首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular alignment studies have shown that cell orientation has a large effect on the expression and behavior of cells. Cyclic strain and substrate microtopography have each been shown to regulate cellular alignment. This study examined the combined effects of these two stimuli on the alignment of bovine vascular smooth muscle cells (VSMCs). Cells were cultured on substrates with microgrooves of varying widths oriented either parallel or perpendicular to the direction of an applied cyclic tensile strain. We found that microgrooves oriented parallel to the direction of the applied strain limited the orientation response of VSMCs to the mechanical stimulus, while grooves perpendicular to the applied strain enhanced cellular alignment. Further, the extent to which parallel grooves limited cell alignment was found to be dependent on the groove width. It was found that for both a small (15microm) and a large (70microm) groove width, cells were better able to reorient in response to the applied strain than for an intermediate groove width (40microm). This study indicates that microtopographical cues modulate the orientation response of VSMCs to cyclic strain. The results suggest that there is a range of microgroove dimensions that is most effective at maintaining the orientation of the cells in the presence of an opposing stimulus induced by cyclic strain.  相似文献   

2.
Previous studies have suggested that heparin-like glycosaminoglycans may be endogenous inhibitors of smooth muscle proliferation in the vessel wall. The purpose of this study was to determine the effects of exogenous glycosaminoglycans on rat vascular (aortic) smooth muscle cell migration following wounding in vitro. Our data indicate that heparin and related molecules (iota carrageenan, dextran sulfate), but not other glycosaminoglycans (hyaluronate, chondroitin, and dermatan sulfates), inhibit smooth muscle cell motility in a cell-specific, dose-dependent, and reversible fashion. The effect of heparin was maximal (60% inhibition) at 10 μg/ml; a half-maximal effect was observed at 1 μg/ml; Heparin did not significantly affect the migration of bovine aortic endothelium or Swiss 3T3 cells. These observations support the concept that heparin-like glycosaminoglycans may be important regulators of vascular smooth muscle cell function.  相似文献   

3.
4.
平滑肌细胞(vascular smooth muscle cell,VSMC)的迁移对血管发育、动脉粥样硬化和术后再狭窄等起到关键性的作用。主要从激发VSMC迁移的关键炎性细胞因子、细胞间相互作用的核心成员、microRNA、细胞骨架和上述各因素的迁移信号通路这几方面来综述VSMC的迁移。  相似文献   

5.
Cyclic mechanical strain has been demonstrated to enhance the development and function of engineered smooth muscle (SM) tissues, but appropriate scaffolds for engineering tissues under conditions of cyclic strain are currently lacking. These scaffolds must display elastic behavior, and be capable of inducing an appropriate smooth muscle cell (SMC) phenotype in response to mechanical signals. In this study, we have characterized several scaffold types commonly utilized in tissue engineering applications in order to select scaffolds that exhibit elastic properties under appropriate cyclic strain conditions. The ability of the scaffolds to promote an appropriate SMC phenotype in engineered SM tissues under cyclic strain conditions was subsequently analyzed. Poly(L-lactic acid)-bonded polyglycolide fiber-based scaffolds and type I collagen sponges exhibited partially elastic mechanical properties under cyclic strain conditions, although the synthetic polymer scaffolds demonstrated significant permanent deformation after extended times of cyclic strain application. SM tissues engineered with type I collagen sponges subjected to cyclic strain were found to contain more elastin than control tissues, and the SMCs in these tissues exhibited a contractile phenotype. In contrast, SMCs in control tissues exhibited a structure more consistent with the nondifferentiated, synthetic phenotype. These studies indicate the appropriate choice of a scaffold for engineering tissues in a mechanically dynamic environment is dependent on the time frame of the mechanical stimulation, and elastic scaffolds allow for mechanically directed control of cell phenotype in engineered tissues.  相似文献   

6.
The biological actions of LIGHT, a member of the tumor necrosis factor superfamily, are mediated by the interaction with lymphotoxin-beta receptor (LTbetaR) and/or herpes virus entry mediator (HVEM). Previous study demonstrated high-level expressions of LIGHT and HVEM receptors in atherosclerotic plaques. To investigate the role of LIGHT in the functioning of macrophages and vascular smooth muscle cells (VSMC) in relation to atherogenesis, we determined the effects of LIGHT on macrophage migration and VSMC proliferation. We found LIGHT through HVEM activation can induce both events. LIGHT-induced macrophage migration was associated with activation of signaling kinases, including MAPKs, PI3K/Akt, NF-kappaB, Src members, and FAK. Proliferation of VSMC was also shown relating to the activation of MAPKs, PI3K/Akt, and NF-kappaB, which consequently led to alter the expression of cell cycle regulatory molecules. Down-regulation of p21, p27, and p53, and inversely up-regulation of cyclin D and RB hyper-phosphorylation were demonstrated. In conclusion, LIGHT acts as a novel mediator for macrophage migration and VSMC proliferation, suggesting its involvement in the atherogenesis.  相似文献   

7.
8.
9.
Vascular smooth muscle cells (SMCs) populate in the media of the blood vessel, and play an important role in the control of vasoactivity and the remodeling of the vessel wall. Blood vessels are constantly subjected to hemodynamic stresses, and the pulsatile nature of the blood flow results in a cyclic mechanical strain in the vessel walls. Accumulating evidence in the past two decades indicates that mechanical strain regulates vascular SMC phenotype, function and matrix remodeling. Bone marrow mesenchymal stem cell (MSC) is a potential cell source for vascular regeneration therapy, and may be used to generate SMCs to construct tissue-engineered vascular grafts for blood vessel replacements. In this review, we will focus on the effects of mechanical strain on SMCs and MSCs, e.g., cell phenotype, cell morphology, cytoskeleton organization, gene expression, signal transduction and receptor activation. We will compare the responses of SMCs and MSCs to equiaxial strain, uniaxial strain and mechanical strain in three-dimensional culture. Understanding the hemodynamic regulation of SMC and MSC functions will provide a basis for the development of new vascular therapies and for the construction of tissue-engineered vascular grafts.  相似文献   

10.
11.
Urocortin (UCN) protects hearts against ischemia and reperfusion injury whether given before ischemia or at reperfusion. Here we investigate the roles of PKC, reactive oxygen species, and the mitochondrial permeability transition pore (MPTP) in mediating these effects. In Langendorff-perfused rat hearts, acute UCN treatment improved hemodynamic recovery during reperfusion after 30 min of global ischemia; this was accompanied by less necrosis (lactate dehydrogenase release) and MPTP opening (mitochondrial entrapment of 2-[(3)H]deoxyglucose). UCN pretreatment protected mitochondria against calcium-induced MPTP opening, but only if the mitochondria had been isolated from hearts after reperfusion. These mitochondria also exhibited less protein carbonylation, suggesting that UCN decreases levels of oxidative stress. In isolated adult and neonatal rat cardiac myocytes, both acute (60 min) and chronic (16 h) treatment with UCN reduced cell death following simulated ischemia and re-oxygenation. This was accompanied by less MPTP opening as measured using tetramethylrhodamine methyl ester. The level of oxidative stress during reperfusion was reduced in cells that had been pretreated with UCN, suggesting that this is the mechanism by which UCN desensitizes the MPTP to reperfusion injury. Despite the fact that we could find no evidence that either PKC-epsilon or PKC-alpha translocate to the mitochondria following acute UCN treatment, inhibition of PKC with chelerythrine eliminated the effect of UCN on oxidative stress. Our data suggest that acute UCN treatment protects the heart by inhibiting MPTP opening. However, the mechanism appears to be indirect, involving a PKC-mediated reduction in oxidative stress.  相似文献   

12.
Airway smooth muscle adapts to different lengths with functional changes that suggest plastic alterations in the filament lattice. To look for structural changes that might be associated with this plasticity, we studied the relationship between isometric force generation and myosin thick filament density in cell cross sections, measured by electron microscope, after length oscillations applied to the relaxed porcine trachealis muscle. Muscles were stimulated regularly for 12 s every 5 min. Between two stimulations, the muscles were submitted to repeated passive +/- 30% length changes. This caused tetanic force and thick-filament density to fall by 21 and 27%, respectively. However, in subsequent tetani, both force and filament density recovered to preoscillation levels. These findings indicate that thick filaments in airway smooth muscle are labile, depolymerization of the myosin filaments can be induced by mechanical strain, and repolymerization of the thick filaments underlies force recovery after the oscillation. This thick-filament lability would greatly facilitate plastic changes of lattice length and explain why airway smooth muscle is able to function over a large length range.  相似文献   

13.
The migration and proliferation of vascular smooth muscle cells (VSMCs) are essential elements during the development of atherosclerosis and restenosis. An increasing number of studies have reported that extracellular matrix (ECM) proteins, including the CCN protein family, play a significant role in VSMC migration and proliferation. CCN4 is a member of the CCN protein family, which controls cell development and survival in multiple systems of the body. Here, we sought to determine whether CCN4 is involved in VSMC migration and proliferation. We examined the effect of CCN4 using rat cultured VSMCs. In cultured VSMCs, CCN4 stimulated the adhesion and migration of VSMCs in a dose-dependent manner, and this effect was blocked by an antibody for integrin α5β1. CCN4 expression was enhanced by the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). Furthermore, knockdown of CCN4 by siRNA significantly inhibited the VSMC proliferation. CCN4 also could up-regulate the expression level of marker proteins of the VSMCs phenotype. Taken together, these results suggest that CCN4 is involved in the migration and proliferation of VSMCs. Inhibition of CCN4 may provide a promising strategy for the prevention of restenosis after vascular interventions.  相似文献   

14.
Vascular smooth muscle cells (VSMC) are the principal cellular component of the blood vessel wall where they exist in a differentiated state to maintain vascular tone. However, VSMC are not terminally differentiated and can be induced to dediffentiate, proliferate, and migrate. In fact, smooth muscle cell migration from the vascular wall into the lumen of the vessel is a central feature of occlusive vascular pathologies including atherosclerosis and intimal hyperplasia. In vitro, in the presence of an extracellular matrix, cultured vascular smooth muscle cells can migrate and invade the underlying gelatinous matrix, form multicellular nodular aggregations, and secrete the glycoprotein clusterin. Nodular cultures appear to mimic some of the properties of differentiated VSMC, in vivo. Here, to test the hypothesis that clusterin functions to modulate the formation of VSMC nodules and to facilitate cell migration a clusterin negative VSMC clone, SM-CLU13AS (Moulson and Millis, 1999, J Cell Physiol 180:355), was transiently transfected with plasmid pRcCMVCLU that contains the full-length porcine clusterin cDNA sequence under control of the CMV promoter. The transiently transfected VSMC culture expressed and secreted clusterin and formed nodules. To determine if clusterin regulates VSMC migration we used modified Boyden chamber assays. Clusterin, at 10 microg/ml, clearly promotes VSMC migration. In addition, a 15 amino acid synthetic peptide, representing amino acids 118-132 [KQTCMKFYARVCRSG] of the mature clusterin polypeptide, inhibits VSMC attachment to gelatinous substrate. Finally, clusterin appears to have a role in regulating endogenous clusterin expression in the clusterin negative clone. These results clearly establish that clusterin has functional role in VSMC nodule formation and support the conclusion that clusterin is a critical component of smooth muscle cell phenotypic modulation.  相似文献   

15.
16.
17.

Background

As a key subunit of the exocyst complex, Exo70 has highly conserved sequence and is widely found in yeast, mammals, and plants. In yeast, Exo70 mediates the process of exocytosis and promotes anchoring and integration of vesicles with the plasma membrane. In mammalian cells, Exo70 is involved in maintaining cell morphology, cell migration, cell connection, mRNA splicing, and other physiological processes, as well as participating in exocytosis. However, Exo70’s function in mammalian cells has yet to be fully recognized. In this paper, the expression of Exo70 and its role in cell migration were studied in a rat vascular smooth muscle cell line A7r5.

Methods

Immunofluorescent analysis the expression of Exo70, α-actin, and tubulin in A7r5 cells showed a co-localization of Exo70 and α-actin, we treated the cells with cytochalasin B to depolymerize α-actin, in order to further confirm the co-localization of Exo70 and α-actin. We analyzed Exo70 co-localization with actin at the edge of migrating cells by wound-healing assay to establish whether Exo70 might play a role in cell migration. Next, we analyzed the migration and invasion ability of A7r5 cells before and after RNAi silencing through the wound healing assay and transwell assay.

Results

The mechanism of interaction between Exo70 and cytoskeleton can be clarified by the immunoprecipitation techniques and wound-healing assay. The results showed that Exo70 and α-actin were co-localized at the leading edge of migrating cells. The ability of A7r5 to undergo cell migration was decreased when Exo70 expression was silenced by RNAi. Reducing Exo70 expression in RNAi treated A7r5 cells significantly lowered the invasion and migration ability of these cells compared to the normal cells. These results indicate that Exo70 participates in the process of A7r5 cell migration.

Conclusions

This research is importance for the study on the pathological process of vascular intimal hyperplasia, since it provides a new research direction for the treatment of cardiovascular diseases such as atherosclerosis and restenosis after balloon angioplasty.
  相似文献   

18.
Focal adhesion kinase (FAK) and integrin-linked kinase (ILK) are both involved in integrin-mediated cell migration. However, the molecular mechanism, and the relationship between FAK and ILK activity in signaling transduction for the osteopontin (OPN)-induced migration of vascular smooth muscle cells (VSMCs) remain unclear. Here, we show that treating VSMCs with OPN could result in the dissociation of FAK with ILK by inducing phosphorylation of the former and dephosphorylation of the latter. Furthermore, we demonstrate that FAK phosphorylation induced by OPN is coupled with ILK dephosphorylation. We also provide evidence that ILK acts downstream of FAK in the signaling pathways that mediate OPN-induced VSMC migration. These findings suggest that FAK phosphorylation and ILK dephosphorylation play important roles in VSMC migration induced by OPN.  相似文献   

19.
白介素-10抑制TNF-α诱导的血管平滑肌细胞增殖   总被引:7,自引:0,他引:7  
OuYang P  Peng LS  Yang H  Wu WY  Xu AL 《生理学报》2002,54(1):79-82
研究观察了重组人白介素 10 (rhIL 10 )对肿瘤坏死因子 (TNF α)刺激的离体大鼠胸主动脉血管平滑肌细胞增殖、细胞周期及对p4 4 /p4 2丝裂素活化蛋白激酶的影响。实验培养大鼠主动脉血管平滑肌细胞 ,采用MTS/PES法确定血管平滑肌细胞 (vascularsmoothmusclecells,VSMCs)的增殖状态 ;应用流式细胞术测定细胞周期 ;利用p4 4 / 4 2磷酸化抗MAPK抗体的蛋白免疫印迹法测定MAPK蛋白表达。结果显示 :( 1)TNF α处理组与对照组相比 ,TNF α对VSMC增殖具有明显的刺激作用 (P <0 0 5 )。rhIL 10单独应用对VSMCs生长没有影响 (P >0 0 5 )。在TNF α刺激下 ,低至 10ng/ml的rhIL 10可抑制VSMCs的生长 (P <0 0 5 )。流式细胞术测定的结果显示 ,rhIL 10分别可使TNF α作用下的VSMC大部分处于G0 /G1期 ,与对照组相比有明显差异 (P <0 0 1)。 ( 2 )TNF α对p4 4 /p4 2MAPK蛋白表达有显著的增强作用 ,此作用可被rhIL 10抑制。结果提示 ,rhIL 10可抑制TNF α诱导的VSMC增殖及p4 4 /p4 2丝裂素活化蛋白激酶的表达  相似文献   

20.
Cultured rat aortic vascular smooth muscle cells (VSMC) express both cGMP- inhibited cAMP phosphodiesterase (PDE-3) and Ro,20-1724-inhibited cAMP phosphodiesterase (PDE-4) activities. Utilizing a PDE-3-selective inhibitor (cilostamide) and a PDE-4-selective inhibitor (Ro,20-1724), PDE-3 and PDE-4 activities were shown to account for 15 and 55% of total VSMC cAMP phosphodiesterase (PDE) activity. Incubations of VSMC with either forskolin or 8-bromo-cAMP caused a concentration- and time-dependent increase in total cellular cAMP PDE activity. In these cells, both PDE-3 and PDE-4 activities were increased, with a relatively larger effect observed on PDE-3 activity. Similar incubations with an activator of soluble guanylyl cyclase (sodium nitroprusside) or with 8-bromo-cGMP did not increase cAMP PDE activity. cAMP-induced increases in cAMP PDE activity were inhibited with actinomycin D or cycloheximide, demonstrating that new mRNA and protein synthesis were required. We conclude that VSMC cAMP PDE activity is elevated following long-term elevation of cAMP, and that increases in PDE-3 and PDE-4 activities account for more than 70% of this increase. These results may have implications for long-term use of cAMP PDE inhibitors as therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号