首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that the aging heart exhibits left ventricular (LV) diastolic dysfunction and changes in mechanical properties, which are thought to be due to alterations in the extracellular matrix. We tested the hypothesis that the mechanical properties of cardiac myocytes significantly change with aging, which could contribute to the global changes in LV diastolic dysfunction. We used atomic force microscopy (AFM), which determines cellular mechanical property changes at nanoscale resolution in myocytes, from young (4 mo) and old (30 mo) male Fischer 344 x Brown Norway F1 hybrid rats. A measure of stiffness, i.e., apparent elastic modulus, was determined by analyzing the relationship between AFM indentation force and depth with the classical infinitesimal strain theory and by modeling the AFM probe as a blunted conical indenter. This is the first study to demonstrate a significant increase (P < 0.01) in the apparent elastic modulus of single, aging cardiac myocytes (from 35.1 +/- 0.7, n = 53, to 42.5 +/- 1.0 kPa, n = 58), supporting the novel concept that the mechanism mediating LV diastolic dysfunction in aging hearts resides, in part, at the level of the myocyte.  相似文献   

2.
叶志义  范霞 《生命科学》2009,21(1):156-162
细胞表面的力学性质会随着细胞所处环境的不同而发生改变,它的变化间接反映出胞内复杂的生理过程。原子力显微镜(atomic force microscope,AFM)能以高的灵敏度和分辨率检测活体细胞,通过利用赫兹模型分析力曲线可以获得细胞的弹性信息。本文简介了原子力显微镜的工作原理与工作模式,着重介绍利用AFM力曲线检测细胞弹性的方法及其在细胞运动、细胞骨架、细胞黏附、细胞病理等方面的应用成果,表明AFM已经成为细胞弹性研究中十分重要的显微技术。  相似文献   

3.
Surface structure of myofibrils of rabbit skeletal muscle and their transverse elasticity were studied by atomic force microscopy. Images of myofibrils had a periodic structure characteristic of sarcomeres of skeletal muscle fibers. The transverse elasticity distribution in the sarcomere was determined based on force-distance curves measured at various loci of single myofibrils. The Z-line in rigor myofibrils was the most rigid in all the loci of myofibrils studied under various physiological conditions. The overall transverse elasticity of myofibrils decreased in the order in rigor solution > +AMPPNP solution > relaxing solution. The "apparent" transverse Young's modulus of myofibrils estimated at the overlap region between thin and thick filaments was 84.0 +/- 18.1, 37.5 +/- 14.0, and 11.5 +/- 3.5 kPa in rigor, +AMPPNP, and relaxing solution respectively.  相似文献   

4.
Using a new scheme based on atomic force microscopy (AFM), we investigate mechanical properties of clathrin-coated vesicles (CCVs). CCVs are multicomponent protein and lipid complexes of approximately 100 nm diameter that are implicated in many essential cell-trafficking processes. Our AFM imaging resolves clathrin lattice polygons and provides height deformation in quantitative response to AFM-substrate compression force. We model CCVs as multilayered elastic spherical shells and, from AFM measurements, estimate their bending rigidity to be 285 +/- 30 k(B)T, i.e., approximately 20 times that of either the outer clathrin cage or inner vesicle membrane. Further analysis reveals a flexible coupling between the clathrin coat and the membrane, a structural property whose modulation may affect vesicle biogenesis and cellular function.  相似文献   

5.
We report an atomic force microscopy (AFM) study of fibrinogen molecules and fibrin fibers with resolution previously achieved only in few electron microscopy images. Not only are all objects triads, but the peripheral D regions are resolved into the two subdomains, apparently corresponding to the βC and γC domains. The conformational analysis of a large population of fibrinogen molecules on mica revealed the two most energetically favorable conformations characterized by bending angles of ~100 and 160 degrees. Computer modeling of the experimental images of fibrinogen molecules showed that the AFM patterns are in good agreement with the molecular dimensions and shapes detected by other methods. Imaging in different environments supports the expected hydration of the fibrinogen molecules in buffer, whereas imaging in humid air suggests the 2D spreading of fibrinogen on mica induced by an adsorbed water layer. Visualization of intact hydrated fibrin fibers showed cross-striations with an axial period of 24.0 ± 1.6 nm, in agreement with a pattern detected earlier with electron microscopy and small-angle X-ray diffraction. However, this order is clearly detected on the surface of thin fibers and becomes less discernible with the fiber's growth. This structural change is consistent with the proposal that thinner fibers are denser than thicker ones, that is, that the molecule packing decreases with the increasing of the fibers' diameter.  相似文献   

6.
7.
Several studies have suggested that evolving mechanical stresses and strains drive atherosclerotic plaque development and vulnerability. Especially, stress distribution in the plaque fibrous capsule is an important determinant for the risk of vulnerable plaque rupture. Knowledge of the stiffness of atherosclerotic plaque components is therefore of critical importance. In this work, force mapping experiments using atomic force microscopy (AFM) were conducted in apolipoprotein E-deficient (ApoE(-/-)) mouse, which represents the most widely used experimental model for studying mechanisms underlying the development of atherosclerotic lesions. To obtain the elastic material properties of fibrous caps and lipidic cores of atherosclerotic plaques, serial cross-sections of aortic arch lesions were probed at different sites. Atherosclerotic plaque sub-structures were subdivided into cellular fibrotic, hypocellular fibrotic and lipidic rich areas according to histological staining. Hertz's contact mechanics were used to determine elasticity (Young's) moduli that were related to the underlying histological plaque structure. Cellular fibrotic regions exhibit a mean Young modulus of 10.4±5.7kPa. Hypocellular fibrous caps were almost six-times stiffer, with average modulus value of 59.4±47.4kPa, locally rising up to ~250kPa. Lipid rich areas exhibit a rather large range of Young's moduli, with average value of 5.5±3.5kPa. Such precise quantification of plaque stiffness heterogeneity will allow investigators to have prospectively a better monitoring of atherosclerotic disease evolution, including arterial wall remodeling and plaque rupture, in response to mechanical constraints imposed by vascular shear stress and blood pressure.  相似文献   

8.
Zhu Y  Dong Z  Wejinya UC  Jin S  Ye K 《Journal of biomechanics》2011,44(13):2356-2361
While the determination of mechanical properties of a hard scaffold is relatively straightforward, the mechanical testing of a soft tissue scaffold poses significant challenges due in part to its fragility. Here, we report a new approach for characterizing the stiffness and elastic modulus of a soft scaffold through atomic force microscopy (AFM) nanoindentation. Using collagen-chitosan hydrogel scaffolds as model soft tissue scaffolds, we demonstrated the feasibility of using AFM nanoindentation to determine a force curve of a soft tissue scaffold. A mathematical model was developed to ascertain the stiffness and elastic modulus of a scaffold from its force curve obtained under different conditions. The elastic modulus of a collagen-chitosan (80%/20%, v/v) scaffold is found to be 3.69 kPa. The scaffold becomes stiffer if it contains more chitosan. The elastic modulus of a scaffold composed of 70% collagen and 30% chitosan is about 11.6 kPa. Furthermore, the stiffness of the scaffold is found to be altered significantly by extracellular matrix deposited from cells that are grown inside the scaffold. The elastic modulus of collagen-chitosan scaffolds increased from 10.5 kPa on day 3 to 63.4 kPa on day 10 when human foreskin fibroblast cells grew inside the scaffolds. Data acquired from these measurements will offer new insights into understanding cell fate regulation induced by physiochemical cues of tissue scaffolds.  相似文献   

9.
Atomic force microscopy was used to measure the thickness of air-dried, collapsed murein sacculi from Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Air-dried sacculi from E. coli had a thickness of 3.0 nm, whereas those from P. aeruginosa were 1.5 nm thick. When rehydrated, the sacculi of both bacteria swelled to double their anhydrous thickness. Computer simulation of a section of a model single-layer peptidoglycan network in an aqueous solution with a Debye shielding length of 0.3 nm gave a mass distribution full width at half height of 2.4 nm, in essential agreement with these results. When E. coli sacculi were suspended over a narrow groove that had been etched into a silicon surface and the tip of the atomic force microscope used to depress and stretch the peptidoglycan, an elastic modulus of 2.5 x 10(7) N/m(2) was determined for hydrated sacculi; they were perfectly elastic, springing back to their original position when the tip was removed. Dried sacculi were more rigid with a modulus of 3 x 10(8) to 4 x 10(8) N/m(2) and at times could be broken by the atomic force microscope tip. Sacculi aligned over the groove with their long axis at right angles to the channel axis were more deformable than those with their long axis parallel to the groove axis, as would be expected if the peptidoglycan strands in the sacculus were oriented at right angles to the long cell axis of this gram-negative rod. Polar caps were not found to be more rigid structures but collapsed to the same thickness as the cylindrical portions of the sacculi. The elasticity of intact E. coli sacculi is such that, if the peptidoglycan strands are aligned in unison, the interstrand spacing should increase by 12% with every 1 atm increase in (turgor) pressure. Assuming an unstressed hydrated interstrand spacing of 1.3 nm (R. E. Burge, A. G. Fowler, and D. A. Reaveley, J. Mol. Biol. 117:927-953, 1977) and an internal turgor pressure of 3 to 5 atm (or 304 to 507 kPa) (A. L. Koch, Adv. Microbial Physiol. 24:301-366, 1983), the natural interstrand spacing in cells would be 1.6 to 2.0 nm. Clearly, if large macromolecules of a diameter greater than these spacings are secreted through this layer, the local ordering of the peptidoglycan must somehow be disrupted.  相似文献   

10.
Atomic force microscopy (AFM) indentation has become an important technique for quantifying the mechanical properties of live cells at nanoscale. However, determination of cell elasticity modulus from the force–displacement curves measured in the AFM indentations is not a trivial task. The present work shows that these force–displacement curves are affected by indenter-cell adhesion force, while the use of an appropriate indentation model may provide information on the cell elasticity and the work of adhesion of the cell membrane to the surface of the AFM probes. A recently proposed indentation model (Sirghi, Rossi in Appl Phys Lett 89:243118, 2006), which accounts for the effect of the adhesion force in nanoscale indentation, is applied to the AFM indentation experiments performed on live cells with pyramidal indenters. The model considers that the indentation force equilibrates the elastic force of the cell cytoskeleton and the adhesion force of the cell membrane. It is assumed that the indenter-cell contact area and the adhesion force decrease continuously during the unloading part of the indentation (peeling model). Force–displacement curves measured in indentation experiments performed with silicon nitride AFM probes with pyramidal tips on live cells (mouse fibroblast Balb/c3T3 clone A31-1-1) in physiological medium at 37°C agree well with the theoretical prediction and are used to determine the cell elasticity modulus and indenter-cell work of adhesion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
The structure of human fibroblasts have been characterised in vitro by atomic force microscopy (AFM) operated in the imaging or in the force versus distance (F-d) modes. The choice of cell substrate is important to ensure good adhesion. Of greater significance in the context of AFM analysis, is the observation that the substrate affects the imaging conditions for in vitro analysis of live cells. For instance, very rarely will glass coverslips lead to acceptable outcomes (i.e., resolved cytoskeletal structure). Activated tissue culture dishes, on the other hand, promote conditions that routinely result in good quality images. Those conditions are then unaffected by adoption of relatively high force loadings (more than 10 nN), large fields of view (100 x 100 microm2) and high scan speeds (up to ca. 200 microm/sec), all of which exceed values recommended in the literature. Plasma membranes are fragile in the context of AFM analysis (F-d analysis gives an equivalent Young's Modulus of ca. 5 kPa). However, the present work suggests that fragility per se need not be a problem, rather it is the adhesive interactions with the tip, which under some circumstances may exceed 20 nN, that are the source of poor imaging conditions. The present results, being supported by a qualitative model, suggest that the activated substrate acts as a preferential scavenger of cellular debris thus preventing the tip from biofouling, and will therefore promote low adhesion between tip and membrane. Good imaging conditions provide non-destructive in vitro information about cytoskeletal structure and dynamics, as shown in two examples concerned with cytochalasin treatment and with the MTT assay.  相似文献   

13.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

14.
Lin H  Lal R  Clegg DO 《Biochemistry》2000,39(12):3192-3196
Fibronectin is composed of multiple homologous repeats and contains many functional domains. Two major heparin-binding domains have previously been identified: the Hep I site near the amino terminus and the Hep II site near the carboxyl terminus. The Hep II site has been considered the high-affinity heparin-binding site based on studies of fibronectin fragments. However, few studies have been carried out on heparin binding by intact fibronectin. We imaged single fibronectin molecules as well as heparin-coated gold particles bound to whole dimeric plasma fibronectin molecules with tapping mode atomic force microscopy. We observed heparin-gold particles preferentially bound at two locations that correspond to the Hep I and Hep II sites. Quantitative analysis of images of individual fibronectin-heparin-gold complexes showed that almost twice as many heparin-gold particles bound to the N-terminal Hep I site compared to the Hep II site. In contrast to previous findings with fibronectin fragments, these results suggest that the Hep I site has a binding affinity higher than or comparable to the Hep II site in the intact fibronectin molecule.  相似文献   

15.
16.
Previous studies have described both surface morphology and adhesive properties of fungal spores, but little information is currently available on their mechanical properties. In this study, atomic force microscopy (AFM) was used to investigate both surface topography and micromechanical properties of Aspergillus nidulans spores. To assess the influence of proteins covering the spore surface, wild-type spores were compared with spores from isogenic rodA(+) and rodA(-) strains. Tapping-mode AFM images of wild-type and rodA(+) spores in air showed characteristic "rodlet" protein structures covering a granular spore surface. In comparison, rodA(-) spores were rodlet free but showed a granular surface structure similar to that of the wild-type and rodA(+) spores. Rodlets were removed from rodA(+) spores by sonication, uncovering the underlying granular layer. Both rodlet-covered and rodlet-free spores were subjected to nanoindentation measurements, conducted in air, which showed the stiffnesses to be 110 +/- 10, 120 +/- 10, and 300 +/- 20 N/m and the elastic moduli to be 6.6 +/- 0.4, 7.0 +/- 0.7, and 22 +/- 2 GPa for wild-type, rodA(+) and rodA(-) spores, respectively. These results imply the rodlet layer is significantly softer than the underlying portion of the cell wall.  相似文献   

17.
Fiber isometric tension redevelopment rate (kTR) was measured during submaximal and maximal activations in glycerinated fibers from rabbit psoas muscle. In fibers either containing endogenous skeletal troponin C (sTnC) or reconstituted with either purified cardiac troponin C (cTnC) or sTnC, graded activation was achieved by varying [Ca2+]. Some fibers were first partially, then fully, reconstituted with a modified form of cTnC (aTnC) that enables active force generation and shortening in the absence of Ca2+. kTR was derived from the half-time of tension redevelopment. In control fibers with endogenous sTnC, kTR increased nonlinearly with [Ca2+], and maximal kTR was 15.3 +/- 3.6 s-1 (mean +/- SD; n = 26 determinations on 25 fibers) at pCa 4.0. During submaximal activations by Ca2+, kTR in cTnC reconstituted fibers was approximately threefold faster than control, despite the lower (60%) maximum Ca(2+)-activated force after reconstitution. To obtain submaximal force with aTnC, eight fibers were treated to fully extract endogenous sTnC, then reconstituted with a mixture of a TnC and cTnC (aTnC:cTnC molar ratio 1:8.5). A second extraction selectively removed cTnC. In such fibers containing aTnC only, neither force nor kTR was affected by changes in [Ca2+]. Force was 22 +/- 7% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 24 +/- 8% (mean +/- SD; n = 8) at pCa 4.0, whereas kTR was 98 +/- 14% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 96 +/- 15% (mean +/- SD; n = 8) at pCa 4.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The influence of stretch and radial compression on the width of mechanically skinned fibers from the semitendinosus muscle of the frog (R. pipiens) was examined in relaxing solutions with high-power light microscopy. Fibers were skinned under mineral oil. We find that, after correcting for water uptake in the oil, fiber width increased by an average of 28% upon transfer from oil to relaxing medium, with some tendency for greater swelling at longer sarcomere lengths. Subsequently, fibers were compressed by addition of the long-chain polymer polyvinylpyrrolidone (PVP-40, number average molecular weight 40,000) to relaxing solutions. Sarcomere length does not appear to be affected by addition of PVP. At any PVP concentration, the inverse square of the fiber width increased smoothly and linearly with increasing stretch for sarcomere lengths between 2.10 and 4.60 micrometer. At any fixed sarcomere length, fiber width decreased linearly with the logarithm of the osmotic compressive pressure exerted by PVP (2-10% concentration). From this logarithmic relation we estimate that the swelling pressure of the intact fiber is 3.40 x 10(3) N/m2, between that of a 2 and a 3% PVP solution. The pressure giving rise to fiber swelling is not due to dilation of the sarcoplasmic reticulum (SR), since the experimental results above were not significantly different after treatment with 0.5% BRIJ-58, a nonionic detergent that disrupts the SR. Swelling may be due simply to elastic structures within the fiber that are constrained in the intact cell. Values of bulk moduli of fibers, calculated from the compression experiments, and preliminary measurements of Young's modulus from stretch experiments, are quantitatively consistent with the idea that skinned fibers behave as nonisotropic elastic bodies.  相似文献   

19.
The influence of phosphocreatine in the presence or absence of MgATP and MgADP was studied in Triton X-100-treated thin papillary muscles and ventricular strips of the rat heart. The pCa/tension relationships, the pMgATP/tension relationships, and the tension responses to quick length changes were analyzed. The results show three major consequences of the reduction of the phosphocreatine concentration in the presence of millimolar concentrations of the MgATP. (a) The resting tension and the maximal Ca2+-activated tension were increased, and the pCa/tension relationship was shifted toward higher pCa values and its steepness was decreased; these effects were enhanced by the inclusion of MgADP. (b) The time constant of tension recoveries after quick stretches applied during maximal activation was increased, while the extent of these recoveries was decreased. (c) The study of pMgATP/tension relationships in low Ca concentrations showed that the decrease in phosphocreatine induced a shift toward higher MgATP values with no changes in maximal rigor tension or the slope coefficient; these effects were increased by the increase in MgADP and were independent of the preparation diameter. Thus, modifications of the apparent Ca sensitivity and resting and maximal tension when phosphocreatine is decreased seem to be due to an increasing participation of rigor-like or slowly cycling cross-bridges spending more time in the attached state. These results suggest that endogenous creatine kinase is able to ensure maximal efficiency of myosin ATPase by producing a local high MgATP/MgADP ratio.  相似文献   

20.
This study evaluated the hypothesis that, due to functional and structural differences, the apparent elastic modulus and viscous behavior of cardiac and skeletal muscle and vascular endothelium would differ. To accurately determine the elastic modulus, the contribution of probe velocity, indentation depth, and the assumed shape of the probe were examined. Hysteresis was observed at high indentation velocities arising from viscous effects. Irreversible deformation was not observed for endothelial cells and hysteresis was negligible below 1 μm/s. For skeletal muscle and cardiac muscle cells, hysteresis was negligible below 0.25 μm/s. Viscous dissipation for endothelial and cardiac muscle cells was higher than for skeletal muscle cells. The calculated elastic modulus was most sensitive to the assumed probe geometry for the first 60 nm of indentation for the three cell types. Modeling the probe as a blunt cone–spherical cap resulted in variation in elastic modulus with indentation depth that was less than that calculated by treating the probe as a conical tip. Substrate contributions were negligible since the elastic modulus reached a steady value for indentations above 60 nm and the probe never indented more than 10% of the cell thickness. Cardiac cells were the stiffest (100.3±10.7 kPa), the skeletal muscle cells were intermediate (24.7±3.5 kPa), and the endothelial cells were the softest with a range of elastic moduli (1.4±0.1 to 6.8±0.4 kPa) depending on the location of the cell surface tested. Cardiac and skeletal muscle exhibited nonlinear elastic behavior. These passive mechanical properties are generally consistent with the function of these different cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号