首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of biomechanics》2014,47(16):3862-3867
The aim of this study was to test the hypothesis that running at fixed fractions of Froude (Nfr) and Strouhal (Str) dimensionless numbers combinations induce dynamic similarity between humans of different sizes. Nineteen subjects ran in three experimental conditions, (i) constant speed, (ii) similar speed (Nfr) and (iii) similar speed and similar step frequency (Nfr and Str combination). In addition to anthropometric data, temporal, kinematic and kinetic parameters were assessed at each stage to measure dynamic similarity informed by dimensional scale factors and by the decrease of dimensionless mechanical parameter variability. Over a total of 54 dynamic parameters, dynamic similarity from scale factors was met for 16 (mean r=0.51), 32 (mean r=0.49) and 52 (mean r=0.60) parameters in the first, the second and the third experimental conditions, respectively. The variability of the dimensionless preceding parameters was lower in the third condition than in the others. This study shows that the combination of Nfr and Str, computed from the dimensionless energy ratio at the center of gravity (Modela-r) ensures dynamic similarity between different-sized subjects. The relevance of using similar experimental conditions to compare mechanical dimensionless parameters is also proved and will highlight the study of running techniques, or equipment, and will allow the identification of abnormal and pathogenic running patterns. Modela-r may be adapted to study other abilities requiring bounces in human or animal locomotion or to conduct investigations in comparative biomechanics.  相似文献   

2.
The purpose of this study was to explore the effects of fall type and fall height on the kinematics, kinetics, and muscle activation of the upper extremity during simulated forward falls using a novel fall simulation method.Twenty participants were released in a prone position from a Propelled Upper Limb Fall ARrest Impact System. Impacts occurred to the hands from two fall heights (0.05 m and 0.10 m) and three fall types (straight-arm, bent-arm, self-selected). Muscle activation from six muscles (biceps brachii, brachioradialis, triceps brachii, anconeus, flexor carpi radialis and extensor carpi radialis) was collected and upper extremity joint kinematics were calculated.Peak Fx (medio-lateral), as well as Fx and Fz (inferior–superior) load rate increased between the 0.05 m and 0.10 m heights. With respect to fall type, the straight-arm falls resulted in significantly greater Fy (anterior–posterior) impulse and Fy and Fz load rates. The change in elbow flexion angle was greater during the self-selected and bent-arm falls compared to the straight-arm falls; a pattern also seen in the wrist flexion/extension angles. All muscles experienced peak % MVIC prior to the time of the peak force.The results of this study suggest that, to some extent, individuals are capable of selecting an upper extremity posture that allows them to minimize the effects of an impact and it has confirmed the presence of a preparatory muscle activation response.  相似文献   

3.
《IRBM》2009,30(1):3-9
The object of this study was to compute the mechanical power of the resultant braking force during an actual propulsion cycle with a manual wheelchair on the field. The resultant braking force was calculated from a mechanical model taking into account the rolling resistances of the front and rear wheels. Both the resultant braking force and the wheelchair velocity were not constant during the propulsion cycle and varied according to the subject's fore-and-aft and vertical movements in the wheelchair. These variations had logical repercussions on the braking force mechanical power, which ranged from 20.6 to 34.5 W (mean = 29.6 W) during the propulsion cycle. The mechanical power was also calculated from the conditions of a classical drag test, by the product of the cycle mean velocity and a constant braking force corresponding to a 60% rear wheels distribution of the subject-and-wheelchair's weight. This second mechanical power (32.4 W) was 10% higher than the average of the instantaneous power. Beyond the need of a clear definition of the two phases of the propulsion cycle, this study showed that the assumption on wheelchair locomotion usually admitted on laboratory ergometers cannot be applied in field studies, and that the kinetic energy variations during the cycle propulsive phase should be considered for evaluating the subject's mechanical work and power.  相似文献   

4.
Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70 ± 0.19 m/s vs 1.72 ± 0.20 m/s, respectively) and running (4.04 ± 0.17 m/s vs 4.10 ± 0.13 m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p < 0.05–0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p < 0.01) leading to an increase in frontal plane moments at the hip (p < 0.05) and knee (p < 0.05) joints and a reduction at the ankle joint (p < 0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking.  相似文献   

5.
The Julia Creek dunnart (Sminthopsis douglasi) is an endangered carnivorous marsupial belonging to the family Dasyuridae. This study investigated the oestrous cycle of this species in terms of its reproductive physiology and behaviour to explore more efficient methods of oestrus detection. Ten sexually mature captive female dunnarts were monitored daily at David Fleay Wildlife Park, Burleigh Heads, Australia, from mid September to late December 2006 for changes in urogenital cytology within the urine (0, 1+, 2+ and 3+), running wheel activity, body weight, uneaten food, faecal steroid metabolites (progesterone and oestradiol) and pouch development. Periods of increased running wheel activity were associated (p = 0.004) with an increase in the proportion of cornified urogenital epithelial cells found in the urine; periods of decreasing weight (p < 0.001) and uneaten food (p < 0.001) were also associated with changes in urogenital cytology but not to the point where they would be useful for oestrus detection. Between 60.3% and 92.0% of peak distances (confidence interval 95%) occurred when the epithelial cell index was 2+ or 3+. Only 15.5–37.5% of peak weights (CI: 95%) and 28.1–49.9% of incidences of uneaten food (CI: 95%) occurred when the epithelial cell index was 2+ or 3+. There was no significant difference in the mean length of the oestrous cycle when measured by urogenital cytology (mean ± SD: 25.0 ± 5.7 days; n = 20) or peak distance travelled (mean ± SD: 25.4 ± 5.7 days; n = 20). Changes in the concentration of oestradiol metabolites in Julia Creek Dunnart faeces were not useful in characterising the oestrous cycle. Wheel running activity declined markedly with increased faecal progestagen concentration. The majority of the pouch variables examined showed maximum development during the inter-oestrus period but as there was considerable variation between animals, the pouch was not considered a useful index of oestrus.  相似文献   

6.
Changing stride frequency may influence oxygen uptake and heart rate during running as a function of running economy and central command. This study investigated the influence of stride frequency manipulation on thermoregulatory responses during endurance running. Seven healthy endurance runners ran on a treadmill at a velocity of 15 km/h for 60 min in a controlled environmental chamber (ambient temperature 27 °C and relative humidity 50%), and stride frequency was manipulated. Stride frequency was intermittently manipulated by increasing and decreasing frequency by 10% from the pre-determined preferred frequency. These periods of increase or decrease were separated by free frequency running in the order of free stride frequency, stride frequency manipulation (increase or decrease), free stride frequency, and stride frequency manipulation (increase or decrease) for 15 min each. The increased and decreased stride frequencies were 110% and 91% of the free running frequency, respectively (196±6, 162±5, and 178±5 steps/min, respectively, P<0.01). Compared to the control, stride frequency manipulation did not affect rectal temperature, heart rate, or the rate of perceived exhaustion during running. Whole-body sweat loss increased significantly when stride frequency was manipulated (1.48±0.11 and 1.57±0.11 kg for control and manipulated stride frequencies, respectively, P<0.05), but stride frequency had a small effect on sweat loss overall (Cohen's d=0.31). A higher mean skin temperature was also observed under mixed frequency conditions compared to that in the control (P<0.05). While the precise mechanisms underlying these changes remain unknown (e.g. running economy or central command), our results suggest that manipulation of stride frequency does not have a large effect on sweat loss or other physiological variables, but does increase mean skin temperature during endurance running.  相似文献   

7.
Running exercises are frequently related to muscular injuries, which may be a result of muscular imbalance. The present study aimed to verify the effects of heavy-intensity continuous running exercise on the functional and conventional hamstrings:quadriceps ratios, and also in the knee flexors and extensors EMG activity in active non-athletic individuals. Sixteen active males performed maximal isokinetic concentric and eccentric knee flexions and extensions at 60° s?1 and 180° s?1. In another session, the same procedure was conducted after a continuous running exercise at 95% onset of blood lactate accumulation. Torque and electromyographic ratios were calculated from peak torque and integrated electromyographic activity (knee flexor and extensors). Creatine kinase was measured before and 24 h after running exercise. Eccentric torque (knee flexion and extension) decreased significantly after running only at 180° s?1 (p < 0.05). No differences were found for the conventional torque ratios (p > 0.05), however, the functional torque ratios at 180° s?1 decreased significantly after running (p < 0.05). No effects on the electromyographic activity and electromyographic ratios were found (p > 0.05). Creatine kinase increased slightly 24 h after running (p < 0.05). Heavy-intensity continuous running exercise decreased knee flexor and extensor eccentric torque, and functional torque ratios under fast velocities (180° s?1), probably as result of peripheral fatigue.  相似文献   

8.
Acute kidney injury (AKI) frequently afflicts patients undergoing cardiopulmonary bypass and independently predicts death. Both hemoglobinemia and myoglobinemia are independent predictors of postoperative AKI. Release of free hemeproteins into the circulation is known to cause oxidative injury to the kidneys. This study tested the hypothesis that postoperative AKI is associated with both enhanced intraoperative hemeprotein release and increased lipid peroxidation assessed by measuring F2-isoprostanes and isofurans. In a case–control study nested within an ongoing randomized trial of perioperative statin treatment and AKI, we compared levels of F2-isoprostanes and isofurans with plasma levels of free hemoglobin and myoglobin in 10 cardiac surgery AKI patients to those of 10 risk-matched controls. Peak plasma free hemoglobin concentrations were significantly higher in AKI subjects (289.0 ± 37.8 versus 104.4 ± 36.5 mg/dl, P = 0.01), whereas plasma myoglobin concentrations were similar between groups. The change in plasma F2-isoprostane and isofuran levels (repeated-measures ANOVA, P = 0.02 and P = 0.001, respectively) as well as the change in urine isofuran levels (P = 0.04) was significantly greater in AKI subjects. In addition, change in peak plasma isofuran levels correlated not only with peak free plasma hemoglobin concentrations (r2 = 0.39, P = 0.001) but also with peak change in serum creatinine (r2 = 0.20, P = 0.01). Postoperative AKI is associated with both enhanced intraoperative hemeprotein release and enhanced lipid peroxidation. The correlations among hemoglobinemia, lipid peroxidation, and AKI indicate a potential role for hemeprotein-induced oxidative damage in the pathogenesis of postoperative AKI.  相似文献   

9.
This work aims at comparing the capability of two Objective Response Detection techniques, the Magnitude-Squared Coherence (MSC or Ordinary Coherence) and its multivariate extension, the Multiple Coherence (MC), of detecting the somatosensory evoked response. Electroencephalographic (EEG) signals were collected during somatosensory stimulation from forty adult volunteers without history of neurological disease and with normal somatosensory evoked potential (SEP), using the 10-20 International System. All leads were referenced to the earlobe average. Current pulses with 200 μs of duration were applied to the right posterior tibial nerve at the motor threshold intensity level (the lowest intensity able to produce hallux oscillations) at the rate of 5 Hz. The MSC was applied to the derivations [Cz], [Fz], [C3] and [C4] – commonly used for tibial nerve SEP recordings with bipolar derivations – and the MC was applied to the pairs [Cz][Fz] and [C3][C4]. Both estimates (MC and MSC) were calculated with M = 100 and 500 epochs and the response detection was based on rejecting the null hypothesis of response absence, which is achieved when the estimates exceed the critical value (detection threshold) calculated for a given significance level (α = 0.05). The results showed that if two leads are available, the application of the MC is better than the MSC applied to each lead individually.  相似文献   

10.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

11.
《Endocrine practice》2018,24(1):60-68
Objective: High-dose glucocorticoids (HDG) are used in the treatment of autoimmune diseases. Glucocorticoids-induced hyperglycemia (GIH) is often described in elderly patients. In young patients with autoimmune diseases, however, the risk for GIH has not been well characterized.Methods: We recruited 24 inpatients (median age, 32 years; interquartile range, 25–42) with exacerbations of autoimmune diseases, receiving 1 to 2 mg/kg/day prednisone or equivalent methylprednisone. Fourteen subjects were naïve to glucocorticoids (group 1) and 10 subjects were on glucocorticoid maintenance (≤15 mg/day prednisone at least 3 months) (group 2) prior to HDG. All subjects were monitored by continuous glucose monitoring system (CGMS) for 3 days.Results: GIH developed in 21 (91%) subjects, 11/13 in group 1 and 10/10 in group 2. The main peak of glucose excursion (128.7 ± 6.4 mg/dL, group 1; 143.9 ± 10.0 mg/dL, group 2) occurred at 2 to 3 pm. Another peak occurred before sleep. Two-hour mean postprandial glucose levels were normal in both groups: breakfast, 105.0 ± 28.4 versus 125.6 ± 24.4 mg/dL, P = .065; lunch, 115.7 ± 21.1 versus 135.9 ± 29.0 mg/dL, P = .082; dinner, 122.8 ± 18.5 versus 137.8 ± 26.4 mg/dL, P = .144 in groups 1 and 2, respectively. There was a positive association between pretreatment hemoglobin A1C and peak glucose levels (P<.0001). Notably, 35% of our subjects experienced early morning hypoglycemia (65.2 ± 2.8 mg/dL).Conclusion: In hospitalized young patients with auto-immune diseases, CGMS data revealed that short-term consistent HDG treatment induced mild hyperglycemia, peaking in the early afternoon and before sleep. Early morning hypoglycemia was found in 35%.Abbreviations: A1C = hemoglobin A1C; AUC = the area under the curve; BG = blood glucose; BMI = body mass index; CGMS = continuous glucose monitoring system; DM = diabetes mellitus; FBG = fasting blood glucose; GA = glycated albumin; GCs = glucocorticoids; GIH = glucocorticoids-induced hyperglycemia; HDG = high-dose glucocorticoids; HOMA-IR = Homeostasis Model Assessment-Insulin Resistance; IG = interstitial glucose; IQR = interquartile range; PUMCH = Peking Union Medical College Hospital; SLE = systemic lupus erythematosus  相似文献   

12.
The goals of the present study were (1) to measure the previously unstudied isometric forces of activated human Gracilis (G) muscle as a function of knee joint angle and (2) to test whether length history effects are important also for human muscle. Experiments were conducted intraoperatively during anterior cruciate ligament (ACL) reconstruction surgery (n=8). Mean peak G muscle force, mean peak G tendon stress and mean optimal knee angle equals 178.5±270.3 N, 24.4±20.6 MPa and 67.5±41.7°, respectively. The substantial inter-subject variability found (e.g., peak G force ranges between 17.2 and 490.5 N) indicate that the contribution of the G muscle to knee flexion moment may vary considerably among subjects. Moreover, typical subject anthropometrics did not appear to provide a sound estimate of the peak G force: only a limited insignificant correlation was found between peak G force and subject mass as well as mid-thigh perimeter and no correlation was found between peak G force and thigh length. The functional joint range of motion for human G muscle was determined to be at least as wide as full knee extension to 120° of knee flexion. However; the portion of the knee angle–muscle force relationship operationalized is not unique but individual specific: our data suggest for most subjects that G muscle operates in both ascending and descending limbs of its length–force characteristics whereas, for the remainder of the subjects, its function is limited to the descending limb, exclusively. Previous activity of G muscle at high muscle length attained during collection of a complete set of knee angle–force data showed for the first time that such length history effects are important also for human muscles: a significant correlation was found between optimal knee angle and absolute value of % force change. Except for two of the subjects, G muscle force measured at low length was lower than that measured during collection of knee joint–force data (maximally by 42.3%).  相似文献   

13.
At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h−1, 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82±0.47 °C, RHTT2: 38.86±0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM)=0.13 °C), peak skin temperature (RHTT1: 38.12±0.45, RHTT2: 38.11±0.45 °C, ICC=0.79, TEM=0.30 °C), peak heart rate (RHTT1: 182±15 beats min−1, RHTT2: 183±15 beats min−1, ICC=0.99, TEM=2 beats min−1), nor sweat rate (1721±675 g h−1, 1716±745 g h−1, ICC=0.95, TEM=162 g h−1) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures.  相似文献   

14.
The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task – and in resting conditions – age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p < 0.001), longer braking time (32.4%, p < 0.01), lower push-off force (18.0%, p < 0.05) and longer push-off time (31.0% p < 0.01). H jump/M jump correlated with the average push-off force (r = 0.833, p < 0.05) and with push-off time (r = ?0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant.  相似文献   

15.
No electromyography (EMG) responses data exist of children exposed to dynamic impacts similar to automotive crashes, thereby, limiting active musculature representation in computational occupant biomechanics models. This study measured the surface EMG responses of three neck, one torso and one lower extremity muscles during low-speed frontal impact sled tests (average maximum acceleration: 3.8 g; rise time: 58.2 ms) performed on seated, restrained pediatric (n = 11, 8–14 years) and young adult (n = 9, 18–30 years) male subjects. The timing and magnitude of the EMG responses were compared between the two age groups. Two normalization techniques were separately implemented and evaluated: maximum voluntary EMG (MVE) and neck cross-sectional area (CSA). The MVE-normalized EMG data indicated a positive correlation with age in the rectus femoris for EMG latency; there was no correlation with age for peak EMG amplitudes for the evaluated muscles. The cervical paraspinous exhibited shorter latencies compared with the other muscles (2–143 ms). Overall, the erector spinae and rectus femoris peak amplitudes were relatively small. Neck CSA-normalized peak EMG amplitudes negatively correlated with age for the cervical paraspinous and sternocleidomastoid. These data can be useful to incorporate active musculature in computational models, though it may not need to be age-specific in low-speed loading environments.  相似文献   

16.
BackgroundCervical spinal manipulative therapy (cSMT) is a common therapeutic modality used in the treatment of neck pain and headaches. Cadaveric necks have been used as a model for assessing the effects of cSMT on vertebral artery mechanics. However, there have been no previous studies comparing the biomechanical indices of cSMT performed in living subjects versus cadavers.MethodsThe preload force, peak force and duration of cSMT performed by two chiropractors were recorded in 28 subjects with and without neck pain, and in five cadavers.ResultsThere were no statistical differences in terms of the preload, peak force and duration of cSMT in living subjects with versus without neck pain. However, all three parameters differed statistically in living subjects versus cadavers; and both preload and peak forces were significantly higher for cadaveric cSMT; the average peak force was 190.3 ± 85.5 N (mean ± SD) in living subjects, versus 283.9 ± 53.6 N in cadavers. Furthermore, the duration was significantly faster for cadaveric cSMT (175 ± 100 ms in living subjects versus 120 ± 30 ms in cadavers. These observations were consistent for both chiropractors.ConclusionsWhen performed in cadavers, cSMT tends to be more “aggressive” in terms of all biomechanical indices used to describe cSMT.  相似文献   

17.
Brain natriuretic peptide (NT-pro-BNP) was implicated in the regulation of hypothalamic–pituitary–adrenocortical (HPA) responses to psychological stressors. However, HPA axis activation in different physical stress models and its interface with NT-pro-BNP in the prediction of cardiopulmonary performance is unclear. Cardiopulmonary test on a treadmill was used to assess cardiopulmonary parameters in 16 elite male wrestlers (W), 21 water polo player (WP) and 20 sedentary age-matched subjects (C). Plasma levels of NT-pro-BNP, cortisol and adrenocorticotropic hormone (ACTH) were measured using immunoassay sandwich technique, radioimmunoassay and radioimmunometric techniques, respectively, 10 min before test (1), at beginning (2), at maximal effort (3), at 3rd min of recovery (4). In all groups, NT-pro-BNP decreased between 1 and 2; increased from 2 to 3; and remained unchanged until 4. ACTH increased from 1 to 4, whereas cortisol increased from 1 to 3 and stayed elevated at 4. In all groups together, ΔNT-pro-BNP2/1 predicted peak oxygen consumption (B = 37.40, r = 0.38, p = 0.007); cortisol at 3 predicted heart rate increase between 2 and 3 (r = −0.38,B = −0.06, p = 0.005); cortisol at 2 predicted peak carbon-dioxide output (B = 2.27, r = 0.35, p < 0.001); ΔACTH3/2 predicted peak ventilatory equivalent for carbon-dioxide (B = 0.03, r = 0.33, p = 0.003). The relation of cortisol at 1 with NT-pro-BNP at 1 and 3 was demonstrated using logistic function in all the participants together (for 1/cortisol at 1 B = 63.40, 58.52; r = 0.41, 0.34; p = 0.003, 0.013, respectively). ΔNT-pro-BNP2/1 linearly correlated with ΔACTH4/3 in WP and W (r = −0.45, −0.48; p = 0.04, 0.04, respectively). These results demonstrate for the first time that HPA axis and NT-pro-BNP interface in physical stress probably contribute to integrative regulation of cardiopulmonary performance.  相似文献   

18.
《Endocrine practice》2018,24(3):288-293
Objective: The total cortisol (TC) response may be measured during the glucagon stimulation test (GST) for growth hormone (GH) reserve in order to assess the integrity of the hypothalamic-pituitary-adrenal (HPA) axis. Measurements of TC are unreliable in conditions of albumin and cortisol-binding globulin (CBG) alterations (e.g., hypoproteinemia or CBG deficiency). We aimed to measure the serum free cortisol (sFC) response to the GST in children and adolescents and determine whether it could predict the GH response to glucagon stimulation.Methods: Infants and children with either short stature or growth attenuation who were referred for evaluation of GH reserve underwent the GST.Results: The study population consisted of 103 subjects (62 females), median age 3.9 years (range, 0.5–14). The mean basal and peak TC levels were 13.3 ± 6.7 μg/dL and 29.6 ± 8.8 μg/dL, respectively. The mean basal and peak sFC levels were 0.7 ± 0.8 μg/dL and 1.7 ± 1.1 μg/dL, respectively. There was a negative correlation between peak TC and age (r = -0.3, P = .007) but not between peak sFC and age (r = -0.09, P = .36). Ninety-five percent of the patients had peak TC levels >15.8 μg/dL and peak sFC levels >0.6 μg/dL.Conclusion: Our results on a cohort of healthy short-statured children can serve as reference values for the sFC response during GST. Based on these results, we propose peak TC levels >15.8 μg/dL and peak sFC levels >0.6 μg/dL for defining normalcy of the HPA axis during the GST in children and adolescents.Abbreviations:ACTH = adrenocorticotrophic hormoneBMI = body mass indexCBG = cortisol-binding globulinGH = growth hormoneGST = glucagon stimulation testHPA = hypothalamic-pituitary-adrenalSDS = standard deviation scoresFC = serum free cortisolTC = total cortisol  相似文献   

19.
Several studies suggest that exercise is associated with elevated oxidative stress which diminishes NO bioavailability. The aim of the present study was to investigate a potential link between NO synthesis and bioavailability and oxidative stress in the circulation of subjects performing high-intensive endurance exercise. Twenty-two male healthy subjects cycled at 80% of their maximal workload. Cubital venous blood was taken before, during and after exercise, and heparinized plasma was generated. Plasma concentrations of nitrite and nitrate were quantified by GC–MS and of the oxidative stress biomarker 15(S)-8-iso-PGF by GC–MS/MS. pH and pCO2 fell and HbO2 increased upon exercise. The duration of the 80% phase (d80) was 740 ± 210 s. Subjects cycled at 89.2 ± 3.3% of their peak oxygen uptake. Plasma concentration of nitrite (P < 0.01) and 15(S)-8-iso-PGF (P < 0.05) decreased significantly during exercise. At the end of exercise, plasma nitrite concentration correlated positively with d80 and performed work (w80) (each P < 0.05). Changes in nitrate concentration also correlated positively with d80 (P < 0.05) and w80/kg (P < 0.01). These findings provide evidence of a favorable effect of nitrite on high-intensive endurance exercise. The lack of association between 15(S)-8-iso-PGF and NO bioavailability (nitrite concentration) and NO biosynthesis (nitrate concentration) suggest that oxidative stress, notably lipid peroxidation, is not linked to the l-arginine/NO pathway in healthy male subjects being on endurance exercise.  相似文献   

20.
Variability in musculoskeletal structure has the potential to influence locomotor function. It has been shown, for example, that sprinters have smaller Achilles tendon moment arms and longer toes than non-sprinters, and toe length has been found to correlate with toe flexor work in running humans. These findings suggest that interindividual variation in human foot structure allows for function that is adapted to various motor tasks. The purpose of this study was to test for correlations between foot anthropometry and single-joint maximal-height jumping performance. Ten male subjects performed static jumps using only their ankles for propulsion. Several anthropometric measures were taken. Bivariate correlation analyses were performed between all anthropometric variables and the average jump height for each subject. Results showed that the best jumpers had longer lateral heel lengths (r = 0.871; p = 0.001) and longer toes (r = 0.712; p = 0.021). None of the other anthropometric variables (stature, mass, lower extremity lengths) measured were found to correlate significantly with jump height. A factor analysis was performed to investigate whether some underlying feature related to body stature could explain jumping performance. Taller subjects did not necessarily jump higher. Specific variations in foot structure, unrelated to other general stature measures, were associated with performance in this single-joint jumping task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号