首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this work was to develop and characterize an aortopulmonary shunt model of chronic pulmonary hypertension in swine and provide sequential hemodynamic, angiographic, and histologic data by using an experimental endoarterial biopsy catheter. Nine Yucatan female microswine (Sus scrofa domestica) underwent surgical anastomosis of the left pulmonary artery to the descending aorta. Sequential hemodynamic, angiographic, and pulmonary vascular samples were obtained. Six pigs (mean weight, 22.4±5.3 kg; mean age, 7.3±2.7 mo at surgery) survived long-term (6 mo) and consistently developed marked pulmonary arterial hypertension. Angiography showed characteristic central pulmonary arterial enlargement and peripheral tortuosity and pruning. The biopsy catheter was safe and effective in obtaining pulmonary endoarterial samples for histologic studies, which showed neointimal and medial changes. Autopsy confirmed severe pulmonary vascular changes, including concentric obstructive neointimal and plexiform-like lesions. This swine model showed hemodynamic, angiographic, and histologic characteristics of chronic pulmonary arterial hypertension that mimicked the arterial pulmonary hypertension of systemic-to-pulmonary arterial shunts in humans. Experimental data obtained using this and other models and application of an in vivo endoarterial biopsy technique may aid in understanding mechanisms and developing therapies for experimental and human pulmonary arterial hypertension.  相似文献   

2.
The bovine pulmonary vascular response to alpha- and beta-agonists was studied using an awake intact calf model. Pulmonary arterial pressure, pulmonary arterial wedge pressure, left atrial pressure, systemic arterial pressure, and cardiac output were measured in response to 3 min infusions of isoproterenol (beta-agonist; 0.12, 0.24, 0.48, 0.9, and 1.8 micrograms X kg-1 X min-1) and phenylephrine (alpha-agonist, 0.15, 0.30, 0.60, 1.15, and 2.30 micrograms X kg-1 X min-1). Phenylephrine caused an increase in vascular resistance in the pulmonary arterial and venous compartments. The slope of the resistance in response to phenylephrine was greater in the pulmonary arterial than pulmonary venous circulation. Isoproterenol resulted in a dose-dependent decrease in vascular resistance in the pulmonary arteries and veins. The vascular resistance was decreased to the same level in the pulmonary arteries and veins although the arteries showed a greater percent change. In addition, isoproterenol infusion resulted in a transient decrease in arterial pH and increase in values for packed cell volume and haemoglobin.  相似文献   

3.
Acute lung injury is usually a complication of sepsis, and endotoxin treatment of mice is a frequently used experimental model. To define this model and to clarify pathogenesis of the lung injury, we injected with 1 mg/kg endotoxin ip and measured pulmonary function, pulmonary edema, serum concentrations of cytokines and growth factors, and lung histology over 48 h. During the first 6 h, tidal volume and minute volume increased and respiratory frequency decreased. Serum concentrations of cytokines showed three patterns: 10 cytokines peaked at 2 h and declined rapidly, two peaked at 6 h and declined, and two had biphasic peaks at 2 and 24 h. Growth factors increased later and remained elevated longer. Both collagen and fibronectin were deposited in the lungs beginning within hours of endotoxin and resolving over 48 h. Histologically, lungs showed increased cellularity at 6 h with minimal persistent inflammation at 48 h. Lung water peaked at 6 h and gradually decreased over 48 h. We conclude that intraperitoneal administration of endotoxin to mice causes a transient systemic inflammatory response and transient lung injury and dysfunction. The response is characterized by successive waves of cytokine release into the circulation, early evidence of lung fibrogenesis, and prolonged increases in growth factors that may participate in lung repair.  相似文献   

4.
Effective vascular compliance was measured repeatedly in dogs without circulatory arrest utilizing a closed-circuit venous bypass system and constant cardiac output. Compliance, determined by the delta V/delta P relationship at the end of a 1-min infusion of 5% of the circulating volume into the inferior vena cava, was independent of the initial venous pressure, total circulating volume and systemic arterial pressure. It remained constant over a 3 h experimental period at 1.55 plus or minus 0.05 ml (mm Hg)-1-kb-1 body weight. Elevation of mean left atrial pressure and mean pulmonary arterial pressure by gradual aortic constriction was associated with a large and significant reduction in vascular compliance to a value of 1.14 plus or minus 0.06 ml (mm Hg)-1-kg-1 after 2 h. This reduction was independent of the initial venous pressure and total circulating volume but was associated with the changes in left atrial and pulmonary artery pressures and an increase in plasma catecholamine concentrations. The mechanism responsible for the reduction in effective compliance is not clear from the present experiments. Increased circulating catecholamines and sympathetic nerve traffic resulting from baro- and volume receptor stimulation in the vascular tree may be the causative mechanism.  相似文献   

5.
Leukotriene E4 (LTE4) appears to be a rather stable product of the lipoxygenase pathway. Its action in the pulmonary circulation is unknown. Therefore we investigated its effect on the circulation of isolated rat lungs perfused with a cell- and plasma-free solution. Synthetic LTE4 in doses from .15 micrograms to 5 micrograms/.25 ml .9% NaCl injected as a bolus in the pulmonary artery during normoxia caused a fast, transient perfusion pressure increase within seconds. This was followed by a slow rise in baseline perfusion pressure (normoxia) over 25 min. In addition, 5 micrograms LTE4 caused edematogenic lung damage. Injection of 1.5 micrograms LTE4 during hypoxic vasoconstriction caused fast, transient pressure rises, similar to normoxic conditions. 6-keto-PGF1 alpha and TXB2 were measured in the lung effluent before and after LTE4 injection. Neither 6-keto-PGF1 alpha nor TXB2 production changed after LTE4 injection. Meclofenamate (.5 micrograms/ml) increased the fast, transient and the slow, sustained pressure rise. We conclude that LTE4 caused direct pulmonary vasoconstriction unrelated to cyclooxygenase products.  相似文献   

6.
Leukotriene E4 (LTE4) appears to be a rather stable product of the lipoxygenase pathway. Its action in the pulmonary circulation is unknown. Therefore we investigated its effect on the circulation of isolated rat lungs perfused with a cell- and plasma-free solution. Synthetic LTE4 in doses from .15 μg to 5μg/ .25 ml .9% NaCl injected as a bolus in the pulmonary artery during normoxia caused a fast, transient perfusion pressure increase within seconds. This was followed by a slow rise in baseline perfusion pressure (normoxia) over 25 min. In addition, 5 μm LTE4 caused edematogenic lung damage. Injection of 1.5 μg LTE4 during hypoxic vasoconstriction caused fast, transient pressure rises, similar to normoxic conditions. 6-keto-PGF and TXB2 were measured in the lung effluent before and after LTE4 injection. Neither 6-keto-PGF nor TXB2 production changed after LTE4 injection. Meclofenamate (.5 μg/ml) increased the fast, transient and the slow, sustained pressure rise. We conclude that LTE4 caused direct pulmonary vasoconstriction unrelated to cycloxygenase products.  相似文献   

7.
Pulmonary hypertension (PH) is associated with aberrant vascular remodeling and right ventricular (RV) dysfunction that contribute to early mortality. Large animal models that recapitulate human PH are essential for mechanistic studies and evaluating novel therapies; however, these models are not readily accessible to the field owing to the need for advanced surgical techniques or hypoxia. In this study, we present a novel swine model that develops cardiopulmonary hemodynamics and structural changes characteristic of chronic PH. This percutaneous model was created in swine (n=6) by combining distal embolization of dextran beads with selective coiling of the lobar pulmonary arteries (2 procedures per lung over 4 weeks). As controls, findings from this model were compared with those from a standard weekly distal embolization model (n=6) and sham animals (n=4). Survival with the combined embolization model was 100%. At 8 weeks after the index procedure, combined embolization procedure animals had increased mean pulmonary artery pressure (mPA) and pulmonary vascular resistance (PVR) compared to the controls with no effect on left heart or systemic pressures. RV remodeling and RV dysfunction were also present with a decrease in the RV ejection fraction, increase in the myocardial performance index, impaired longitudinal function, as well as cardiomyocyte hypertrophy, and interstitial fibrosis, which were not present in the controls. Pulmonary vascular remodeling occurred in both embolization models, although only the combination embolization model had a decrease in pulmonary capacitance. Taken together, these cardiopulmonary hemodynamic and structural findings identify the novel combination embolization swine model as a valuable tool for future studies of chronic PH.  相似文献   

8.
To determine the reason for increased pulmonary distensibility in excised lungs, we performed deflation pressure-volume (PV) studies in 24 dogs. Exponential analysis of PV data gave K, an index of distensibility. Lung volume was measured by dilution of neon. Compared with measurements obtained in the supine position, with the chest closed, and with esophageal pressure (Pes) to obtain transpulmonary pressure, K was not changed significantly with the chest strapped, with pleural pressure to obtain transpulmonary pressure, or with the chest open. From displacement of PV curves obtained in the supine position and with the chest closed or open, we estimated that Pes was 0.18 kPa greater than average lung surface pressure. An increase in K in the prone and head-up positions was attributed to a traction artifact decreasing Pes. Exsanguination increased K and produced a relative increase in gas volume. These results show that overall pulmonary distensibility is unaffected by an intact chest wall. An increase in K and gas volume after exsanguination probably reflects a decreased pulmonary blood volume, with collapse of capillaries increasing the alveolar volume-to-surface ratio.  相似文献   

9.
A mathematical model of body fluid volume and osmolality regulation was developed which incorporated the major nonlinearities of fluid assimilation, exchange, distribution and excretion. The non-linear differential equations define compartmental material balances for water, urea, sodium, protein and antidiuretic hormone (ADH). The parameters of these equations were calculated using analytical solutions and available steady-state experimental data. The model was used to simulate the renal response to five input forcings: (1) intraesophageal water infusion; (2) water ingestion; (3) intravenous ADH injection; (4) intravenous water infusion; and (5) intermittent water loading. The model yielded continuous simulation curves which agreed reasonably well with the available transient and steady-state experimental data. The model predicted that stimulating volume receptors via changes in left atrial pressure accounts for only 15–20% of changes in ADH secretion rate, whereas stimulation of the osmotic receptors via changes in plasma osmolality accounts for the remaining 80–85% of changes. Thus, it appears that regulation of ADH secretion is largely dependent upon plasma osmolality during forcings which do not appreciably alter the cardiovascular blood volume.  相似文献   

10.
The design of the study was to determine whether an increased blood flow as seen in shunt lesions could serve as a stimulus for the secretion of atrial natriuretic factor (ANF). Since atrial pressure, flow, and dilatation are closely related, an experimental ductus arteriosus model was utilized, in which acute changes of flow are assumed not to dilate the left atrium. In six dogs, a Dacron graft was constructed between the main pulmonary artery and the innominate artery. Constricting and releasing the tape around the graft adjusted the amount of "ductal" shunting. The total pulmonary flow and the shunt flow were measured by electromagnetic-flow transducers around the aortic root and around the graft. Plasma ANF concentration was measured from both cardiac atria. The size of the left atrium was determined from echocardiographic measurements made from a short-axis view. The total pulmonary flow varied between 1.2 and 5.8 1/min. The highest measured ANF was 396 pg/ml, and this was from the left atrium when the pressure was 18 mmHg, the highest left atrial pressure recorded. The highest right atrial pressure (5 mmHg) also correlated with the highest right-atrial level of ANF (366 pg/ml). The right atrial pressure had a significant correlation with plasma ANF concentration (R = 0.43, p less than 0.05). Pulmonary flow and plasma ANF concentration did not correlate; neither did left atrial size and ANF levels in 16 flow states where the size was measured. In the absence of atrial dilatation there was minimal stimulus for ANF secretion. A transient increase of left atrial pressure, without a concomitant significant atrial dilatation, did not serve as a significant stimulus for ANF secretion.  相似文献   

11.
This study was conducted to determine the effects of chronic combined pulmonary stenosis and pulmonary insufficiency (PSPI) on right (RV) and left ventricular (LV) function in young, growing swine. Six pigs with combined PSPI were studied, and data were compared with previously published data of animals with isolated pulmonary insufficiency and controls. Indexes of systolic function (stroke volume, ejection fraction, and cardiac functional reserve), myocardial contractility (slope of the end-systolic pressure-volume and change in pressure over time-end-diastolic volume relationship), and diastolic compliance were assessed within 2 days of intervention and 3 mo later. Magnetic resonance imaging was used to quantify pulmonary insufficiency and ventricular volumes. The conductance catheter was used to obtain indexes of the cardiac functional reserve, diastolic compliance, and myocardial contractility from pressure-volume relations acquired at rest and under dobutamine infusion. In the PSPI group, the pulmonary regurgitant fraction was 34.3 +/- 5.8%, the pressure gradient across the site of pulmonary stenosis was 20.9 +/- 20 mmHg, and the average RV peak systolic pressure was 70% systemic at 12 wk follow-up. Biventricular resting cardiac outputs and cardiac functional reserves were significantly limited (P < 0.05), LV diastolic compliance significantly decreased (P < 0.05), but RV myocardial contractility significantly enhanced (P < 0.05) compared with control animals at 3-mo follow-up. In the young, developing heart, chronic combined PSPI impairs biventricular systolic pump function and diastolic compliance but preserves RV myocardial contractility.  相似文献   

12.
13.
Fumonisin B1 (FB1), a recently identified mycotoxin produced by Fusarium moniliforme in corn, has been shown to cause death in swine due to pulmonary edema, an apparently species specific effect, and to interfere with sphingolipid metabolism in vitro. Here we characterize the toxicity of fumonisins, using female cross-bred swine weighing 6 to 13 kg, and present a hypothesis regarding the mechanism of fumonisin-induced pulmonary edema in swine. FB1 was given daily intravenously (IV) to pig 1 for 9 days for a total of 72 mg (7.9 mg/kg) and to pig 2 for 4 days for a total of 67 mg (4.6 mg/kg). Pig 3 (control) was given saline IV for 9 days. Corn screenings naturally contaminated with FB1 (166 ppm) and FB2 (48 ppm) were fed to pigs 4, 5, and 6, and ground corn was fed to pigs 7 and 8 (controls). Pigs 4 and 7 were killed on day 5; pig 5 was found dead on day 6; and pigs 6 and 8 were killed on day 15. Pigs 4 and 5 had ingested 187 and 176 mg total fumonisins, respectively, while pig 6 had ingested 645 mg. Feed consumption had decreased in pigs fed corn screenings, with an additional sharp decrease prior to onset of clinical signs. Increases in serum liver enzymes, total bilirubin, and cholesterol were present, but electrocardiograms, heart rate, and body temperature were unaffected. Pigs dosed IV with FB1, developed mild intermittent respiratory abnormalities, while those fed screenings developed respiratory distress within 5 days. Mild interstitial pulmonary edema was observed in pig 1. Severe interstitial pulmonary edema, pleural effusion, and increased lung wet/dry weight ratio were observed in pigs 4 and 5. All pigs given fumonisin (either IV or orally) had hepatic changes characterized by hepatocyte disorganization and necrosis; pancreatic acinar cell degeneration was also observed. Ultrastructural changes in orally dosed swine included loss of sinusoidal hepatocyte microvilli; membranous material in hepatic sinusoids; and multilamellar bodies in hepatocytes, Kupffer cells, pancreatic acinar cells and pulmonary macrophages. Pulmonary intravascular macrophages (PIMs) contained large amounts of membranous material. Thus, the target organs of fumonisin in the pig are the lung, liver, and pancreas. At lower doses, slowly progressive hepatic disease is the most prominent feature, while at higher doses, acute pulmonary edema is superimposed on hepatic injury and may cause death. We hypothesize that altered sphingolipid metabolism causes hepatocellular damage resulting in release of membranous material into the circulation. This material is phagocytosed by the PIMs thus triggering the release of mediators which ultimately results in pulmonary edema.Presented in part at the 1991 Annual Meeting of the Society of Toxicology. The Toxicologist 11: 143 (A499).  相似文献   

14.
Despite numerous efforts, a reliable model of chronic embolic pulmonary hypertension has not been established. To develop such a model five conscious mongrel dogs were embolized repeatedly over 16-30 wk with Sephadex microspheres 286 +/- 70 micron in diameter. Hemodynamic and respiratory measurements were obtained just prior to each embolization. Chronic pulmonary hypertension developed in all dogs. Pulmonary hypertension was not accounted for by increased cardiac output, wedge pressure, right atrial pressure, or systemic arterial pressure. Gas exchange was little altered. Lung histological study revealed microspheres clustered within vessels. In three dogs increased pulmonary arterial pressure was sustained despite cessation of embolization for up to 5 mo. Reembolization in one of these caused further pulmonary hypertension. In two dogs acute pulmonary vasodilation by O2 breathing and administration of prostaglandin E1 reduced, but did not abolish, the increased pulmonary vascular resistance, suggesting some vascular tone was present. An embolic model of chronic pulmonary hypertension in awake dogs allows further investigation into the evolution of pulmonary hypertension.  相似文献   

15.
An experimental protocol to evaluate the structured biomass model proposed by Lavallée (Lavallée, Lessard, and Vanrolleghem, J Environ Eng Sci 2005;4:517-532) is presented. The protocol was devised to induce transient behavior and characterize the evolution of several internal biomass components. The proposed model is based on biochemical principles, and was fitted to the collected data. In these experiments, it was observed that filling the storage capacity of cells leads to special transient behavior, including a temporarily reduced metabolic activity. The model-based interpretation of the results showed that the observed transient behavior can be explained by cross-regulation of carbon and nitrogen metabolism. Hence, according to an extensive literature review, the cross-regulation of carbon and nitrogen can be used to model some observed transient behaviors and regulation of the storage process in activated sludge.  相似文献   

16.
The accuracy and clinical utility of preload indexes as bedside indicators of fluid responsiveness in patients after cardiac surgery is controversial. This study evaluates whether respiratory changes (Delta) in the preejection period (PEP; DeltaPEP) predict fluid responsiveness in mechanically ventilated patients. Sixteen postcoronary artery bypass surgery patients, deeply sedated under mechanical ventilation, were enrolled. PEP was defined as the time interval between the beginning of the Q wave on the electrocardiogram and the upstroke of the radial arterial pressure. DeltaPEP (%) was defined as the difference between expiratory and inspiratory PEP measured over one respiratory cycle. We also measured cardiac output, stroke volume index, right atrial pressure, pulmonary arterial occlusion pressure, respiratory change in pulse pressure, systolic pressure variation, and the Deltadown component of SPV. Data were measured without positive end-expiratory pressure (PEEP) and after application of a PEEP of 10 cmH2O (PEEP10). When PEEP10 induced a decrease of >15% in mean arterial pressure value, then measurements were re-performed before and after volume expansion. Volume loading was done in eight patients. Right atrial pressure and pulmonary arterial occlusion pressure before volume expansion did not correlate with the change in stroke volume index after the fluid challenge. Systolic pressure variation, DeltaPEP, Deltadown, and change in pulse pressure before volume expansion correlated with stroke volume index change after fluid challenge (r2 = 0.52, 0.57, 0.68, and 0.83, respectively). In deeply sedated, mechanically ventilated patients after cardiac surgery, DeltaPEP, a new method, can be used to predict fluid responsiveness and hemodynamic response to PEEP10.  相似文献   

17.
The purpose of this study was to introduce and validate a new algorithm to estimate instantaneous aortic blood flow (ABF) by mathematical analysis of arterial blood pressure (ABP) waveforms. The algorithm is based on an autoregressive with exogenous input (ARX) model. We applied this algorithm to diastolic ABP waveforms to estimate the autoregressive model coefficients by requiring the estimated diastolic flow to be zero. The algorithm incorporating the coefficients was then applied to the entire ABP signal to estimate ABF. The algorithm was applied to six Yorkshire swine data sets over a wide range of physiological conditions for validation. Quantitative measures of waveform shape (standard deviation, skewness, and kurtosis), as well as stroke volume and cardiac output from the estimated ABF, were computed. Values of these measures were compared with those obtained from ABF waveforms recorded using a Transonic aortic flow probe placed around the aortic root. The estimation errors were compared with those obtained using a windkessel model. The ARX model algorithm achieved significantly lower errors in the waveform measures, stroke volume, and cardiac output than those obtained using the windkessel model (P < 0.05).  相似文献   

18.
Cardiac-related deflections in thoracic electrical impedance have been thought to correlate sufficiently well with cardiac stroke volume to be used as the basis for a noninvasive estimation of cardiac output. To determine more precisely the physiological origin of the impedance deflection (DZ), we regarded right ventricular stroke volume (SVa) as the sum of two components: 1) that part of SVa responsible for the transient increment in pulmonary blood volume within a cardiac cycle, SVa-v and 2) the remaining part of SVa, (SVa-SVa-v). SVa-v was measured in lambs by integration of the difference between pulmonary arterial and pulmonary venous flow. SVa and its components were varied experimentally by opening and closing an aorticocaval shunt or by inflating and deflating a cuff implanted around the pulmonary artery. DZ was measured using a tetrapolar disk electrode system. Multivariate linear regression analysis revealed that SVa-v had a significant positive effect on DZ, and, at the same time, (SVa-SVa-v) had a significant negative effect on DZ. In the pulmonary artery occluder model, the positive effect of SVa-v dominated the opposing negative effect of (SVa - SVa-v) so that the net effect of SVa on DZ was positive and significant. In the aorticocaval shunt model, these effects opposed each other to the extent that there was no significant correlation between SVa and DZ. These results shed new light on the physiological origin of DZ. They also demonstrate that use of DZ to measure acute changes in cardiac output may yield misleading results. Changes or the lack of changes in thoracic electrical impedance do not necessarily reflect cardiac output status.  相似文献   

19.
Models of steady-state fluid and solute transport in the microcirculation are used primarily to characterize filtration and permeability properties of the transport barrier. Important transient relationships, such as the rate of fluid accumulation in the tissue, cannot be predicted with steady-state models. In this paper we present three simple models of unsteady-state fluid and protein exchange between blood plasma and interstitial fluid. The first treats the interstitium as a homogeneous well-mixed compliant compartment, the second includes an interstitial gel, and the third allows for both gel and free fluid in the interstitium. Because we are primarily interested in lung transvascular exchange we used the multiple-pore model and pore sizes described by Harris and Roselli (J. Appl. Physiol.: Respirat . Environ. Exercise Physiol. 50: 1-14, 1981) to characterize the microvascular barrier. However, the unsteady-state transport theory presented here should apply to other organ systems and can be used with different conceptual models of the blood-lymph barrier. For a step increase in microvascular pressure we found good agreement between theoretical and experimental lymph flow and lymph concentrations in the sheep lung when the following parameter ranges were used: base-line interstitial volume, 150-190 ml; interstitial compliance, 7-10 ml/Torr; initial interstitial fluid pressure, -1 Torr; pressure in initial lymphatics, -5 to -6 Torr; and conductivity of the interstitium and lymphatic barrier, 4.25 X 10(-4) ml X s-1 X Torr-1. Based on these values the model predicts 50% of the total change in interstitial water volume occurs in the first 45 min after a step change in microvascular pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated whether prostacyclin formation by the isolated rabbit lung can serve as a measure of pulmonary distress. The basal TXA2 and PGI2 formation was very low, and depended on the preperfusion history of the lung (low or high flow, use of dextran or artificial perfusate). The basal prostanoid production remained unchanged over a time period of 2 h. Neither was it influenced by the serotonin uptake inhibitor chlorimipramine and by small changes in temperature (33 degrees C vs 39 degrees C). The PGI2 formation was almost independent of hemodynamic alterations such as embolism or vasoconstriction. An enhanced production was only seen after a dramatic increase in flow (from 1.7-5 ml/sec), and a transient 3-fold increase was observed after administration of 1 mM H2O2. A substantial (up to 40-fold) but transient increase in TXA2 production was measured after 1 mM of H2O2, and the TXA2 production was positively correlated to the increase in pulmonary arterial pressure. However, thromboxane production was also dramatically augmented by hemodynamic alterations such as embolism, increased flow and--to a lesser extent--vasoconstriction. We conclude that the determination of the prostanoid production (and particularly the TXA2 formation) by the rabbit lung cannot be used as a direct measure of endothelial distress. To this end it is excessively biased by hemodynamic alterations such as recruitment and shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号