首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryoinsult-induced osteonecrosis (ON) in the emu femoral head provides a unique opportunity to systematically explore the pathogenesis of ON in an animal model that progresses to human-like femoral head collapse. Among the various characteristics of cryoinsult, the maximally cold temperature attained is one plausible determinant of tissue necrosis. To identify the critical isotherm required to induce development of ON in the cancellous bone of the emu femoral head, a thermal finite element (FE) model of intraoperative cryoinsults was developed. Thermal material property values of emu cancellous bone were estimated from FE simulations of cryoinsult to emu cadaver femora, by varying model properties until the FE-generated temperatures matched corresponding thermocouple measurements. The resulting FE model, with emu bone-specific thermal properties augmented to include blood flow effects, was then used to study intraoperatively performed in vivo cryoinsults. Comparisons of minimum temperatures attained at FE nodes corresponding to the three-dimensional histologically apparent boundary of the region of ON were made for six experimental cryoinsults. Series-wide, a critical isotherm of 3.5 degrees C best corresponded to the boundary of the osteonecrotic lesions.  相似文献   

2.
Prediction of femoral head collapse in osteonecrosis   总被引:6,自引:0,他引:6  
The femoral head deteriorates in osteonecrosis. As a consequence of that, the cortical shell of the femoral head can buckle into the cancellous bone supporting it. In order to examine the buckling scenario we performed numerical analysis of a realistic femoral head model. The analysis included a solution of the hip contact problem, which provided the contact pressure distribution, and subsequent buckling simulation based on the given contact pressure. The contact problem was solved iteratively by approximating the cartilage by a discrete set of unilateral linear springs. The buckling calculations were based on a finite element mesh with brick elements for the cancellous bone and shell elements for the cortical shell. Results of 144 simulations for a variety of geometrical, material, and loading parameters strengthen the buckling scenario. They, particularly, show that the normal cancellous bone serves as a strong supporting foundation for the cortical shell and prevents it from buckling. However, under the development of osteonecrosis the deteriorating cancellous bone is unable to prevent the cortical shell from buckling and the critical pressure decreases with the decreasing Young modulus of the cancellous bone. The local buckling of the cortical shell seems to be the driving force of the progressive fracturing of the femoral head leading to its entire collapse. The buckling analysis provides an additional criterion of the femoral head collapse, the critical contact pressure. The buckling scenario also suggests a new argument in speculating on the femoral head reinforcement. If the entire collapse of the femoral head starts with the buckling of the cortical shell then it is reasonable to place the reinforcement as close to the cortical shell as possible.  相似文献   

3.
Femoral head osteonecrosis is often characterized histologically by the presence of empty lacunae in the affected bony regions. The shape, size and location of a necrotic lesion influences prognosis, and can, in principle, be quantified by mapping the distribution of empty lacunae within a femoral head. An algorithm is here described that automatically identifies the locations of osteocyte-filled vs. empty lacunae. The algorithm is applied to necrotic lesions surgically induced in the emu, a large bipedal animal model in which osteonecrosis progresses to collapse, as occurs in humans. The animals' femoral heads were harvested at sacrifice, and hematoxylin and eosin-stained histological preparations of the coronal midsections were digitized and image-analyzed. The algorithm's performance in detecting empty lacunae was validated by comparing its results to corresponding assessments by six trained histologists. The percentage of osteocyte-filled lacunae identified by the algorithm vs. by the human readers was statistically indistinguishable.  相似文献   

4.
The emu is a large, (bipedal) flightless bird that potentially can be used to study various orthopaedic disorders in which load protection of the experimental limb is a limitation of quadrupedal models. An anatomy-based analysis of normal emu walking gait was undertaken to determine hip contact forces for comparison with human data. Kinematic and kinetic data captured for two laboratory-habituated emus were used to drive the model. Muscle attachment data were obtained by dissection, and bony geometries were obtained by CT scan. Inverse dynamics calculations at all major lower-limb joints were used in conjunction with optimization of muscle forces to determine hip contact forces. Like human walking gait, emu ground reaction forces showed a bimodal distribution over the course of the stance phase. Two-bird averaged maximum hip contact force was approximately 5.5 times body weight, directed nominally axially along the femur. This value is only modestly larger than optimization-based hip contact forces reported in literature for humans. The interspecies similarity in hip contact forces makes the emu a biomechanically attractive animal in which to model loading-dependent human orthopaedic hip disorders.  相似文献   

5.
股骨头坏死是一种常见的疾病,在30岁至60岁年龄段的人群中较为常见,临床的症状包括疼痛以及髋部不适等,股骨头坏死在早期很难发现,由于没有得到准确的诊断,耽误了最佳的治疗时间和有效的治疗,随着病情的发展,最终将会造成股骨头变形以及塌陷,从而引起骨性关节炎,对髋关节功能的影响是很大的,甚至会丧失髋关节的基本功能。股骨头坏死的病状体征和早期症状存在一定的隐蔽性,因此,造成误诊的情况频繁发生。此外,有些疾病的症状表现为髋关节疼痛,最后反而容易被误诊为股骨头坏死。  相似文献   

6.
We were interested in whether or not the biomechanical status of the hip influences the course of avascular necrosis of the femoral head. To investigate this, we used a computer aided system based on a three dimensional mathematical model for determining the stress distribution in the hip joint from standard anteroposterior rentgenographs (X-ray images) of both hips and pelvis. Based on the results of our study, we suggest that the biomechanical parameters of the hip play an important role in the outcome of treatment of hips affected by avascular necrosis of the femoral head.  相似文献   

7.
Gait modifications in acetabular dysplasia patients may influence cartilage contact stress patterns within the hip joint, with serious implications for clinical outcomes and the risk of developing osteoarthritis. The objective of this study was to understand how the gait pattern used to load computational models of dysplastic hips influences computed joint mechanics. Three-dimensional pre- and post-operative hip models of thirty patients previously treated for hip dysplasia with periacetabular osteotomy (PAO) were developed for performing discrete element analysis (DEA). Using DEA, contact stress patterns were calculated for each pre- and post-operative hip model when loaded with an instrumented total hip, a dysplastic, a matched control, and a normal gait pattern. DEA models loaded with the dysplastic and matched control gait patterns had significantly higher (p = 0.012 and p < 0.001) average pre-operative maximum contact stress than models loaded with the normal gait. Models loaded with the dysplastic and matched control gait patterns had nearly significantly higher (p = 0.051) and significantly higher (p = 0.008) average pre-operative contact stress, respectively, than models loaded with the instrumented hip gait. Following PAO, the average maximum contact stress for DEA models loaded with the dysplastic and matched control patterns decreased, which was significantly different (p < 0.001) from observed increases in maximum contact stress calculated when utilizing the instrumented hip and normal gait patterns. The correlation between change in DEA-computed maximum contact stress and the change in radiographic measurements of lateral center-edge angle were greatest (R2 = 0.330) when utilizing the dysplastic gait pattern. These results indicate that utilizing a dysplastic gait pattern to load DEA models may be a crucial element to capturing contact stress patterns most representative of this patient population.  相似文献   

8.
Biomechanical research relies heavily on laboratory evaluation and testing with osseous animal structures. While many femora models are currently in use, including those of the European red deer (Cervus elaphus), the Odocoileus virginianus femur remains undocumented, despite its regional abundance in North America. The objective of this study was to compare biomechanical and morphological properties of the Odocoileus virginianus femur with those of the human and commonly used animal models. Sixteen pairs of fresh-frozen cervine femora (10 male, 6 female, aged 2.1 ± 0.9 years) were used for this study. Axial and torsional stiffnesses (whole bone) were calculated following compression and torsion to failure tests (at rates of 0.1 mm/sec and 0.2°/sec). Lengths, angles, femoral head diameter and position, periosteal and endosteal diaphyseal dimensions, and condylar dimensions were measured. The results show that the cervine femur is closer in length, axial and torsional stiffness, torsional strength, and overall morphology to the human femur than many other commonly used animal femora models; additional morphological measurements are comparable to many other species’ femora. The distal bicondylar width of 59.3mm suggests that cervine femora may be excellent models for use in total knee replacement simulations. Furthermore, the cervine femoral head is more ovoid than other commonly-used models for hip research, making it a more suitable model for studies of hip implants. Thus, with further, more application-specific investigations, the cervine femur could be a suitable model for biomechanical research, including the study of ballistic injuries and orthopaedic device development.  相似文献   

9.
A practical and easy-to-use analysis technique that can study the patient's hip joint contact force/pressure distribution would be useful to assess the effect of abnormal biomechanical conditions and anatomical deformities on joint contact stress for treatment planning purpose. This technique can also help to establish the normative database on hip joint contact pressure distribution in men and women in different age groups. Twelve anatomic parameters and seven biomechanical parameters of the hip joint in a normal population (41 females, 15 males) were calculated. The inter-parameter correlations were investigated. The pressure distribution in the hip joint was calculated using a three-dimensional discrete element analysis (DEA) technique. The 3D contact geometry of the hip joint was estimated from a 2D radiograph by assuming that the femoral head and the acetabular surface were spherical in shape. The head-trochanter ratio (HT), femoral head radius, pelvic height, the joint contact area, the normalized peak contact pressure, abductor force, and the joint contact force were significantly different between men and women. The normalized peak contact pressure was correlated both with acetabular coverage and head-trochanter ratio. Change of abductor force direction within normal variation did not affect the joint peak contact pressure. However, in simulated dysplastic conditions when the CE angle is small or negative, abductor muscle direction becomes very sensitive in joint contact pressure estimation. The models and the results presented can be used as the reference base in computer simulation for preoperative planning in pelvic or femoral osteotomy.  相似文献   

10.

The mathematical models and the corresponding computer program for determination of the hip joint contact force, the contact stress distribution, and the size of the weight bearing area from a standard anteroposterior radiograph are described. The described method can be applied in clinical practice to predict an optimal stress distribution after different operative interventions in the hip joint and to analyze the short and long term outcome of the treatment of various pathological conditions in the hip. A group of dysplastic hips and a group of normal hips were examined, with respect to the peak contact stress normalized by the body weight, and with respect to the functional angle of the weight bearing area. It is shown that both these parameters can be used in the assessment of hip dysplasia.  相似文献   

11.
Orthopaedic management of femoral head osteonecrosis is a common clinical problem for which there presently is no good solution. Current animal models are inappropriate to study potential new solutions, since it has been difficult to replicate the natural history of structural collapse seen in the human disorder. Recently, progression to collapse was obtained for cryogenically induced osteonecrosis in emus, although the lesions involved were imprecisely controlled in terms of size or location. A new cryo-insult probe is here reported for the purpose of delivering well-prescribed local thermal insults in this new animal model, while minimizing damage to non-targeted regions. Finite element analysis was used to elucidate the influence of operator-controlled parameters upon the temporal/spatial variation of the thermal field. The numerical formulation includes convective heat transfer attributable to tissue bed perfusion. The computational results agreed closely with the results of thermocouple recordings in a companion bench-top experiment. The cryo-insult probe successfully produced segmental lesions in the emu model of sizes comparable to the computed freeze front diameters.  相似文献   

12.
In this study we established a bipedal animal model of steroid-associated hip joint collapse in emus for testing potential treatment protocols to be developed for prevention of steroid-associated joint collapse in preclinical settings. Five adult male emus were treated with a steroid-associated osteonecrosis (SAON) induction protocol using combination of pulsed lipopolysaccharide (LPS) and methylprednisolone (MPS). Additional three emus were used as normal control. Post-induction, emu gait was observed, magnetic resonance imaging (MRI) was performed, and blood was collected for routine examination, including testing blood coagulation and lipid metabolism. Emus were sacrificed at week 24 post-induction, bilateral femora were collected for micro-computed tomography (micro-CT) and histological analysis. Asymmetric limping gait and abnormal MRI signals were found in steroid-treated emus. SAON was found in all emus with a joint collapse incidence of 70%. The percentage of neutrophils (Neut %) and parameters on lipid metabolism significantly increased after induction. Micro-CT revealed structure deterioration of subchondral trabecular bone. Histomorphometry showed larger fat cell fraction and size, thinning of subchondral plate and cartilage layer, smaller osteoblast perimeter percentage and less blood vessels distributed at collapsed region in SAON group as compared with the normal controls. Scanning electron microscope (SEM) showed poor mineral matrix and more osteo-lacunae outline in the collapsed region in SAON group. The combination of pulsed LPS and MPS developed in the current study was safe and effective to induce SAON and deterioration of subchondral bone in bipedal emus with subsequent femoral head collapse, a typical clinical feature observed in patients under pulsed steroid treatment. In conclusion, bipedal emus could be used as an effective preclinical experimental model to evaluate potential treatment protocols to be developed for prevention of ON-induced hip joint collapse in patients.  相似文献   

13.
IntroductionThe mechanism by which obesity increases the risk of hip osteoarthritis is unclear. One possibility may be by mediating abnormalities in bony geometry, which may in turn be associated with early structural abnormalities, such as cartilage defects and bone marrow lesions.MethodsOne hundred and forty one older adults with no diagnosed hip osteoarthritis had weight and body mass index measured between 1990 and 1994 and again in 2009 to 2010. Acetabular depth and lateral centre edge angle, both measures of acetabular over-coverage, as well as femoral head cartilage volume, cartilage defects and bone marrow lesions were assessed with 3.0 T magnetic resonance imaging performed in 2009 to 2010.ResultsCurrent body mass index, weight and weight gain were associated with increased acetabular depth and lateral centre edge angle (all P ≤ 0.01). For every 1 mm increase in acetabular depth, femoral head cartilage volume reduced by 59 mm3 (95% confidence interval (CI) 20 mm3 to 98 mm3, P < 0.01). Greater acetabular depth was associated with an increased risk of cartilage defects (odds ratio (OR) 1.22, 95% CI 1.03 to 1.44, P = 0.02) and bone marrow lesions (OR 1.29, 95% CI 1.01 to 1.64, P = 0.04) in the central region of the femoral head. Lateral centre edge angle was not associated with hip structure.ConclusionsObesity is associated with acetabular over-coverage. Increased acetabular depth, but not the lateral centre edge angle, is associated with reduced femoral head cartilage volume and an increased risk of cartilage defects and bone marrow lesions. Minimising any deepening of the acetabulum (for example, through weight management) might help to reduce the incidence of hip osteoarthritis.  相似文献   

14.
The decrease in contact hip joint stress after Chiari osteotomy is studied using a mathematical model. In the model, additional coverage of the femoral head by the ala ossis ilei segment is taken into account. It is shown that this additional coverage significantly decreases stress, mostly by the indirect effect caused by the shift of the stress pole.  相似文献   

15.

Introduction

Few data are available concerning structural changes at the hip observed by magnetic resonance imaging (MRI) in people with or without hip osteoarthritis (OA). The aim of this study was to compare cartilage volume and the presence of cartilage defects and bone marrow lesions (BMLs) in participants with and without diagnosed hip OA.

Methods

Femoral head cartilage volume was measured by MRI for 141 community-based persons with no diagnosed hip OA, and 19 with diagnosed hip OA. Cartilage defects and BMLs were regionally scored at the femoral head and acetabulum.

Results

Compared with those without diagnosed hip OA, people with diagnosed hip OA had less femoral head cartilage volume (1763 mm3 versus 3343 mm3; p <0.001) and more prevalent cartilage defects and BMLs (all p ≤0.05) at all sites other than the central inferomedial region of the femoral head. In those with no diagnosed hip OA, cartilage defects in the anterior and central superolateral region of the femoral head were associated with reduced femoral head cartilage volume (all p ≤0.02). Central superolateral BMLs at all sites were associated with reduced femoral head cartilage volume (all p ≤0.003), with a similar trend occurring when BMLs were located in the anterior region of the hip (all p ≤0.08).

Conclusions

Compared with community-based adults with no diagnosed hip OA, people with diagnosed hip OA have less femoral head cartilage volume and a higher prevalence of cartilage defects and BMLs. For people with no diagnosed hip OA, femoral head cartilage volume was reduced where cartilage defects and/or BMLs were present in the anterior and central superolateral regions of the hip joint. Cartilage defects and BMLs present in the anterior and central superolateral regions may represent early structural damage in the pathogenesis of hip OA.  相似文献   

16.
蒋捷  黄林科  胡峰 《蛇志》2021,(1):82-85
股骨头坏死是骨外科常见的难治性疾病,其机制仍有待研究.目前为止,医源性糖皮质激素是非创伤性股骨头坏死的主要原因.激素的长期使用可导致股骨头骨细胞凋亡、血液循环障碍所致缺血缺氧,最终导致股骨头塌陷.激素性股骨头坏死的发生发展与骨组织中细胞直接接触和其间接分泌的细胞因子调控相关.本文综述了骨组织中成骨细胞分泌的核因子κB受...  相似文献   

17.
Aim: The effective results shown in the porous systems of tantalum employed for the use of osseointegrates has been demonstrated by means of animal experimentation. However, there is a total lack of any research studies on the osseointegration of tantalum implants from retrieval of the same after a period of time whereby the material had been implanted within the human body. Materials and Methods: For this study, five rod implants used for the treatment of avascular necrosis of the femoral head were retrieved following collapse of the femoral head and conversion to total hip arthroplasty. The time of implantation ranged between six weeks and twenty months. Results: Observation during this study has confirmed the effectiveness of osseointegration within this period of time. New bone was observed around and within the porous system of the on rod devices at retrieval date. The bone ingrowth, however, proved to be slower and less intense than that resulting within animal species during the first few months after implantation. Conclusions: Nevertheless, the results obtained in the quantitative assessment of this process proved to be similar to those results achieved by other authors in previous experimental work studies.  相似文献   

18.
目的:探讨腓骨柱植骨支撑固定防治股骨颈骨折术后股骨头坏死机理研究和临床疗效。方法:随访符合标准的56例患者,记录骨折的Garden分型、内固定的全程稳定性、股骨头坏死的发生和演变等指标,并采用SPSS18.0进行统计分析。结果:56例患者均恢复解剖复位,在术后3-6月骨折愈合,平均4个月,愈合率为100%;Harris功能评分51-100分,平均分为84.6分,其中优者(≥90.0分)37髋,良者(80.0~89.9分)14髋,中者(70.0~79.9分)者1髋,差者(70.0分)4髋,Harris功能评分优良率为91.10%,没有发生内固定失效和骨折不愈合;22例根据MRI表现出股骨头坏死症状,坏死率39.30%,其中17例影像学坏死能够在随访期内维持为ARCOⅠ-Ⅱ期或者完全修复。其余的5例进展为临床坏死;晚期出现塌陷4例(7.15%)。Garden Ⅰ、Ⅱ级和GardenⅢ、Ⅳ级相比较,两组股骨头坏死率有统计学差异(P0.05),且两组的晚期塌陷率比较也有统计学差异(P0.05)。结论:空心加压螺钉与腓骨柱的所具有的生物力学稳定效能,能提供全程可靠的抗挤压、抗拉伸及抗旋转三维度稳定性,可以提供强大的机械稳定性;同时腓骨柱具有较强的生物学修复能力,为股骨头骨头血运重建和坏死区修复持续稳定的血供及持续有效的生物学修复能力。生物学愈合后腓骨柱在软骨下形成一个较大接触面积的支撑效果,可以预防股骨头坏死后塌陷。  相似文献   

19.
《Endocrine practice》2021,27(9):934-940
ObjectiveThis retrospective observational study assessed the long-term impact of pulsatile gonadotropin-releasing hormone, combined gonadotropin, or testosterone replacement therapy on total hip, femoral, and lumbar bone mineral density (BMD) and Z-scores in adult men with idiopathic hypogonadotropic hypogonadism (IHH).MethodsIn the cross-sectional study, 69 patients were allocated to untreated (n = 42) and treated (n = 27) groups. The untreated group included IHH patients without hormone therapy history, while the treated group included age- and body mass index-matched patients who had received hormone therapy for at least 5 years. The longitudinal study included 53 IHH patients, and their hip and lumbar BMDs were measured several times during hormone therapy. We then evaluated the changes in their BMD.ResultsOur cross-sectional study showed that the treated group had a significantly higher BMD and Z-score for total hip, femoral neck, and lumbar spine (P < 0.001 for all) than the untreated group, and the average bone mass even reached the age-matched normal range. The prevalence of low BMD was 80.95% and 11.11% in untreated and treated groups, respectively. In the longitudinal study (N = 53), the total hip, femoral neck, and lumbar spine BMD gradually increased during treatment. The lumbar spine showed a greater increment in BMD compared with the total hip and femoral neck (P < 0.05).ConclusionSex hormone therapy improved hip and lumbar spine BMD and Z-scores in patients with IHH. The lumbar spine showed a greater improvement in BMD compared with the total hip and femoral neck.  相似文献   

20.
Late loosening of cemented acetabular cups is increasingly being recognized as a clinical problem. One of the factors which may contribute to loosening is high localized deformation and stress at the cement-bone interface, the magnitude of which depends on the size of the total hip replacement (THR) femoral head. The effects of varying the femoral head size, from 22 to 32 mm, on strain values measured on the surface of the cup were investigated using experimental stress analysis techniques. The largest absolute strains were recorded when loading with the 22 mm head size. Peak strain values decreased to a minimum with the 26 mm head size and increased steadily with head sizes beyond 26 mm. The selection of an acetabular cup size and corresponding femoral head size in a total hip arthroplasty should not be an arbitrary one, but should be based on scientific studies which indicate minimum states of stress within the cup and cement mantle, as well as clinical evidence that the combination of components shows a reduced incidence of failure. This study experimentally quantifies the states of stress on the surface of the acetabular cup and points to the possible existence of an optimum component size to minimize surface stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号