首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the swimmers’ loss of speed during the underwater gliding motion of a grab start. This study also set out to determine the kinematical variables influencing this loss of speed. Eight French national-level swimmers participated in this study. The swimmers were filmed using 4 mini-DV cameras during the entire underwater phase. Using the DLT technique and the Dempster's anthropometric data, swimmer's movement have been identified. Two principal components analysis (PCA) have been used to study the relations between the kinematical variables influencing the loss of speed. The swimmers reached a velocity between 2.2 and 1.9 m s?1 after their centre of mass covered a distance ranging between 5.63 and 6.01 m from the start wall. For this range of velocity, head position was included between 6.02 and 6.51 m. First PCA show that the kinematical parameters at the immersion (first image at which the swimmers’ whole body was under water) are included in the first two components. Second PCA show that the knee, hip and shoulder angles can be included in the same component. The present study identified the optimal instant for initiating underwater leg movements after a grab start. This study also showed that the performance during the underwater gliding motion is determined as much by variables at the immersion as by the swimmer's loss of speed. It also seems that to hold the streamlined position the synergetic action of the knee, the hip and the shoulder is essential.  相似文献   

2.
Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50 years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes.  相似文献   

3.
We aimed to develop a new method for evaluating the drag in front-crawl swimming at various velocities and at full stroke. In this study, we introduce the basic principle and apparatus for the new method, which estimates the drag in swimming using measured values of residual thrust (MRT). Furthermore, we applied the MRT to evaluate the active drag (Da) and compared it with the passive drag (Dp) measured for the same swimmers. Da was estimated in five-stages for velocities ranging from 1.0 to 1.4 m s−1; Dp was measured at flow velocities ranging from 0.9 to 1.5 m s−1 at intervals of 0.1 m s−1. The variability in the values of Da at MRT was also investigated for two swimmers. According to the results, Da (Da = 32.3 v3.3, N = 30, R2 = 0.90) was larger than Dp (Dp = 23.5 v2.0, N = 42, R2 = 0.89) and the variability in Da for the two swimmers was 6.5% and 3.0%. MRT can be used to evaluate Da at various velocities and is special in that it can be applied to various swimming styles. Therefore, the evaluation of drag in swimming using MRT is expected to play a role in establishing the fundamental data for swimming.  相似文献   

4.
The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6 ± SD 1.2 years old) and 17 older (61.7 ± 5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip = 26.3 ± 13.5%, knee = 78.4 ± 32.2%, ankle = 27.9 ± 14.1%) compared to methods which do not account for these variations (hip = 23.5 ± 11.7%, knee = 51.7 ± 15.0%, ankle = 20.7 ± 10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.  相似文献   

5.
The effects of breathing on body roll have been previously investigated for the roll of the whole trunk only. The purposes of this study were: to calculate separately the shoulder roll (SR) and hip roll (HR) of swimmers during front crawl for non-breathing and preferred-side breathing conditions; to assess the differences in the magnitude and temporal characteristics of these variables between non-breathing and preferred-side breathing conditions; and to examine their association with swimming performance (indicated by swimming speed). Twelve male swimmers who competed at national and international level performed two maximum 25 m front crawl trials: one non-breathing and one with breathing to their preferred side. Performance was recorded with four below and two above water synchronised cameras. SR and HR in both trials were calculated for the breathing and non-breathing sides. The timings of SR and HR peaks to each side and at the positions of neutral roll were also calculated. Swimming speed was significantly slower in the breathing trial (p < 0.01). Swimmers rolled their shoulders and hips to the breathing side significantly more in the breathing than in the non-breathing trial (SR: p < 0.01; HR: p = 0.03). Nevertheless, there were no significant differences in the overall SR or HR between these trials. In the breathing trial, SR was higher in the breathing than in the non-breathing side (p < 0.01) but HR was not significantly different (p = 0.07). There was no evidence to suggest that temporal characteristics of SR or HR were associated with swimming performance.  相似文献   

6.
Metal-on-metal hip resurfacing patients demonstrate hip biomechanics closer to normal in comparison to total hip arthroplasty during gait. However, it is not clear how symmetric is the gait of hip resurfacing patients. Biomechanical data of 12 unilateral metal-on-metal hip resurfacing participants were collected during gait at a mean time of 45 months (SD 24) after surgery. Ankle, knee, hip, pelvis and trunk kinematics and kinetics of both sides were measured with a motion and force-capture system. Principal component analysis and mean hypothesis’ tests were used to compare the operated and healthy sides. The operated side had prolonged ankle eversion angle during late stance and delayed increased ankle inversion angle during early swing (p = 0.008; effect size = 0.70), increased ankle inversion moment during late stance (p = 0.001; effect size = 0.78), increased knee adduction angle during swing (p = 0.044; effect size = 0.57), decreased knee abduction moment during stance (p = 0.05; effect size = 0.40), decreased hip range of motion in the sagittal plane (p = 0.046; effect size = 0.56), decreased range of hip abduction moment during stance (p = 0.02; effect size = 0.63), increased hip range of motion in the transverse plane (p = 0.02; effect size = 0.62), decreased hip internal rotation moment during the transition from loading response to midstance (p = 0.001; effect size = 0.81) and increased trunk ipsilateral lean (p = 0.03; effect size = 0.60). Therefore, hip resurfacing patients have some degree of asymmetry in long term, which may be related to hip weakness and decreased range of motion, to foot misalignments and to strategies implemented to reduce loading on the operated hip. Interventions such as muscle strengthening and stretching, insoles and gait feedback training may help improving symmetry following hip resurfacing.  相似文献   

7.
Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0 ± 4.7 yrs, 1.80 ± 0.05 m, 74.5 ± 8.2 kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1 m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint’s contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking.  相似文献   

8.
The purpose of this study was to examine the moment generation of the human plantar flexors and the architecture of the gastrocnemius medialis muscle during and after shortening–stretch cycles in vivo. Fourteen male subjects (30 ± 7 years, 177 ± 7 cm, 80 ± 9 kg) performed a series of electro-stimulated shortening–stretch plantar flexion contractions. The shortening–stretch cycles were performed at three constant angular velocities (25°/s, 50°/s, 100°/s), two amplitudes (15° and 25° ankle angle changes) and at two different stimulation frequencies (30 Hz and 85 Hz). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. A three-way analysis of variance (amplitude × velocity × stimulation frequency) and post-hoc test with Bonferroni correction were used to check the amplitude, velocity and stimulation level related effects on moment enhancement (α = 0.05). The results show an ankle joint moment enhancement after shortening–stretch cycles influenced by muscle architectural changes. We found 2–3% isometric ankle joint moment enhancement at steady state, 1.5–2.0 s after the shortening–stretch cycle. However, the observed alteration in muscle architecture after the imposed perturbation, could lead to an underestimation (1–3%) of joint moment enhancement due to the force–length relationship of the triceps surae. Furthermore, the enhancement observed was independent of the shortening–stretch amplitude, velocity and stimulation frequency.  相似文献   

9.
Through convergent evolution tunas and lamnid sharks share thunniform swimming and a medial position of the red, aerobic swimming musculature. During continuous cruise swimming these muscles move uniformly out of phase with local body curvature and the surrounding white muscle tissue. This design results in thrust production primarily from the caudal fin rather than causing whole-body undulations. The common thresher shark (Family Alopiidae) is the only other fish known to share the same medial red muscle anatomy as the thunniform swimmers. However, the overall body shape and extremely heterocercal caudal fin of the common thresher is not shared with the thunniform swimmers, which have both fusiform bodies and high aspect-ratio, lunate caudal fins. Our study used sonomicrometry to measure the dynamics of red and white muscle movement in common thresher sharks swimming in the ocean to test whether the medial position of red muscle is associated with uncoupling of muscle shortening and local body bending as characteristic of thunniform swimmers. Common threshers (~ 60–100 kg) instrumented with sonomicrometric and electromyographic (EMG) leads swam alongside of the vessel with a tail-beat frequency of ~ 0.5 Hz. EMG signals confirmed that only the red muscle was active during sustained swimming. Despite the more medial position of the red muscle relative to the white muscle, its strain was approximately 1.5-times greater than that of the overlying white muscle, and there was a notable phase shift between strain trajectories in the red muscle and adjacent white muscle. These results suggest an uncoupling (shearing) of the red muscle from the adjacent white muscle. Although the magnitude of the phase shift between red and white muscle strain was relatively constant within individuals, it varied among sharks, ranging from near zero (red and white in phase) to almost 180° out of phase. This extent in variability has not been documented previously for thunniform swimmers with a medial red muscle position and may be a characteristic of the thresher's unique body and caudal fin morphology. Nonetheless, the uncoupling of red and white muscle strain remains a consistent character associated with fishes having a medially positioned red muscle.  相似文献   

10.
This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation.  相似文献   

11.
The purpose of this study was to describe, interpret and compare the EMG activation patterns of ankle muscles – tibialis anterior (TA), peroneus longus (PL) and gastrocnemius lateralis (GL) – in volleyball players with and without ankle functional instability (FI) during landing after the blocking movement. Twenty-one players with FI (IG) and 19 controls (CG) were studied. The cycle of movement analyzed was the time period between 200 ms before and 200 ms after the time of impact determined by ground reaction forces. The variables were analyzed for two different phases: pre-landing (200 ms before impact) and post-landing (200 ms after impact). The RMS values and the timing of onset activity were calculated for the three studied muscles, in both periods and for both groups. The co-activation index for TA and PL, TA and GL were also calculated. Individuals with FI presented a lower RMS value pre-landing for PL (CG = 43.0 ± 22.0; IG = 26.2 ± 8.4, p < 0.05) and higher RMS value post-landing (CG = 47.5 ± 13.3; IG = 55.8 ± 21.6, p < 0.10). Besides that, in control group PL and GL activated first and simultaneously, and TA presented a later activation, while in subjects with FI all the three muscles activated simultaneously. There were no significant differences between groups for co-activation index. Thus, the rate of contraction between agonist and antagonist muscles is similar for subjects with and without FI but the activation individually was different. Volleyball players with functional instability of the ankle showed altered patterns of the muscles that play an important role in the stabilization of the foot–ankle complex during the performance of the blocking movement, to the detriment of the ligament complex, and this fact could explain the usual complaints in these subjects.  相似文献   

12.
We investigated the effects of pH on movement behaviors of the harmful algal bloom causing raphidophyte Heterosigma akashiwo. Motility parameters from >8000 swimming tracks of individual cells were quantified using 3D digital video analysis over a 6-h period in 3 pH treatments reflecting marine carbonate chemistry during the pre-industrial era, currently, and the year 2100. Movement behaviors were investigated in two different acclimation-to-target-pH conditions: instantaneous exposure and acclimation of cells for at least 11 generations. There was no negative impairment of cell motility when exposed to elevated PCO2 (i.e., low pH) conditions but there were significant behavioral responses. Irrespective of acclimation condition, lower pH significantly increased downward velocity and frequency of downward swimming cells (p < 0.001). Rapid exposure to lower pH resulted in 9% faster downward vertical velocity and up to 19% more cells swimming downwards (p < 0.001). Compared to pH-shock experiments, pre-acclimation of cells to target pH resulted in ~30% faster swimming speed and up to 46% faster downward velocities (all p < 0.001). The effect of year 2100 PCO2 levels on population diffusivity in pre-acclimated cultures was >2-fold greater than in pH-shock treatments (2.2 × 105 μm2 s−1 vs. 8.4 × 104 μm2 s−1). Predictions from an advection-diffusion model, suggest that as PCO2 increased the fraction of the population aggregated at the surface declined, and moved deeper in the water column. Enhanced downward swimming of H. akashiwo at low pH suggests that these behavioral responses to elevated PCO2 could reduce the likelihood of dense surface slick formation of H. akashiwo through reductions in light exposure or growth independent surface aggregations. We hypothesize that the HAB alga's response to higher PCO2 may exploit the signaling function of high PCO2 as indicative of net heterotrophy in the system, thus indicative of high predation rates or depletion of nutrients.  相似文献   

13.
Sixteen subjects (aged 54.2 ± 14.1 years) with hemiparesis (7.9 ± 7.1 years since diagnosis) demonstrating a foot-drop and hamstrings muscle weakness were fitted with a dual-channel functional electrical stimulation (FES) system activating the dorsiflexors and hamstrings muscles. Measurements of gait performance were collected after a conditioning period of 6 weeks, during which the subjects used the system throughout the day. Gait was assessed with and without the dual-channel FES system, as well as with peroneal stimulation alone. Outcomes included lower limb kinematics and the step length taken with the non-paretic leg. Results with the dual-channel FES indicate that in the subgroup of subjects who demonstrated reduced hip extension but no knee hyperextension (n = 9), hamstrings FES increased hip extension during terminal stance without affecting the knee. Similarly, in the subgroup of subjects who demonstrated knee hyperextension but no limitation in hip extension (n = 7), FES restrained knee hyperextension without having an impact on hip movement. Additionally, step length was increased in all subjects. The peroneal FES had a positive effect only on the ankle. The results suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect lower limb control beyond that which can be attributed to peroneal stimulation alone.  相似文献   

14.
《Endocrine practice》2020,26(2):161-166
Objective: Hypothyroidism is associated with an increased risk of atherosclerosis. Pulse wave velocity (PWV) is an index of arterial wall stiffness widely used for noninvasive assessment of early atherosclerosis. We assessed PWV in Egyptian patients with hypothyroidism.Methods: The study included 100 Egyptian females aged 18 to 55 years. They were classified into three groups: group I, 40 women with overt hypothyroidism; group II, 40 women with subclinical hypothyroidism; and group III, 20 euthyroid women as a control group. The three groups were age matched. Doppler ultrasonography was used to calculate the heart-femoral PWV.Results: PWV was significantly higher in women with overt and subclinical hypothyroidism as compared with the control group (9.55 ± 1.81 m/s and 9.30 ± 1.28 m/s, respectively vs. 7.82 ± 2.14 m/s; P<.001 and <.01, respectively). There was a positive correlation between thyroid-stimulating hormone (TSH) and PWV in women with overt hypothyroidism and in those with subclinical hypothyroidism (P<.05 for both). Multivariate regression analysis showed that age and diastolic blood pressure were independent determinants of PWV in women with overt and subclinical hypothyroidism (P<.01 for all). TSH was also an independent determinant of PWV in both groups (P<.05 for both).Conclusion: PWV is significantly higher in Egyptian women with overt and subclinical hypothyroidism as compared with normal control subjects. This denotes early increase in arterial wall stiffness in patients with hypothyroidism, even in the subclinical phase. The positive correlation between PWV and TSH in both groups of patients suggests that the risk of atherosclerosis is proportionate to the severity of hypothyroidism.Abbreviations: ABI = ankle/brachial index; baPWV = brachial-ankle pulse wave velocity; BP = blood pressure; CIMT = carotid intima-media thickness; ECG = electrocardiogram; FT4 = free thyroxine; HDL = high-density lipoprotein; hfPWV = heart-femoral pulse wave velocity; LDL = low-density lipoprotein; PTT = pulse transit time; PWV = pulse wave velocity; SCH = subclinical hypothyroidism; TSH = thyroid-stimulating hormone  相似文献   

15.
The purpose of this investigation was to compare the blood lactate concentration ([La]), stroke distance (D(s)), and swim index (SI) during an incremental swim test (IST) in elite swimmers who had a loss in mobility (LM) (n = 6) or who had full mobility (FM) (n = 5) of the lower limbs. The IST consisted of 5 repeats of either 100 or 200 m front crawl depending upon the ability level of the swimmer. The [La] and heart rate measured during the IST showed no significant differences (p > 0.05). However, velocity (V(s)) and D(s) were all significantly lower (p < 0.01) during the IST. SI was significantly (p < 0.01) lower during repeats 1 to 3 and 5, but not repeat 4. These data indicate that the [La] response to incremental exercise is similar during incremental front crawl activity in swimmers suffering from loss of lower limb mobility. However, a critical V(s) is reached in LM swimmers where swimming efficiency is optimal compared with FM swimmers.  相似文献   

16.
Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70 ± 0.19 m/s vs 1.72 ± 0.20 m/s, respectively) and running (4.04 ± 0.17 m/s vs 4.10 ± 0.13 m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p < 0.05–0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p < 0.01) leading to an increase in frontal plane moments at the hip (p < 0.05) and knee (p < 0.05) joints and a reduction at the ankle joint (p < 0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking.  相似文献   

17.
《Zoology (Jena, Germany)》2015,118(5):320-324
Crocodiles show oriented responses to water surface wave stimuli but up to now behavioral thresholds are missing. This study determines the behavioral thresholds of crocodilians to water surface waves. Nile crocodiles (Crocodylus niloticus) were conditioned to respond to single-frequency water surface wave stimuli (duration 1150 ms, frequency 15, 30, 40, 60 and 80 Hz), produced by blowing air onto the water surface. Our study shows that C. niloticus is highly sensitive to capillary water surface waves. Threshold values decreased with increasing frequency and ranged between 10.3 μm (15 Hz) and 0.5 μm (80 Hz) peak-to-peak wave amplitude. For the frequencies 15 Hz and 30 Hz the sensitivity of one spectacled caiman (Caiman crocodilus) to water surface waves was also tested. Threshold values were 12.8 μm (15 Hz) down to 1.76 μm (30 Hz), i.e. close to the threshold values of C. niloticus. The surface wave sensitivity of crocodiles is similar to the surface wave sensitivity of semi-aquatic insects and fishing spiders but does not match the sensitivity of surface-feeding fishes which is higher by one to two orders of magnitude.  相似文献   

18.
It is believed that force feedback can modulate lower extremity extensor activity during gait. The purpose of this research was to determine the role of limb loading on knee extensor excitability during the late stance/early swing phase of gait in persons post-stroke. Ten subjects with chronic hemiparesis post-stroke participated in (1) seated isolated quadriceps reflex testing with ankle loads of 0–0.4N m/kg and (2) gait analysis on a treadmill with 0%, 20% or 40% body weight support. Muscle reflex responses were recorded from vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during seated testing. Knee kinematics and quadriceps activity during late stance/early swing phase of gait were compared across loading conditions. Although isolated loading of the ankle plantarflexors at 0.2 N m/kg reduced VM prolonged response (p = 0.04), loading did not alter any other measure of quadriceps excitability (all p > 0.08). During gait, the use of BWS did not influence knee kinematics (p = 0.18) or muscle activity (all p > 0.17) during late stance/early swing phase. This information suggests that load sensed at the ankle has minimal effect on the ipsilateral quadriceps of individuals post-stroke during late stance. It appears that adjusting limb loading during rehabilitation may not be an effective tool to address stiff-knee gait following stroke.  相似文献   

19.
Diatoms are broadly present in marine habitats and often dominate seasonal phytoplankton blooms in polar and temperate latitudes. Certain species produce polyunsaturated aldehydes upon mechanical wounding caused by mesozooplankton grazing. Ample evidence is available on toxin-induced reproductive failure in copepods, yet their behavioral effects remain unclear. Here we present results of laboratory experiments in which we investigated the immediate effects of the diatom-derived aldehyde 2-trans, 4-trans decadienal on the three-dimensional swimming behavior of the calanoid copepod Pseudodiaptomus annandalei. Short-term direct exposure to the toxin at 3 μM, 6 μM and 12 μM induced hyperactivity in the three adult states, as evidenced by a marked and dose-dependent increase in the number of trajectories. It also caused a higher proportion of vertical movements. In males and ovigerous females exposed to decadienal at 3 μM and 6 μM, hyperactivity came with an equally specific dose-dependent decrease in swimming speed. Males and ovigerous females swam faster at 12 μM than at 6 μM, suggesting a complex mode of action of the toxin. In non-ovigerous females, decadienal had little effects on swimming speed, supporting the assumption that female copepods are less affected by certain environmental stressors. Multifractal analysis revealed differences in the statistical properties of the swimming behavior between experimental conditions. The moment structure function of the displacement appeared to be moderately multifractal in the three adult states swimming in control water. Ethanol as carrier solvent at 200 ppm caused an increase in swimming speed and a switch toward a more ballistic motion in males and ovigerous females. On the opposite, exposure to the toxin reduced or cancelled the effects of ethanol and resulted in a more Brownian motion for high moment values. Decadienal had little effects on the behavior of non-ovigerous females except at the highest concentration. Our results demonstrate that decadienal, a model diatom aldehyde, impairs the behavior of adult copepods. They provide further information on the interaction between diatoms and their main predator.  相似文献   

20.
The purpose of the present study was to determine how humans adjust leg stiffness over a range of hopping frequencies. Ten male subjects performed in place hopping on two legs, at three frequencies (1.5, 2.2, and 3.0 Hz). Leg stiffness, joint stiffness and touchdown joint angles were calculated from kinetic and/or kinematics data. Electromyographic activity (EMG) was recorded from six leg muscles. Leg stiffness increased with an increase in hopping frequency. Hip and knee stiffnesses were significantly greater at 3.0 Hz than at 1.5 Hz. There was no significant difference in ankle stiffness among the three hopping frequencies. Although there were significant differences in EMG activity among the three hopping frequencies, the largest was the 1.5 Hz, followed by the 2.2 Hz and then 3.0 Hz. The subjects landed with a straighter leg (both hip and knee were extended more) with increased hopping frequency. These results suggest that over the range of hopping frequencies we evaluated, humans adjust leg stiffness by altering hip and knee stiffness. This is accomplished by extending the touchdown joint angles rather than by altering neural activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号