首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional flexible channel model of the vocal folds coupled with an unsteady one-dimensional flow model is presented for an analysis of the mechanism of phonation. The vocal fold is approximated by springs and dampers distributed in the main flow direction that are enveloped with an elastic cover. In order to approximate three-dimensional collision of the vocal folds using the two-dimensional model, threshold values for the glottal width are introduced. The numerical results show that the collision plays an important role in speech sound, especially for higher resonant frequency components, because it causes the source sound to include high-frequency components.  相似文献   

2.
The spatial dimensionality of the vocal fold vibration is a common challenge in creating parsimonious models of vocal fold vibration. The ideal model is one that is accurate, with the lowest possible computational expense. Inclusion of full 3D flow and structural vibration typically requires massive amounts of computation, whereas reduction of either the flow or the structure to two dimensions eliminates certain aspects of physical reality, thus making the resulting models less accurate. Previous 2D models of the vocal fold structure have utilized a plane strain formulation, which is shown to be an erroneous modeling approach since it ignores influential stress components. We herein present a 2D/3D hybrid vocal fold model that preserves three-dimensional effects of length and longitudinal shear stresses, while taking advantage of a two-dimensional computational domain. The resulting model exhibits static and dynamic responses comparable to a 3D model, and retains the computational advantage of a two-dimensional model.  相似文献   

3.
The authors test the hypothesis that vocal fold morphology and biomechanical properties covary with species‐specific vocal function. They investigate mule deer (Odocoileus hemionus) vocal folds, building on, and extending data on a related cervid, the Rocky Mountain elk (Cervus elaphus nelsoni). The mule deer, in contrast to the elk, is a species with relatively little vocal activity in adult animals. Mule deer and elk vocal folds show the typical three components of the mammalian vocal fold (epithelium, lamina propria and thyroarytenoid muscle). The vocal fold epithelium and the lamina propria were investigated in two sets of tensile tests. First, creep rupture tests demonstrated that ultimate stress in mule deer lamina propria is of the same magnitude as in elk. Second, cyclic loading tests revealed similar elastic moduli for the vocal fold epithelium in mule deer and elk. The elastic modulus of the lamina propria is also similar between the two species in the low‐strain region, but differs at strains larger than 0.3. Sex differences in the stress–strain response, which have been reported for elk and human vocal folds, were not found for mule deer vocal folds. The laminae propriae in mule deer and elk vocal folds are comparatively large. In general, a thick and uniformly stiff lamina propria does not self‐oscillate well, even when high subglottic pressure is applied. If the less stiff vocal fold seen in elk is associated with a differentiated lamina propria it would allow the vocal fold to vibrate at high tension and high subglottic pressure. The results of this study support the hypothesis that viscoelastic properties of vocal folds varies with function and vocal behavior. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
The authors present their 30 years' experience with expiration reflex. The reflex can be elicited from vocal folds by mechanical, chemical or electrical stimulation of the superior laryngeal nerve of man and laboratory animals, except mice and rats. It manifests itself by a short, forcible expiratory effort without a preceding inspiration which is indispensable for cough effort. The role of expiration reflex is to prevent penetration of foreign bodies into airways, expelling phlegm and detritus from subglottal area. The initial inspiration before expiration is undesired and could lead to inspiration pneumonia. The reflex is well known to laryngologists as '"laryngeal cough." Its receptors are small in number, localised mainly in medial margin of vocal folds deep in mucosa which can explain their stability in pathological conditions of the larygx. Afferentiation of the reflex is via laryngeal nerve similarly to sneezing and cough. Expiration reflex is not co-ordinated by a single "centre" but rather by a network system in the brain stem. Its motor pattern is supposedly produced by "multifunctional" population of medullar neurones in Botzinger complex and the rostral ventral respiratory group involved also in the genesis of breathing and cough. However, in cats also other neurones may play a vital role in production, shaping and mediation of the motor pattern of respiratory reflex, localised in rostral pons, lateral tegmental field or in the raphe medullar midline.  相似文献   

5.
6.
7.
To increase our understanding of pathological and healthy voice production, quantitative measurement of the medial surface dynamics of the vocal folds is significant, albeit rarely performed because of the inaccessibility of the vocal folds. Using an excised hemilarynx methodology, a new calibration technique, herein referred to as the linear approximate (LA) method, was introduced to compute the three-dimensional coordinates of fleshpoints along the entire medial surface of the vocal fold. The results were compared with results from the direct linear transform. An associated error estimation was presented, demonstrating the improved accuracy of the new method. A test on real data was reported including computation of quantitative measurements of vocal fold dynamics.  相似文献   

8.
Kutta H  Steven P  Varoga D  Paulsen FP 《Peptides》2004,25(5):811-818
TFF peptides (formerly P domain peptides, trefoil factors) are typical secretory products of mucin-producing cells and are thought to influence the rheological properties of mucous gels. We investigated the localization of these peptides in the human false vocal folds of the larynx, also known as the ventricular folds or vestibular folds. An analysis of TFF peptide mRNA by RT-PCR and TFF protein by Western blot detected TFF1 and TFF3, but not TFF2. Immunohistochemistry revealed TFF1 to be associated with the secretory product of goblet cells and mucous parts of subepithelial seromucous glands. TFF3 occurred in columnar epithelial cells of the mucosa and in serous cells and excretory duct cells of seromucous glands. These peptides may play a role in the rheological function of mucus secreted onto the true vocal folds and are thus important constituents of vocal production.  相似文献   

9.
10.
Cartilage maintains its integrity in a hostile mechanical environment. This task is made more difficult because cartilage has no blood supply, and so nutrients and growth factors need to be transported greater distances than normal to reach cells several millimetres from the cartilage surface. The chondrocytes embedded within the extracellular matrix (ECM) are essential for maintaining the mechanical integrity of the ECM, through a balance of degradation and synthesis of collagen and proteoglycans. A chondrocyte senses various chemical and mechanical signals in its local microenvironment, responding by appropriate adaption of the local ECM. Clearly a 'systems understanding' of cartilage behaviour is of critical importance in developing an integrated understanding of both normal and abnormal physiology of cartilage. In a series of papers, we have developed a reactive-transport porous-media model to investigate the coupled processes of growth factor transport, mechanical deformation and fluid flow, and in this paper, we extend the model to include biosynthesis and degradation of matrix molecules. The model is validated using three independent experimental data sets, it being found that a single set of parameters described the experimental results remarkably well. The model is then employed to make predictions about changes in proteoglycan content under a variety of conditions. This model may prove useful in predicting the behaviour of tissue engineering constructs, or predicting the outcome of repair processes in cartilage.  相似文献   

11.
Jitter, in voice production applications, is a random phenomenon characterized by the deviation of the glottal cycle length with respect to a mean value. Its study can help in identifying pathologies related to the vocal folds according to the values obtained through the different ways to measure it. This paper aims to propose a stochastic model, considering three control parameters, to generate jitter based on a deterministic one-mass model for the dynamics of the vocal folds and to identify parameters from the stochastic model taking into account real voice signals experimentally obtained. To solve the corresponding stochastic inverse problem, the cost function used is based on the distance between probability density functions of the random variables associated with the fundamental frequencies obtained by the experimental voices and the simulated ones, and also on the distance between features extracted from the voice signals, simulated and experimental, to calculate jitter. The results obtained show that the model proposed is valid and some samples of voices are synthesized considering the identified parameters for normal and pathological cases. The strategy adopted is also a novelty and mainly because a solution was obtained. In addition to the use of three parameters to construct the model of jitter, it is the discussion of a parameter related to the bandwidth of the power spectral density function of the stochastic process to measure the quality of the signal generated. A study about the influence of all the main parameters is also performed. The identification of the parameters of the model considering pathological cases is maybe of all novelties introduced by the paper the most interesting.  相似文献   

12.
13.
14.
Klemuk SA  Riede T  Walsh EJ  Titze IR 《PloS one》2011,6(11):e27029
Vocal production requires active control of the respiratory system, larynx and vocal tract. Vocal sounds in mammals are produced by flow-induced vocal fold oscillation, which requires vocal fold tissue that can sustain the mechanical stress during phonation. Our understanding of the relationship between morphology and vocal function of vocal folds is very limited. Here we tested the hypothesis that vocal fold morphology and viscoelastic properties allow a prediction of fundamental frequency range of sounds that can be produced, and minimal lung pressure necessary to initiate phonation. We tested the hypothesis in lions and tigers who are well-known for producing low frequency and very loud roaring sounds that expose vocal folds to large stresses. In histological sections, we found that the Panthera vocal fold lamina propria consists of a lateral region with adipocytes embedded in a network of collagen and elastin fibers and hyaluronan. There is also a medial region that contains only fibrous proteins and hyaluronan but no fat cells. Young's moduli range between 10 and 2000 kPa for strains up to 60%. Shear moduli ranged between 0.1 and 2 kPa and differed between layers. Biomechanical and morphological data were used to make predictions of fundamental frequency and subglottal pressure ranges. Such predictions agreed well with measurements from natural phonation and phonation of excised larynges, respectively. We assume that fat shapes Panthera vocal folds into an advantageous geometry for phonation and it protects vocal folds. Its primary function is probably not to increase vocal fold mass as suggested previously. The large square-shaped Panthera vocal fold eases phonation onset and thereby extends the dynamic range of the voice.  相似文献   

15.
Studies suggest that fluid motion in the extracellular space may be involved in the cellular mechanosensitivity at play in the bone tissue adaptation process. Previously, the authors developed a mesoscale predictive structural model of the femur using truss elements to represent trabecular bone, relying on a phenomenological strain-based bone adaptation algorithm. In order to introduce a response to bending and shear, the authors considered the use of beam elements, requiring a new formulation of the bone adaptation drivers. The primary goal of the study presented here was to isolate phenomenological drivers based on the results of a mechanistic approach to be used with a beam element representation of trabecular bone in mesoscale structural modelling. A single-beam model and a microscale poroelastic model of a single trabecula were developed. A mechanistic iterative adaptation algorithm was implemented based on fluid motion velocity through the bone matrix pores to predict the remodelled geometries of the poroelastic trabecula under 42 different loading scenarios. Regression analyses were used to correlate the changes in poroelastic trabecula thickness and orientation to the initial strain outputs of the beam model. Linear (\(R^2>0.998\)) and third-order polynomial (\(R^2 >0.98\)) relationships were found between change in cross section and axial strain at the central axis, and between beam reorientation and ratio of bending strain to axial strain, respectively. Implementing these relationships into the phenomenological predictive algorithm for the mesoscale structural femur has the potential to produce a model combining biofidelic structure and mechanical behaviour with computational efficiency.  相似文献   

16.
We recently introduced a physical model [T.X. Hoang, A. Trovato, F. Seno, J.R. Banavar, A. Maritan, Geometry and symmetry pre-sculpt the free energy landscape of proteins. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 7960-7964, J.R. Banavar, T.X. Hoang, A. Maritan, F. Seno, A. Trovato, A unified perspective on proteins-a physics approach. Phys. Rev., E 70 (2004) 041905] for proteins which incorporates, in an approximate manner, several key features such as the inherent anisotropy of a chain molecule, the geometrical and energetic constraints placed by the hydrogen bonds and sterics, and the role played by hydrophobicity. Within this framework, marginally compact conformations resembling the native state folds of proteins emerge as broad competing minima in the free energy landscape even for a homopolymer. Here we show how the introduction of sequence heterogeneity using a simple scheme of just two types of amino acids, hydrophobic (H) and polar (P), and sequence design allows a selected putative native fold to become the free energy minimum at low temperature. The folding transition exhibits thermodynamic cooperativity, if one neglects the degeneracy between two different low energy conformations sharing the same fold topology.  相似文献   

17.
The behaviour of the heart has always elicited interest and particularly the study of its myocardium, as 5–10% of the blood pumped by the heart is passed through the coronary arteries to the myocardium itself. An in-depth investigation of the myocardium behaviour is useful. The present work aims to investigate how myocardium perfusion is influenced by myocardial stress and diseased states, and in general by LV pumping abnormalities. LV myocardial perfusion can then serve as a possible index of the capacity of the LV to respond to its work demand, and thus of the risk of heart failure. The poroelastic analysis of the myocardium based on finite element method (FEM) for regional perfusion through a rectangular element with various physiological ranges of loading conditions was studied.  相似文献   

18.
The behaviour of the heart has always elicited interest and particularly the study of its myocardium, as 5-10% of the blood pumped by the heart is passed through the coronary arteries to the myocardium itself. An in-depth investigation of the myocardium behaviour is useful. The present work aims to investigate how myocardium perfusion is influenced by myocardial stress and diseased states, and in general by LV pumping abnormalities. LV myocardial perfusion can then serve as a possible index of the capacity of the LV to respond to its work demand, and thus of the risk of heart failure. The poroelastic analysis of the myocardium based on finite element method (FEM) for regional perfusion through a rectangular element with various physiological ranges of loading conditions was studied.  相似文献   

19.
Biomechanics and Modeling in Mechanobiology - Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has gained increasing interest in the pharmaceutical industry. The transport,...  相似文献   

20.
Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co‐occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号