首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other mechanism involves the passage of a small messenger through gap junctions to the cytoplasm of the neighboring cells, inducing depolarization of the plasma membrane with subsequent opening of membrane bound voltage-operated calcium channels. Next, we found that osteoblasts can propagate these signals to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts in response to mechanical stimulation. Thus, intercellular calcium signaling can be a mechanism by which mechanical stimuli on bone are translated into biological signals in bone cells, and propagated through the network of cells in bone. Further, the observations offer new pharmacological targets for the modulation of bone turnover, and perhaps even for the treatment of bone metabolic disorders.  相似文献   

2.
The interaction between chondrocytes and their surrounding extracellular matrix plays an important role in regulating cartilage metabolism in response to environmental cues. This study characterized the role of cell adhesion on the calcium signaling response of chondrocytes to fluid flow. Bovine chondrocytes were suspended in alginate hydrogels functionalized with RGD at concentrations of 0–400 μM. The hydrogels were perfused and the calcium signaling response of the cells was measured over a range of fluid velocities from 0 to 68 μm/s. Attachment to RGD-alginate doubled the sensitivity of chondrocytes to flows in the range of 8–13 μm/s, but at higher fluid velocities, the contribution of cell adhesion to the observed calcium signaling response was no longer apparent. The enhanced sensitivity to flow was dependent on the density of RGD-ligand present in the scaffolds. The RGD-enhanced sensitivity to flow was completely inhibited by the addition of soluble RGD which acted as a competitive inhibitor. The results of this study indicate a role for matrix adhesion in regulating chondrocyte response to fluid flow through a calcium dependent mechanism.  相似文献   

3.
Ca2+ has been recognized as a key molecule for chondrocytes, however, the role and mechanism of spontaneous [Ca 2+] i signaling in cartilaginous extracellular matrix (ECM) metabolism regulation are unclear. Here we found that spontaneous Ca 2+ signal of in-situ porcine chondrocytes was [Ca 2+] o dependent, and mediated by [Ca 2+] i store release. T-type voltage-dependent calcium channel (T-VDCC) mediated [Ca 2+] o influx was associated with decreased cell viability and expression levels of ECM deposition genes. Further analysis revealed that chondrocytes expressed both inositol 1,4,5-trisphosphate receptor (InsP3R) and Orai isoforms. Inhibition of endoplasmic reticulum (ER) Ca 2+ release and store-operated calcium entry significantly abolished spontaneous [Ca 2+] i signaling of in-situ chondrocytes. Moreover, blocking ER Ca 2+ release with InsP3R inhibitors significantly upregulated ECM degradation enzymes production, and was accompanied by decreased proteoglycan and collagen type II intensity. Taken together, our data provided evidence that spontaneous [Ca 2+] i signaling of in-situ porcine chondrocytes was tightly regulated by [Ca 2+] o influx, InsP3Rs mediated [Ca 2+] i store release, and Orais mediated calcium release-activated calcium channels activation. Both T-VDCC mediated [Ca 2+] o influx and InsP3Rs mediated ER Ca 2+ release were found crucial to cartilaginous ECM metabolism through distinct regulatory mechanisms.  相似文献   

4.
Current theories suggest that bone modeling and remodeling are controlled at the cellular level through signals mediated by osteocytes. However, the specific signals to which bone cells respond are still unknown. Two primary theories are: (1) osteocytes are stimulated via the mechanical deformation of the perilacunar bone matrix and (2) osteocytes are stimulated via fluid flow generated shear stresses acting on osteocyte cell processes within canaliculi. Recently, much focus has been placed on fluid flow theories since in vitro experiments have shown that bone cells are more responsive to analytically estimated levels of fluid shear stress than to direct mechanical stretching using macroscopic strain levels measured on bone in vivo. However, due to the complex microstructural organization of bone, local perilacunar bone tissue strains potentially acting on osteocytes cannot be reliably estimated from macroscopic bone strain measurements. Thus, the objective of this study was to quantify local perilacunar bone matrix strains due to macroscopically applied bone strains similar in magnitude to those that occur in vivo. Using a digital image correlation strain measurement technique, experimentally measured bone matrix strains around osteocyte lacunae resulting from macroscopic strains of approximately 2000 microstrain are significantly greater than macroscopic strain on average and can reach peak levels of over 30,000 microstrain locally. Average strain concentration factors ranged from 1.1 to 3.8, which is consistent with analytical and numerical estimates. This information should lead to a better understanding of how bone cells are affected by whole bone functional loading.  相似文献   

5.
6.
Quantitative relationships between inputs and outputs of signaling systems are fundamental information for the understanding of the mechanism of signal transduction. Here we report the correlation between the number of epidermal growth factor (EGF) bindings and the response probability of intracellular calcium elevation. Binding of EGF molecules and changes of intracellular calcium concentration were measured for identical HeLa human epithelial cells. It was found that 300 molecules of EGF were enough to induce calcium response in half of the cells. This number is quite small compared to the number of EGF receptors (EGFR) expressed on the cell surface (50,000). There was a sigmoidal correlation between the response probability and the number of EGF bindings, meaning an ultrasensitive reaction. Analysis of the cluster size distribution of EGF demonstrated that dimerization of EGFR contributes to this switch-like ultrasensitive response. Single-molecule analysis revealed that EGF bound faster to clusters of EGFR than to monomers. This property should be important for effective formation of signaling dimers of EGFR under very small numbers of EGF bindings and suggests that the expression of excess amounts of EGFR on the cell surface is required to prepare predimers of EGFR with a large association rate constant to EGF.  相似文献   

7.
ER-to-Golgi transport is the first step in the constitutive secretory pathway, which, unlike regulated secretion, is believed to proceed nonstop independent of Ca2+ flux. However, here we demonstrate that penta-EF hand (PEF) proteins ALG-2 and peflin constitute a hetero-bifunctional COPII regulator that responds to Ca2+ signaling by adopting one of several distinct activity states. Functionally, these states can adjust the rate of ER export of COPII-sorted cargos up or down by ∼50%. We found that at steady-state Ca2+, ALG-2/peflin hetero-complexes bind to ER exit sites (ERES) through the ALG-2 subunit to confer a low, buffered secretion rate, while peflin-lacking ALG-2 complexes markedly stimulate secretion. Upon Ca2+ signaling, ALG-2 complexes lacking peflin can either increase or decrease the secretion rate depending on signaling intensity and duration—phenomena that could contribute to cellular growth and intercellular communication following secretory increases or protection from excitotoxicity and infection following decreases. In epithelial normal rat kidney (NRK) cells, the Ca2+-mobilizing agonist ATP causes ALG-2 to depress ER export, while in neuroendocrine PC12 cells, Ca2+ mobilization by ATP results in ALG-2-dependent enhancement of secretion. Furthermore, distinct Ca2+ signaling patterns in NRK cells produce opposing ALG-2-dependent effects on secretion. Mechanistically, ALG-2-dependent depression of secretion involves decreased levels of the COPII outer shell and increased peflin targeting to ERES, while ALG-2-dependent enhancement of secretion involves increased COPII outer shell and decreased peflin at ERES. These data provide insights into how PEF protein dynamics affect secretion of important physiological cargoes such as collagen I and significantly impact ER stress.  相似文献   

8.
The Ca2+-sensing receptor(the Ca SR),a G-protein-coupled receptor,regulates Ca2+ homeostasis in the body by monitoring extracellular levels of Ca2+([Ca2+]o) and responding to a diverse array of stimuli.Mutations in the Ca2+-sensing receptor result in hypercalcemic or hypocalcemic disorders,such as familial hypocalciuric hypercalcemia,neonatal severe primary hyperparathyroidism,and autosomal dominant hypocalcemic hypercalciuria.Compelling evidence suggests that the Ca SR plays multiple roles extending well beyond not only regulating the level of extracellular Ca2+ in the human body,but also controlling a diverse range of biological processes.In this review,we focus on the structural biology of the Ca SR,the ligand interaction sites as well as their relevance to the disease associated mutations.This systematic summary will provide a comprehensive exploration of how the Ca SR integrates extracellular Ca2+ into intracellular Ca2+ signaling.  相似文献   

9.
The aquaporin (AQP)2 channel mediates the reabsorption of water in renal collecting ducts in response to arginine vasopressin (AVP) and hypertonicity. Here we show that AQP2 expression is induced not only by the tonicity-responsive enhancer binding protein (TonEBP)/nuclear factor of activated T cells (NFAT)5-mediated hypertonic stress response but also by the calcium-dependent calcineurin-NFATc pathway. The induction of AQP2 expression by the calcineurin-NFATc pathway can occur in the absence of TonEBP/NFAT5. Mutational and chromatin immunoprecipitation analyses revealed the existence of functional NFAT binding sites within the proximal AQP2 promoter responsible for regulation of AQP2 by NFATc proteins and TonEBP/NFAT5. Contrary to the notion that TonEBP/NFAT5 is the only Rel/NFAT family member regulated by tonicity, we found that hypertonicity promotes the nuclear translocation of NFATc proteins for the subsequent induction of AQP2 expression. Calcineurin activity was also found to be involved in the induction of TonEBP/NFAT5 expression by hypertonicity, thus further defining the signaling mechanisms that underlie the TonEBP/NFAT5 osmotic stress response pathway. The coordinate regulation of AQP2 expression by both osmotic stress and calcium signaling appears to provide a means to integrate diverse extracellular signals into optimal cellular responses. aquaporin; nuclear factor of activated T cells; tonicity-responsive enhancer binding protein; osmotic response  相似文献   

10.

Background

Sleep is a physiological event that directly influences health by affecting the immune system, in which calcium (Ca2 +) plays a critical signaling role. We performed live cell measurements of cytosolic Ca2 + mobilization to understand the changes in Ca2 + signaling that occur in splenic immune cells after various periods of sleep deprivation (SD).

Methods

Adult male mice were subjected to sleep deprivation by platform technique for different periods (from 12 to 72 h) and Ca2 + intracellular fluctuations were evaluated in splenocytes by confocal microscopy. We also performed spleen cell evaluation by flow cytometry and analyzed intracellular Ca2 + mobilization in endoplasmic reticulum and mitochondria. Additionally, Ca2 + channel gene expression was evaluated

Results

Splenocytes showed a progressive loss of intracellular Ca2 + maintenance from endoplasmic reticulum (ER) stores. Transient Ca2 + buffering by the mitochondria was further compromised. These findings were confirmed by changes in mitochondrial integrity and in the performance of the store operated calcium entry (SOCE) and stromal interaction molecule 1 (STIM1) Ca2 + channels.

Conclusions and general significance

These novel data suggest that SD impairs Ca2 + signaling, most likely as a result of ER stress, leading to an insufficient Ca2 + supply for signaling events. Our results support the previously described immunosuppressive effects of sleep loss and provide additional information on the cellular and molecular mechanisms involved in sleep function.  相似文献   

11.
Femur-derived osteoblasts cultured from rat femora were loaded with Fluo-3 using the AM ester. A quantifiable stretch was applied and [Ca(2+)]i levels monitored by analysis of fluorescent images obtained using an inverted microscope and laser scanning confocal imaging system. Application of a single pulse of tensile strain via an expandable membrane resulted in immediate increase in [Ca(2+)]i in a proportion of the cells, followed by a slow and steady decrease to prestimulation levels. Application of parathyroid hormone (10(-6) M) prior to mechanical stimulation potentiated the load-induced elevation of [Ca(2+)]i. Mechanically stimulating osteoblasts in Ca(2+)-free media or in the presence of either nifedipine (10 microM; L-type Ca(2+)-channel blocker) or thapsigargin (1 microM; depletes intracellular Ca(2+) stores) reduced strain-induced increases in [Ca(2+) ]i. Furthermore, strain-induced increases in [Ca(2+)]i were enhanced in the presence of Bayer K 8644 (500 nm), an agonist of L-type calcium channels. The effects of mechanical strain with and without inhibitors and agonists are described on the total cell population and on single cell responses. Application of strain and strain in the presence of the calcium-channel agonist Bay K 8644 to periosteal-derived osteoblasts increased levels of the extracellular matrix proteins osteopontin and osteocalcin within 24 h postload. This mechanically induced increase in osteopontin and osteocalcin was inhibited by the addition of the calcium-channel antagonist, nifedipine. Our results suggest an important role for L-type calcium channels and a thapsigargin-sensitive component in early mechanical strain transduction pathways in osteoblasts.  相似文献   

12.
13.
We investigated the effect of newborn bovine serum on the intracellular calcium [Ca2+]i response of primary cultured bone cells stimulated by fluid flow. As it has been previously established that these cells exhibit [Ca2+]i responses to fluid flow shear stress in saline media without growth factors or other chemically stimulatory factors, we hypothesized that the addition of serum to the flow medium would enhance the mechanosensitivity of the cells. We examined the effect of a short-term (10–15 min) exposure of the cells to 2 and 10% serum prior to flow stimulation (pretreated) compared to not exposing the cells prior to flow stimulation (unpretreated). The cells were subjected to a well-defined, 90-s flow stimulus with shear stress levels ranging from 0.02 to 3.5 Pa in a laminar flow chamber using a saline medium supplemented with 2 or 10% serum. For pretreatment, the serum concentration was the same from pre-flow to flow exposure. We observed a differential effect in the magnitude of the peak [Ca2+]i response modulated by the concentration of serum in the pre-flow medium. Additionally, ATP-supplemented flow was examined as a comparison to the serum-supplemented flow and exhibited a similar trend in the peak [Ca2+]i flow response that was dependent on ATP concentration and pre-flow exposure conditions. These findings demonstrate that under the conditions of this study, chemical agonist exposure can modulate the [Ca2+]i response in bone cells subjected to fluid flow-induced shear stress.  相似文献   

14.
Bone functional adaptation by remodeling is achieved by harmonized activities of bone cells in which osteocytes in the bone matrix are believed to play critical roles in sensing mechanical stimuli and transmitting signals to osteoclasts/osteoblasts on the bone surface in order to regulate their bone remodeling activities through the lacuno-canalicular network with many slender osteocytic processes. In this study, we investigated the intercellular communication between bone cells, particularly focusing on its directionality, through in vitro observations of the calcium signaling response to mechanical stimulus and its propagation to neighboring cells (NCs). Direct mechanical stimulus was applied to isolated bone cells from chick calvariae, osteocytes (Ocys) and bone surface cells (BSCs) mainly containing osteoblasts, and the percentage of calcium signaling propagation from the stimulated cell to NCs was analyzed. The results revealed that, regardless of the type of stimulated cell, the signaling propagated to BSCs with a significantly higher percentage, implying that calcium signaling propagation between bone cells strongly depends on the type of receiver cell and not the transmitter cell. In addition, in terms of mutual communication between Ocys and BSCs, the percentage of propagation from Ocys to BSCs is significantly higher than that in the opposite direction, suggesting that the calcium signaling mainly propagates asymmetrically with a bias from Ocys in bone matrix to BSCs on bone surfaces. This asymmetric communication between Ocys and BSCs suggests that osteocytic mechanosensing and cellular communications, which significantly affect bone surface remodeling activities to achieve functional adaptation, seem to be well coordinated and active at the location of biologically suitable and mechanically sensitive regions close to the bone surfaces.  相似文献   

15.
In adherent cells, cell-substratum interactions are essential for the propagation of some growth factor signaling events. However, it has not been resolved to what extent different types of extracellular matrix regulate the signals elicited by different soluble ligands. Our previous work has shown that prolactin signaling in mammary epithelium requires a specific cell interaction with the basement membrane and does not occur in cells plated on collagen I. We have now investigated whether the proximal signaling pathways triggered by insulin, epidermal growth factor (EGF), and interferon-gamma are differentially regulated in primary mammary epithelial cell cultures established on basement membrane and collagen I. Two distinct signaling pathways triggered by insulin exhibited a differential requirement for cell-matrix interactions. Activation of insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase was restricted to cells contacting basement membrane, whereas the phosphorylation of Erk occurred equally in cells on both substrata. The amplitude and duration of insulin-triggered IRS-1 phosphorylation and its association with phosphatidylinositol 3-kinase were strongly enhanced by cell-basement membrane interactions. The mechanism for inhibition of IRS-1 phosphorylation in cells cultured on collagen I may in part be mediated by protein-tyrosine phosphatase activity since vanadate treatment somewhat alleviated this effect. In contrast to the results with insulin, cell adhesion to collagen I conferred greater response to EGF, leading to higher levels of tyrosine phosphorylation of the EGF receptor and Erk. The mechanism for increased EGF signaling in cells adhering to collagen I was partly through an increase in EGF receptor expression. The interferon-gamma-activated tyrosine phosphorylation of Jak2 and Stat3 was independent of the extracellular matrix. It is well recognized that the cellular environment determines cell phenotype. We now suggest that this may occur through a selective modulation of growth factor signal transduction resulting from different cell-matrix interactions.  相似文献   

16.
There is an unmet medical need for anabolic treatments to restore lost bone. Human genetic bone disorders provide insight into bone regulatory processes. Sclerosteosis is a disease typified by high bone mass due to the loss of SOST expression. Sclerostin, the SOST gene protein product, competed with the type I and type II bone morphogenetic protein (BMP) receptors for binding to BMPs, decreased BMP signaling and suppressed mineralization of osteoblastic cells. SOST expression was detected in cultured osteoblasts and in mineralizing areas of the skeleton, but not in osteoclasts. Strong expression in osteocytes suggested that sclerostin expressed by these central regulatory cells mediates bone homeostasis. Transgenic mice overexpressing SOST exhibited low bone mass and decreased bone strength as the result of a significant reduction in osteoblast activity and subsequently, bone formation. Modulation of this osteocyte-derived negative signal is therapeutically relevant for disorders associated with bone loss.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号