compressive/shear stresses and anulus fibers strain. The mechanical responses with respect to the two most-relevant variables were then regressed linearly using the response surface quadratic model. Axial force and sagittal rotation were identified as the most-relevant variables for mechanical responses. The procedure developed can be used to find the critical loading for finite element models with multi input variables. The derived meta-models can be used to predict the risk associated with various loading parameters and in setting safer load limits.  相似文献   

11.
Intervertebral disc degeneration involves changes in the spinal anatomical structures. The mechanical relevance of the following changes was investigated: disc height, endplate sclerosis, disc water content, permeability and depressurisation. A poroelastic nonlinear finite element model of the L4–L5 human spine segments was employed. Loads represented a daily cycle (500 N compression combined with flexion–extension motion for 16 h followed by 200 N compression for 8 h). In non-degenerative conditions, the model predicted a diurnal axial displacement of 1.32 mm and a peak intradiscal pressure of 0.47 MPa. Axial displacement, facet force and range of motion in flexion–extension are decreased by decreasing disc height. By decreasing the initial water content, axial displacement, facet force and fluid loss were all reduced. Endplate sclerosis did not have a significant influence on the calculated results. Depressurisation determined an increase of the disc effective stress, possibly inducing failure. Degenerative instability was not calculated in any simulations.  相似文献   

12.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

13.
Cervical traumas are among the most common events leading to serious spinal cord injuries. While models are often used to better understand injury mechanisms, experimental data for their validation remain sparse, particularly regarding articular facets. The aim of this study was to assess the behavior of cervical FSUs under quasi-static flexion with a specific focus on facet tracking. 9 cadaveric cervical FSUs were imaged and loaded under a 10 Nm flexion moment, exerted incrementally, while biplanar X-rays were acquired at each load increment. The relative vertebral and facet rotations and displacements were assessed using radio-opaque markers implanted in each vertebra and CT-based reconstructions registered on the radiographs. The only failures obtained were due to specimen preparation, indicating a failure moment of cervical FSUs greater than 10 Nm in quasistatic flexion. Facet motions displayed a consistent anterior sliding and a variable pattern regarding their normal displacement. The present study offers insight on the behavior of cervical FSUs under quasi-static flexion beyond physiological thresholds with accurate facet tracking. The data provided should prove useful to further understand injury mechanisms and validate models.  相似文献   

14.
In the present work, the load-bearing role of the facet joints in a lumbar I2-3 segment is quantitatively determined by means of a three dimensional nonlinear finite element program. The analysis accounts for both material and geometric nonlinearities and treats the facet articulation as a nonlinear moving contact problem. The disc nucleus is considered as an inviscid incompressible fluid and the annulus as a composite of collagenous fibres embedded in a matrix of ground substance. The spinal ligaments are modelled as a collection of nonlinear axial elements. The loadings consist of axial compression and sagittal plane shears and bending moments, acting alone or combined. The results show that in pure compression, the external axial force is transmitted primarily by the intervertebral disc. The facet joints carry only a small percentage of the force. However, the facet joints carry large forces in extension, whereas in small flexion they carry none. Addition of compression tends to increase these contact forces in extension while it has no effect on them in flexion. In extension, the forces on the facet joints are transmitted by both the articular surfaces and the capsular ligaments. Although in small flexion the facets carry no load, large contact forces are predicted to develop as the segment is flexed beyond 7-8 degrees. These forces are of the same magnitude as those computed under large extension rotation and are oriented nearly in the horizontal plane with negligible component in the axial direction. The horizontal components of the contact forces generated during articulation are often larger than the axial components which directly resist the applied compressive force. The axial components of the contact forces, therefore, grossly underestimate the total forces acting on the facets. The transfer of forces from one facet to the adjacent one occurs through distinct areas in flexion and in extension loadings. That is, on the superior articular surface, the contact area shifts from the upper tip in large flexion to the lower margin in extension. On the inferior articular surface, the contact area shifts from the upper and central regions in large flexion to the lower tip in extension.  相似文献   

15.
To date, there are only a few studies that provide data to efficiently calibrate finite element models for the spine due to its complexity. In a recent study, we quantified the range of motion rotation and the lordosis angle. This paper provides complementary results regarding two more parameters, intradiscal pressure and vertebral translation. All parameters were obtained as a function of stepwise anatomical reduction, loading direction and magnitude. Eight lumbar spinal segments (L4-5) with a median age of 52 years (38-59 years) and no signs of disc degeneration were used for the in vitro testing. A miniaturized pressure probe was implanted into the nucleus. An ultrasound-based motion-tracking system was employed to record spatial movements of several landmarks on the specimens. The center of L4, the anterior, posterior, left and right point of the lower endplate of L4 were digitized as landmarks and its translation was determined. Specimens were loaded with pure moments (1-10Nm) in the three principal anatomical planes at a loading rate of 1.0 degrees /s. Anatomy was stepwise reduced by cutting different ligaments, facet capsules and joints and removing nucleus. Translation analysis showed that the L4 center point had its largest displacement in sagittal direction and almost none vertically. Removal of the supra- and interspinous, flaval ligaments showed a slight increase and further removal of structures, a higher increase of translation. Axial rotation also was accompanied with L4 to elevate when torsion was applied. This effect was found to be larger with progressing defects. Nucleotomy exhibited the most unstable situation for specimens. Results of the intradiscal pressure indicated a large increase after removing the facet capsules and joints. Furthermore, it was found that intradiscal pressure correlated well with data of range of motion for rotation. Predicting and simulating clinical defects, surgical intervention or treatment methods requires a well performed calibration based on in vitro data, whereas it is important to adapt all including structures with as many known parameters as possible. Results provided by these studies may be used as a database for researchers aiming to calibrate or validate finite element models of L4-5 segments.  相似文献   

16.
Velocity of movement has been suggested as a risk factor for low-back disorders. The effect of changes in velocity during unconstrained flexion-extension movements on muscle activations, spinal loads, base reaction forces and system stability was computed. In vivo measurements of kinematics and ground reaction forces were initially carried out on young asymptomatic subjects. The collected kinematics of three subjects representing maximum, mean and minimum lumbar rotations were subsequently used in the kinematics-driven model to compute results during the entire movements at three different velocities. Estimated spinal loads and muscle forces were significantly larger in fastest pace as compared to slower ones indicating the effect of inertial forces. Spinal stability was improved in larger trunk flexion angles and fastest movement. Partial or full flexion relaxation of global extensor muscles occurred only in slower movements. Some local lumbar muscles, especially in subjects with larger lumbar flexion and at slower paces, also demonstrated flexion relaxation. Results confirmed the crucial role of movement velocity on spinal biomechanics. Predictions also demonstrated the important role on response of the magnitude of peak lumbar rotation and its temporal variation.  相似文献   

17.
Prior studies have found that primary rotations in the lumbar spine are accompanied by coupled out-of-plane rotations. However, it is not clear whether these accompanying rotations are primarily due to passive (discs, ligaments and facet joints) or active (muscles) spinal anatomy. The aim of this study was to use a finite element (FE) model of the lumbar spine to predict three-dimensional coupled rotations between the lumbar vertebrae, due to passive spinal structures alone. The FE model was subjected to physiologically observed whole lumbar spine rotations about in vivo centres of rotation. Model predictions were validated by comparison of intra-discal pressures and primary rotations with in vivo measurements and these showed close agreement. Predicted coupled rotations matched in vivo measurements for all primary motions except lateral bending. We suggest that coupled rotations accompanying primary motions in the sagittal (flexion/extension) and transverse (axial rotation) planes are primarily due to passive spinal structures. For lateral bending the muscles most likely play a key role in the coupled rotation of the spine.  相似文献   

18.
A 3-D nonlinear mathematical model is used to analyze the mechanical response of a lumbar L2-3 motion segment including the posterior elements when subjected to combined sagittal plane loads. The loadings consist of axial compression force, anterior and posterior shear forces, and flexion and extension moments. The facet articulation is modelled as a general moving contact problem and the ligaments as a collection of uniaxial elements. The disk nucleus is considered as an inviscid fluid and the annulus as a composite of collagenous fibers embedded in a matrix of ground substance. The presence of axial compression force reduces the segmental stiffness in flexion whereas a reverse trend is predicted in extension. In the presence of axial compression with and without sagittal shear force, flexion considerably increases the intradiscal pressure while extension reduces it. In other words, under an identical compression force, disk pressure is predicted to be noticeably larger in flexion than in extension. The segmental mechanical response in extension loadings is markedly influenced by the changes in the relative geometry of the articular surfaces at the lower regions. Finally, the deformation of the bony structures plays a significant role in the segmental mechanics under relatively large loads.  相似文献   

19.

Purpose

Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disc diseases. The constructs intended for segmental stability are varied in MI-TLIF. We adopted finite element (FE) analysis to compare the stability after different construct fixations using interbody cage with posterior pedicle screw-rod or pedicle screw-plate instrumentation system.

Methods

A L3–S1 FE model was modified to simulate decompression and fusion at L4–L5 segment. Fixation modes included unilateral plate (UP), unilateral rod (UR), bilateral plate (BP), bilateral rod (BR) and UP+UR fixation. The inferior surface of the S1 vertebra remained immobilized throughout the load simulation, and a bending moment of 7.5 Nm with 400N pre-load was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Range of motion (ROM) and Von Mises stress were evaluated for intact and instrumentation models in all loading planes.

Results

All reconstructive conditions displayed decreased motion at L4–L5. The pedicle screw-plate system offered equal ROM to pedicle screw-rod system in unilateral or bilateral fixation modes respectively. Pedicle screw stresses for plate system were 2.2 times greater than those for rod system in left lateral bending under unilateral fixation. Stresses for plate were 3.1 times greater than those for rod in right axial rotation under bilateral fixation. Stresses on intervertebral graft for plate system were similar to rod system in unilateral and bilateral fixation modes respectively. Increased ROM and posterior instrumentation stresses were observed in all loading modes with unilateral fixation compared with bilateral fixation in both systems.

Conclusions

Transforaminal lumbar interbody fusion augmentation with pedicle screw-plate system fixation increases fusion construct stability equally to the pedicle screw-rod system. Increased posterior instrumentation stresses are observed in all loading modes with plate fixation, and bilateral fixation could reduce stress concentration.  相似文献   

20.
Many investigators have performed studies on specific defect situations or determined the contribution on isolated structures. Investigating the contribution of functional structures requires obtaining the kinematic response directly on spinal segments. The purpose of this study was to quantify the function of anatomical components on lumbar segments for different loading magnitudes. Eight spinal segments (L4-5) with a median age of 52 years (ranging from 38 to 59 years) and a low degree of disc degeneration were utilized for the in vitro testing. Specimens were mounted in a custom-built spine tester and loaded with pure moments (1-10 N m) to move within three anatomical planes at a loading rate of 1.0 degrees /s. Anatomy was successively reduced by: ligaments, facet capsules, joints and nucleus. Data were evaluated for range of motion, neutral zone and lordosis angle. Transection of posterior ligaments predominantly increased specimen flexion for all bending moments applied. Supraspinous ligament also indicated to resist in extension slightly, whereas the facet capsules did not. Facet joints contributed to axial rotation, but not in lateral bending. The anterior longitudinal ligament was found to slightly resist in axial rotation, but strongly in extension. Nucleotomy caused largest increase of all movements. The unloaded posture of the specimens changed after ligament dissection, indicating ligament pretension. The region of lumbar spine is interesting for finite element (FE) simulation due to the high evidence of disc degeneration and injuries. This study may help to understand the function of specific anatomical structures and assists in FE model calibration. We suggest to start a calibration procedure for such models with the smallest functional structure (annulus) and to cumulatively add further structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号