首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we sought to determine the therapeutic potential of variably sized (50 μm or 500 μm wide, 14 mm tall) parallel microbeam radiation therapy (MRT) alone and in combination with a novel anti-angiogenic peptide, anginex, in mouse mammary carcinomas (4T1)--a moderately hypoxic and radioresistant tumor with propensity to metastasize. The fraction of total tumor volume that was directly irradiated was approximately 25% in each case, but the distance between segments irradiated by the planar microbeams (width of valley dose region) varied by an order of magnitude from 150-1500 μm corresponding to 200 μm and 2000 μm center-to-center inter-microbeam distances, respectively. We found that MRT administered in 50 μm beams at 150 Gy was most effective in delaying tumor growth. Furthermore, tumor growth delay induced by 50 μm beams at 150 Gy was virtually indistinguishable from the 500 μm beams at 150 Gy. Fifty-micrometer beams at the lower peak dose of 75 Gy induced growth delay intermediate between 150 Gy and untreated tumors, while 500 μm beams at 75 Gy were unable to alter tumor growth compared to untreated tumors. However, the addition of anginex treatment increased the relative tumor growth delay after 500 μm beams at 75 Gy most substantially out of the conditions tested. Anginex treatment of animals whose tumors received the 50 μm beams at 150 Gy also led to an improvement in growth delay from that induced by the comparable MRT alone. Immunohistochemical staining for CD31 (endothelial cells) and αSMA (smooth muscle pericyte-associated blood vessels as a measure of vessel normalization) indicated that vessel density was significantly decreased in all irradiated groups and pericyte staining was significantly increased in the irradiated groups on day 14 after irradiation. The addition of anginex treatment further decreased the mean vascular density in all combination treatment groups and further increased the amount of pericyte staining in these tumors. Finally, evidence of tumor hypoxia was found to decrease in tumors analyzed at 1-14 days after MRT in the groups receiving 150 Gy peak dose, but not 75 Gy peak dose. Our results suggest that tumor vascular damage induced by MRT at these potentially clinically acceptable peak entrance doses may provoke vascular normalization and may be exploited to improve tumor control using agents targeting angiogenesis.  相似文献   

2.
Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature, suggesting high shear stress-regulation of angiogenic activity is lacking in many vessels, thereby driving tumor angiogenesis.  相似文献   

3.
We have developed a spatially distributed mathematical model of angiogenic tumor growth in tissue with account of interstitial fluid dynamics and bevacizumab monotherapy. In this model the process of neovascularization is initiated by tumor cells in a state of metabolic stress, vascular endothelial growth factor (VEGF) being its main mediator. The model takes into consideration the convection flows arising in dense tissue due to active proliferation and migration of tumor cells as well as interstitial fluid inflow from blood vascular system, its outflow through lymphatic system and redistribution in the area of tumor growth. The work considers the diffusive approximation of interstitial fluid dynamics in tumor and normal tissue. Numerical study of the model showed that in absence of therapy a peritumoral edema is formed due to the increase of interstitial fluid inflow from angiogenic capillaries. In the case of rapid interstitial fluid outflow through lymphatic system and its fast transport from necrotic zone to normal tissue the regimes of full growth stop are observed in case of low-invasive tumor. Under bevacizumab monotherapy the peritumoral edema vanishes and low-invasive tumor may not only decelerate its growth, but also start shrinking for a large range of parameters.  相似文献   

4.
Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.  相似文献   

5.
Kim J  Kim SW  Kim WJ 《Oligonucleotides》2011,21(2):101-107
Tumor angiogenesis appears to be achieved by the expression of vascular endothelial growth factor (VEGF) within solid tumors that stimulate host vascular endothelial cell mitogenesis and possibly chemotaxis. VEGF's angiogenic actions are mediated through its high-affinity binding to 2 endothelium-specific receptor tyrosine kinase, Flt-1 (VEGFR1), and Flk-1/KDR (VEGFR2). RNA interference-mediated knockdown of protein expression at the messenger RNA level provides a new therapeutic strategy to overcome various diseases. To achieve high efficacy in RNA interference-mediated therapy, it is critical to develop an efficient delivering system to deliver small interference RNA (siRNA) into tissues or cells site-specifically. We previously reported an angiogenic endothelial cell-targeted polymeric gene carrier, PEI-g-PEG-RGD. This targeted carrier was developed by the conjugation of the ανβ3/ανβ5 integrin-binding RGD peptide (ACDCRGDCFC) to the cationic polymer, branched polyethylenimine, with a hydrophilic polyethylene glycol (PEG) spacer. In this study, we used PEI-g-PEG-RGD to deliver siRNA against VEGFR1 into tumor site. The physicochemical properties of PEI-g-PEG-RGD/siRNA complexes was evaluated. Further, tumor growth profile was also investigated after systemic administration of PEI-g-PEG-RGD/siRNA complexes.  相似文献   

6.
An experimental study was conducted to investigate the potential use of intravascular gene therapy with adenovirus-mediated (Ad) vascular endothelial growth factor (VEGF) or angiopoietin-1 (Ang-1) for the enhancement of muscle flap perfusion and to evaluate the effect of therapy on microcirculatory hemodynamics and microvascular permeability in vivo by using a cremaster muscle flap model in the rat. The cremaster tube flap was left intact after isolation of the pudo-epigastric pedicle. A total of 90 male Sprague-Dawley rats were divided into five groups of 18 each, according to the type of intraarterial treatment. Control flaps received phosphate-buffered saline. Group 2 (the control gene encoding green fluorescent protein, Ad-GFP) served as the adenovirus control. In Groups 3, 4, and 5, flaps were pretreated with Ad-VEGF, Ad-Ang-1, and Ad-Ang-1 + Ad-VEGF, respectively. Flaps were preserved in a subcutaneous pocket in the hindlimb for evaluation of functional capillary density and microvascular permeability indices at 3, 7, and 14 days by intravital microscopy system. At day 7 and 14, Ad-VEGF, Ad-Ang-1, and combined treatment groups showed significantly higher numbers of capillary densities when compared with control and Ad-GFP groups (p < 0.05). At day 14, Ad-VEGF was the superior treatment group compared with Ad-Ang-1 and Ad-VEGF + Ad-Ang-1 (p < 0.05). Overall, there was a linear increase in the number of functional capillaries in all treatment groups (p < 0.05). At day 3 after Ad-Ang-1 therapy, a significantly lower permeability index was found when compared with Ad-VEGF + Ad-Ang-1 and Ad-VEGF alone treatment (p < 0.05). At day 7, the Ad-VEGF group had the highest score of permeability index compared with control, combined, and Ad-Ang-1 groups (p < 0.05). Histologic evaluation of muscle flaps demonstrated mild focal inflammation. There was evidence of mild vasculitis in all flaps except control muscles. Intravascular angiogenic therapy with Ad-VEGF or Ad-Ang-1 was technically feasible, as demonstrated by expression of the control gene, GFP, along the vascular tree. All treatment groups increased perfusion of the muscle flap over a period of 14 days, indicating a long-lasting effect of gene therapy. Ang-1 alone or in combination with VEGF was as effective as VEGF alone in augmenting muscle perfusion with more stable vessels 1 week after gene therapy.  相似文献   

7.

Purpose

Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance.

Experimental Design

We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice.

Results

Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth. Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a decrease of microvessel density and a slight increase in tumor vessel size.

Conclusions

We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects has high potential in applications to preclinical and clinical trials.  相似文献   

8.
打制石器是了解古人类认知、技术、行为等信息的重要物质载体之一,如何能够更加方便地观察绘制、测量以及展示石器是旧石器时代考古学中基础的研究内容。目前多视角影像三维重建技术在中国考古界应用越来越广泛,尤其是Agisoft PhotoScan软件的应用。相比其他类型遗物,石器的形制及片疤样式具有独特性,在建模过程难度较大。我们经过反复尝试,总结出了一套基于Agisoft PhotoScan软件,专门针对打制石器且易于掌握的建模方式,并从观察绘图、数字化、展示三个方面探讨了石器三维模型的应用。  相似文献   

9.
10.
Bioreactors allowing direct-perfusion of culture medium through tissue-engineered constructs may overcome diffusion limitations associated with static culturing, and may provide flow-mediated mechanical stimuli. The hydrodynamic stress imposed on cells within scaffolds is directly dependent on scaffold microstructure and on bioreactor configuration. Aim of this study is to investigate optimal shear stress ranges and to quantitatively predict the levels of hydrodynamic shear imposed to cells during the experiments. Bovine articular chondrocytes were seeded on polyestherurethane foams and cultured for 2 weeks in a direct perfusion bioreactor designed to impose 4 different values of shear level at a single flow rate (0.5 ml/min). Computational fluid dynamics (CFD) simulations were carried out on reconstructions of the scaffold obtained from micro-computed tomography images. Biochemistry analyses for DNA and sGAG were performed, along with electron microscopy. The hydrodynamic shear induced on cells within constructs, as estimated by CFD simulations, ranged from 4.6 to 56 mPa. This 12-fold increase in the level of applied shear stress determined a 1.7-fold increase in the mean content in DNA and a 2.9-fold increase in the mean content in sGAG. In contrast, the mean sGAG/DNA ratio showed a tendency to decrease for increasing shear levels. Our results suggest that the optimal condition to favour sGAG synthesis in engineered constructs, at least at the beginning of culture, is direct perfusion at the lowest level of hydrodynamic shear. In conclusion, the presented results represent a first attempt to quantitatively correlate the imposed hydrodynamic shear level and the invoked biosynthetic response in 3D engineered chondrocyte systems.  相似文献   

11.

Objectives

To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique.

Results

Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core–shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1–2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively.

Conclusions

The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell–cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.
  相似文献   

12.
13.
The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computational fluid dynamics. VS inclusion resulted in more spatially homogeneous perfusion. Anisotropic permeability resulted in a larger axial velocity component than isotropic permeability. A parameter study revealed that results are most sensitive to the lobule size and radial pressure drop. Our model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality. The model has potential for applications to unphysiological and pathological conditions.  相似文献   

14.
Landscape indexes are quantitative indicators that reflect the composition and spatial configuration of landscape structures. However, the current two-dimensional (2D) spatial analysis methods lack accuracy in assessing patch characteristics due to the lack of three-dimensional (3D) information. Following the “Patch-Class-Landscape” framework, eight 3D landscape indexes were built to quantitatively describe spatial landscape features and two sensitivity indexes were developed to identify the differences between 2D and 3D structures. Based on two types of oblique photogrammetry data, validation and comparison studies were conducted for Tianheng Island and Sichang Island. The results found the following: (1) At the patch level, the 3D shape index (TPSI) of vegetation was generally higher than that of buildings, with an R2 of 0.634, and the classification index (TCI) showed remarkable performance in identifying patch type. The patch type was likely to be building or vegetation when TCI approached 33, respectively, with a classification accuracy of 90% after verification. (2) At the class level, the 3D percentage of landscape (TPLAND) of grassland and arbor types on the two islands were quite different, reflecting significant differences in the dimensionality of the vegetation landscapes, as influenced by different climatic zones. Moreover, the 3D landscape shape index (TLSI) and other shape-related indexes had higher exponential sensitivity coefficient (ESC) values, due to the higher amount of 3D shape information they carry. (3) At the landscape level, the two 3D Shannon indexes (TSHDI and TSHEI) did not significantly change compared with their 2D counterparts, implying that these two indexes, as larger-scale landscape indicators, had lower sensitivity when extra-dimensional information was added. Overall, the 3D landscape indexes can better present 3D information at different landscape levels. As a potential and effective assessment tool and it will be applied to improve existing spatial planning and landscape management.  相似文献   

15.
16.
17.
18.
The bootstrap-based method for calculation of the 3D variance in cryo-EM maps reconstructed from sets of their projections was applied to a dataset of functional ribosomal complexes containing the Escherichia coli 70S ribosome, tRNAs, and elongation factor G (EF-G). The variance map revealed regions of high variability in the intersubunit space of the ribosome: in the locations of tRNAs, in the putative location of EF-G, and in the vicinity of the L1 protein. This result indicated heterogeneity of the dataset. A method of focused classification was put forward in order to sort out the projection data into approximately homogenous subsets. The method is based on the identification and localization of a region of high variance that a subsequent classification step can be focused on by the use of a 3D spherical mask. After initial classification, template volumes are created and are subsequently refined using a multireference 3D projection alignment procedure. In the application to the ribosome dataset, the two resulting structures were interpreted as resulting from ribosomal complexes with bound EF-G and an empty A site, or, alternatively, from complexes that had no EF-G bound but had both A and P sites occupied by tRNA. The proposed method of focused classification proved to be a successful tool in the analysis of the heterogeneous cryo-EM dataset. The associated calculation of the correlations within the density map confirmed the conformational variability of the complex, which could be interpreted in terms of the ribosomal elongation cycle.  相似文献   

19.
20.
ObjectivesComputational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies.Materials and MethodsA three‐dimensional multiscale cell‐based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes. The model generates a realistic representation of the processes involved from an implementation of the signaling transduction network.ResultsConsidering a benign tumor development, results are in good agreement with the experimental ones, which identify three different phases in tumor growth. Simulating tumor vascular growth, results predict a highly vascularized tumor morphology in a lobulated form, a consequence of cells'' motile behavior. A novel systematic study of chemotherapy intervention, in combination with targeted therapy, is presented to address the capability of the model to evaluate typical clinical protocols. The model also performs a dose comparison study in order to optimize treatment efficacy and surveys the effect of chemotherapy initiation delays and different regimens.ConclusionsResults not only provide detailed insights into tumor progression, but also support suggestions for clinical implementation. This is a major step toward the goal of predicting the effects of not only traditional chemotherapy but also tumor‐targeted therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号