共查询到20条相似文献,搜索用时 0 毫秒
1.
Jørgensen NR 《APMIS. Supplementum》2005,(118):5-36
The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other mechanism involves the passage of a small messenger through gap junctions to the cytoplasm of the neighboring cells, inducing depolarization of the plasma membrane with subsequent opening of membrane bound voltage-operated calcium channels. Next, we found that osteoblasts can propagate these signals to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts in response to mechanical stimulation. Thus, intercellular calcium signaling can be a mechanism by which mechanical stimuli on bone are translated into biological signals in bone cells, and propagated through the network of cells in bone. Further, the observations offer new pharmacological targets for the modulation of bone turnover, and perhaps even for the treatment of bone metabolic disorders. 相似文献
2.
3.
Single-molecule analysis of epidermal growth factor signaling that leads to ultrasensitive calcium response
下载免费PDF全文

Quantitative relationships between inputs and outputs of signaling systems are fundamental information for the understanding of the mechanism of signal transduction. Here we report the correlation between the number of epidermal growth factor (EGF) bindings and the response probability of intracellular calcium elevation. Binding of EGF molecules and changes of intracellular calcium concentration were measured for identical HeLa human epithelial cells. It was found that 300 molecules of EGF were enough to induce calcium response in half of the cells. This number is quite small compared to the number of EGF receptors (EGFR) expressed on the cell surface (50,000). There was a sigmoidal correlation between the response probability and the number of EGF bindings, meaning an ultrasensitive reaction. Analysis of the cluster size distribution of EGF demonstrated that dimerization of EGFR contributes to this switch-like ultrasensitive response. Single-molecule analysis revealed that EGF bound faster to clusters of EGFR than to monomers. This property should be important for effective formation of signaling dimers of EGFR under very small numbers of EGF bindings and suggests that the expression of excess amounts of EGFR on the cell surface is required to prepare predimers of EGFR with a large association rate constant to EGF. 相似文献
4.
The Ca2+-sensing receptor(the Ca SR),a G-protein-coupled receptor,regulates Ca2+ homeostasis in the body by monitoring extracellular levels of Ca2+([Ca2+]o) and responding to a diverse array of stimuli.Mutations in the Ca2+-sensing receptor result in hypercalcemic or hypocalcemic disorders,such as familial hypocalciuric hypercalcemia,neonatal severe primary hyperparathyroidism,and autosomal dominant hypocalcemic hypercalciuria.Compelling evidence suggests that the Ca SR plays multiple roles extending well beyond not only regulating the level of extracellular Ca2+ in the human body,but also controlling a diverse range of biological processes.In this review,we focus on the structural biology of the Ca SR,the ligand interaction sites as well as their relevance to the disease associated mutations.This systematic summary will provide a comprehensive exploration of how the Ca SR integrates extracellular Ca2+ into intracellular Ca2+ signaling. 相似文献
5.
Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain 总被引:3,自引:0,他引:3
Walker LM Publicover SJ Preston MR Said Ahmed MA El Haj AJ 《Journal of cellular biochemistry》2000,79(4):648-661
Femur-derived osteoblasts cultured from rat femora were loaded with Fluo-3 using the AM ester. A quantifiable stretch was applied and [Ca(2+)]i levels monitored by analysis of fluorescent images obtained using an inverted microscope and laser scanning confocal imaging system. Application of a single pulse of tensile strain via an expandable membrane resulted in immediate increase in [Ca(2+)]i in a proportion of the cells, followed by a slow and steady decrease to prestimulation levels. Application of parathyroid hormone (10(-6) M) prior to mechanical stimulation potentiated the load-induced elevation of [Ca(2+)]i. Mechanically stimulating osteoblasts in Ca(2+)-free media or in the presence of either nifedipine (10 microM; L-type Ca(2+)-channel blocker) or thapsigargin (1 microM; depletes intracellular Ca(2+) stores) reduced strain-induced increases in [Ca(2+) ]i. Furthermore, strain-induced increases in [Ca(2+)]i were enhanced in the presence of Bayer K 8644 (500 nm), an agonist of L-type calcium channels. The effects of mechanical strain with and without inhibitors and agonists are described on the total cell population and on single cell responses. Application of strain and strain in the presence of the calcium-channel agonist Bay K 8644 to periosteal-derived osteoblasts increased levels of the extracellular matrix proteins osteopontin and osteocalcin within 24 h postload. This mechanically induced increase in osteopontin and osteocalcin was inhibited by the addition of the calcium-channel antagonist, nifedipine. Our results suggest an important role for L-type calcium channels and a thapsigargin-sensitive component in early mechanical strain transduction pathways in osteoblasts. 相似文献
6.
Lisandro Lungato Marcos L. Gazarini Edgar J. Paredes-Gamero Ivarne l.S. Tersariol Sergio Tufik Vânia D'Almeida 《Biochimica et Biophysica Acta (BBA)/General Subjects》2012
Background
Sleep is a physiological event that directly influences health by affecting the immune system, in which calcium (Ca2 +) plays a critical signaling role. We performed live cell measurements of cytosolic Ca2 + mobilization to understand the changes in Ca2 + signaling that occur in splenic immune cells after various periods of sleep deprivation (SD).Methods
Adult male mice were subjected to sleep deprivation by platform technique for different periods (from 12 to 72 h) and Ca2 + intracellular fluctuations were evaluated in splenocytes by confocal microscopy. We also performed spleen cell evaluation by flow cytometry and analyzed intracellular Ca2 + mobilization in endoplasmic reticulum and mitochondria. Additionally, Ca2 + channel gene expression was evaluatedResults
Splenocytes showed a progressive loss of intracellular Ca2 + maintenance from endoplasmic reticulum (ER) stores. Transient Ca2 + buffering by the mitochondria was further compromised. These findings were confirmed by changes in mitochondrial integrity and in the performance of the store operated calcium entry (SOCE) and stromal interaction molecule 1 (STIM1) Ca2 + channels.Conclusions and general significance
These novel data suggest that SD impairs Ca2 + signaling, most likely as a result of ER stress, leading to an insufficient Ca2 + supply for signaling events. Our results support the previously described immunosuppressive effects of sleep loss and provide additional information on the cellular and molecular mechanisms involved in sleep function. 相似文献7.
8.
We investigated the effect of newborn bovine serum on the intracellular calcium [Ca2+]i response of primary cultured bone cells stimulated by fluid flow. As it has been previously established that these cells exhibit [Ca2+]i responses to fluid flow shear stress in saline media without growth factors or other chemically stimulatory factors, we hypothesized that the addition of serum to the flow medium would enhance the mechanosensitivity of the cells. We examined the effect of a short-term (10–15 min) exposure of the cells to 2 and 10% serum prior to flow stimulation (pretreated) compared to not exposing the cells prior to flow stimulation (unpretreated). The cells were subjected to a well-defined, 90-s flow stimulus with shear stress levels ranging from 0.02 to 3.5 Pa in a laminar flow chamber using a saline medium supplemented with 2 or 10% serum. For pretreatment, the serum concentration was the same from pre-flow to flow exposure. We observed a differential effect in the magnitude of the peak [Ca2+]i response modulated by the concentration of serum in the pre-flow medium. Additionally, ATP-supplemented flow was examined as a comparison to the serum-supplemented flow and exhibited a similar trend in the peak [Ca2+]i flow response that was dependent on ATP concentration and pre-flow exposure conditions. These findings demonstrate that under the conditions of this study, chemical agonist exposure can modulate the [Ca2+]i response in bone cells subjected to fluid flow-induced shear stress. 相似文献
9.
Taiji Adachi Yuki Aonuma Masaki Hojo 《Biochemical and biophysical research communications》2009,389(3):495-500
Bone functional adaptation by remodeling is achieved by harmonized activities of bone cells in which osteocytes in the bone matrix are believed to play critical roles in sensing mechanical stimuli and transmitting signals to osteoclasts/osteoblasts on the bone surface in order to regulate their bone remodeling activities through the lacuno-canalicular network with many slender osteocytic processes. In this study, we investigated the intercellular communication between bone cells, particularly focusing on its directionality, through in vitro observations of the calcium signaling response to mechanical stimulus and its propagation to neighboring cells (NCs). Direct mechanical stimulus was applied to isolated bone cells from chick calvariae, osteocytes (Ocys) and bone surface cells (BSCs) mainly containing osteoblasts, and the percentage of calcium signaling propagation from the stimulated cell to NCs was analyzed. The results revealed that, regardless of the type of stimulated cell, the signaling propagated to BSCs with a significantly higher percentage, implying that calcium signaling propagation between bone cells strongly depends on the type of receiver cell and not the transmitter cell. In addition, in terms of mutual communication between Ocys and BSCs, the percentage of propagation from Ocys to BSCs is significantly higher than that in the opposite direction, suggesting that the calcium signaling mainly propagates asymmetrically with a bias from Ocys in bone matrix to BSCs on bone surfaces. This asymmetric communication between Ocys and BSCs suggests that osteocytic mechanosensing and cellular communications, which significantly affect bone surface remodeling activities to achieve functional adaptation, seem to be well coordinated and active at the location of biologically suitable and mechanically sensitive regions close to the bone surfaces. 相似文献
10.
In adherent cells, cell-substratum interactions are essential for the propagation of some growth factor signaling events. However, it has not been resolved to what extent different types of extracellular matrix regulate the signals elicited by different soluble ligands. Our previous work has shown that prolactin signaling in mammary epithelium requires a specific cell interaction with the basement membrane and does not occur in cells plated on collagen I. We have now investigated whether the proximal signaling pathways triggered by insulin, epidermal growth factor (EGF), and interferon-gamma are differentially regulated in primary mammary epithelial cell cultures established on basement membrane and collagen I. Two distinct signaling pathways triggered by insulin exhibited a differential requirement for cell-matrix interactions. Activation of insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase was restricted to cells contacting basement membrane, whereas the phosphorylation of Erk occurred equally in cells on both substrata. The amplitude and duration of insulin-triggered IRS-1 phosphorylation and its association with phosphatidylinositol 3-kinase were strongly enhanced by cell-basement membrane interactions. The mechanism for inhibition of IRS-1 phosphorylation in cells cultured on collagen I may in part be mediated by protein-tyrosine phosphatase activity since vanadate treatment somewhat alleviated this effect. In contrast to the results with insulin, cell adhesion to collagen I conferred greater response to EGF, leading to higher levels of tyrosine phosphorylation of the EGF receptor and Erk. The mechanism for increased EGF signaling in cells adhering to collagen I was partly through an increase in EGF receptor expression. The interferon-gamma-activated tyrosine phosphorylation of Jak2 and Stat3 was independent of the extracellular matrix. It is well recognized that the cellular environment determines cell phenotype. We now suggest that this may occur through a selective modulation of growth factor signal transduction resulting from different cell-matrix interactions. 相似文献
11.
Osteocyte control of bone formation via sclerostin, a novel BMP antagonist 总被引:25,自引:0,他引:25
下载免费PDF全文

Winkler DG Sutherland MK Geoghegan JC Yu C Hayes T Skonier JE Shpektor D Jonas M Kovacevich BR Staehling-Hampton K Appleby M Brunkow ME Latham JA 《The EMBO journal》2003,22(23):6267-6276
There is an unmet medical need for anabolic treatments to restore lost bone. Human genetic bone disorders provide insight into bone regulatory processes. Sclerosteosis is a disease typified by high bone mass due to the loss of SOST expression. Sclerostin, the SOST gene protein product, competed with the type I and type II bone morphogenetic protein (BMP) receptors for binding to BMPs, decreased BMP signaling and suppressed mineralization of osteoblastic cells. SOST expression was detected in cultured osteoblasts and in mineralizing areas of the skeleton, but not in osteoclasts. Strong expression in osteocytes suggested that sclerostin expressed by these central regulatory cells mediates bone homeostasis. Transgenic mice overexpressing SOST exhibited low bone mass and decreased bone strength as the result of a significant reduction in osteoblast activity and subsequently, bone formation. Modulation of this osteocyte-derived negative signal is therapeutically relevant for disorders associated with bone loss. 相似文献
12.
13.
14.
15.
Mitochondria and calcium signaling 总被引:11,自引:0,他引:11
Nicholls DG 《Cell calcium》2005,38(3-4):311-317
The kinetic properties for the uptake, storage and release of Ca2+ from isolated mitochondria accurately predict the behaviour of the organelles within the intact cell. While the steady-state cycling of Ca2+ across the inner membrane between independent uptake and efflux pathways seems at first sight to be symmetrical, the distinctive kinetics of the uniporter, which is highly dependent on external free Ca2+ concentration and the efflux pathway, whose activity is clamped over a wide range of total matrix Ca2+ by the solubility of the calcium phosphate complex provide a mechanism whereby mitochondria reversibly sequester transient elevations in cytoplasmic Ca2+. Under non-stimulated conditions, the same transport processes can regulate matrix Ca2+ concentrations and hence citric acid cycle activity. 相似文献
16.
Local electrical response of the skin to deformation 总被引:2,自引:0,他引:2
R Edelberg 《Journal of applied physiology》1973,34(3):334-340
17.
18.
19.
20.
Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. 总被引:22,自引:0,他引:22
Intercellular Ca2+ signaling in primary cultures of glial cells was investigated with digital fluorescence video imaging. Mechanical stimulation of a single cell induced a wave of increased [Ca2+]i that was communicated to surrounding cells. This was followed by asynchronous Ca2+ oscillations in some cells. Similar communicated Ca2+ responses occurred in the absence of extracellular Ca2+, despite an initial decrease in [Ca2+]i in the stimulated cell. Mechanical stimulation in the presence of glutamate induced a typical communicated Ca2+ wave through cells undergoing asynchronous Ca2+ oscillations in response to glutamate. The coexistence of communicated Ca2+ waves and asynchronous Ca2+ oscillations suggests distinct mechanisms for intra- and intercellular Ca2+ signaling. This intercellular signaling may coordinate cooperative glial function. 相似文献