共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This study generates data concerning the genome of a flightless species of bird, the emu. We examined and ultimately rejected the following hypotheses: (1) Microsatellites are randomly distributed throughout the emu genome. (2) The relative order of abundance of dinucleotides will be constant across genomes. (3) Interspersion distances for a given dinucleotide will be equal across vertebrate genomes. (4) In all genomes, a dinucleotide will be more frequent than any trinucleotide. (5) The percentage of single-copy DNA will remain the same in emus as in other volant birds. A cosmid library representing 4.48% of the emu genome was probed with 23 microsatellites. Hybridizations were scored on a scale of 0-3. The average insert size, approximately 40 kb, was used to determine frequency and interspersion. The cosmid library was probed with genomic DNA to determine the percent single copy. Co-occurrence frequencies and confidence intervals were compared to expected using chi-squared. The genome is estimated to contain a microsatellite repeat every 48 kb. Of 1632 clones probed for single-copy DNA, 643 displayed maximal hybridization, 220 displayed moderate hybridization, and 202 had minimal hybridization. After 3 days, 567 showed no hybridization. 相似文献
4.
Yáñez JM González R Angulo J Vidal R Santos JL Martínez V 《Molecular ecology resources》2008,8(6):1442-1444
The emu (Dromaius novaehollandiae), a member of ratite family, is native to Australia and has been introduced to other countries worldwide. In this work, 10 polymorphic microsatellite loci were isolated and characterized for emu from public sequences. Polymorphism was surveyed in 22 individuals from two different populations kept in captivity. Between two and 11 alleles were found per locus, and the observed heterozygosity ranged from 0.05 to 0.85, in accordance with expectations. These markers will be useful as tools for detecting levels of genetic variation, reconstructing pedigrees (for quantitative genetic analysis) and identifying markers associated to fitness traits in emu populations. 相似文献
5.
6.
Multiflagellate sperm represent a rare defect in mammals and also in the emu where an incidence of only 1% multiflagellate sperm was recorded in semen samples from 15 birds. Biflagellate sperm were the most frequent form of the defect observed, but 3- to 5-tailed sperm were also noted. An association was apparent between multiple tails and macrocephalic sperm, which accounted for 0.6% of multiflagellate sperm. Structural features of the defect were generally similar to those seen in mammals. The duplicated tails shared a single midpiece, which housed supernumerary centriolar complexes, each surrounded by a mitochondrial sheath. A single row of mitochondria separated adjacent centriolar complexes. Elements of the connecting piece (segmented columns, capitellum) appeared normal. The nuclear base appeared flat, staggered, or scalloped depending on the number and depth of additional implantation fossae. Multiflagellate emu sperm of normal head dimensions displayed a widened nuclear base (in the form of an attenuated peripheral nuclear extension) to accommodate the attachment of the additional centriolar complexes. Defective mammalian sperm do not show this modification of the nuclear base as the inherently wider sperm head is able to accommodate the supernumerary centrioles. Although often spiraled around each other, the duplicated principal pieces of the tail were generally separated and free. However, in some cells the proximal parts were collectively bound within the plasmalemma. Multiflagellate sperm appear to have a dual origin with some defective cells originating from incomplete cytokinesis and others as a result of abnormal centriolar duplication. 相似文献
7.
Crole, M.R., Soley, J.T. 2011. Distribution and structure of glandular tissue in the oropharynx and proximal esophagus of the emu (Dromaius novaehollandiae). —Acta Zoologica (Stockholm) 92 : 206–215. The glandular regions of the upper digestive tract in the emu were non‐pigmented (except for the tongue in most specimens) and invested by a non‐keratinised stratified squamous epithelium. The glands found in these regions were exclusively simple in nature and composed of tubular secretory units lined by Periodic Acid Schiff Stain‐positive mucus‐secreting cells. The naming of the various glandular fields was based on previously identified anatomical features and on nomenclature modified from previous studies on birds. The glands were classified into two main types, namely, simple tubular and simple branched tubular mucus‐secreting glands. Simple branched tubular glands were a feature of the regions exposed to the greatest amount of friction during feeding, whereas simple tubular glands were a feature of regions exposed to less friction. The saliva produced by the salivary glands in birds functions to moisturize and lubricate food boli. Mucins in saliva also protect mucosal surfaces from desiccation and mechanical damage, assist in maintaining cellular water balance, provide lubrication and have an antimicrobial action. This study suggests that, in addition to the role of specific gross anatomical features, the type and distribution of glandular tissue in the emu upper digestive tract supports the cranio‐inertial feeding method employed by this species. 相似文献
8.
Three experiments conducted to improve the survival of emu sperm during cryopreservation aimed to: (1) minimize chilling injury during the cooling phase; (2) determine the osmotic effects of dimethylacetamide (DMA), sucrose and trehalose; and (3) investigate the timing and nature of cryoprotectant toxicity. We measured sperm membrane integrity, motility, morphology and egg membrane penetration. In Experiment 1, semen diluted 1:1 with a pre-cooled diluent (5°C) prevented chilling injury. In Experiment 2, semen was diluted with DMA, trehalose or sucrose (300-2400mOsm/L) in deionized water. Only added DMA decreased the percentage of morphologically normal sperm. The percentage of motile sperm was higher with DMA than with the sugars, but membrane intact sperm were comparable amongst all cryoprotectants. As for the osmotic effects, the percentage of membrane intact sperm decreased with 2400mOsm/L and sperm motility decreased with 1200-2400mOsm/L, but sperm morphology was similar at all osmolarities. In Experiment 3, sperm membrane integrity, motility and morphology were comparable at all DMA osmolarities between sperm equilibrated for 0 and 15min, and remained unchanged after removal of DMA. We conclude that: (a) loss of sperm function during the cooling phase can be avoided by using a diluent maintained at 5°C; (b) emu spermatozoa tolerate upto 1400mOsm/L; (c) DMA results in a permanent change in sperm morphology when it is dissolved in deionized water, but does not alter sperm membrane integrity and motility; and (d) equilibration time of sperm with DMA can be less than 10min. 相似文献
9.
Pseudoautosomal regions (PARs) shared by avian Z and W sex chromosomes are typically small homologous regions within which recombination still occurs and are hypothesized to share the properties of autosomes. We capitalized on the unusual structure of the sex chromosomes of emus, Dromaius novaehollandiae, which consist almost entirely of PAR shared by both sex chromosomes, to test this hypothesis. We compared recombination, linkage disequilibrium (LD), GC content, and nucleotide diversity between pseudoautosomal and autosomal loci derived from 11 emu bacterial artificial chromosome (BAC) clones that were mapped to chromosomes by fluorescent in situ hybridization. Nucleotide diversity (pi = 4N(e)mu) was not significantly lower in pseudoautosomal loci (14 loci, 1.9 +/- 2.4 x 10(-3)) than autosomal loci (8 loci, 4.2 +/- 6.1 x 10(-3)). By contrast, recombination per site within BAC-end sequences (rho = 4Nc) (pseudoautosomal, 3.9 +/- 6.9 x 10(-2); autosomal, 2.3 +/- 3.7 x 10(-2)) was higher and average LD (D') (pseudoautosomal, 4.2 +/- 0.2 x 10(-1); autosomal, 4.7 +/- 0.5 x 10(-1)) slightly lower in pseudoautosomal sequences. We also report evidence of deviation from a simple neutral model in the PAR and in autosomal loci, possibly caused by departures from demographic equilibrium, such as population growth. This study provides a snapshot of the population genetics of avian sex chromosomes at an early stage of differentiation. 相似文献
10.
11.
Sanfilippo syndrome type B, or mucopolysaccharidosis (MPS) IIIB, is an autosomal recessive disease caused by a deficiency of lysosomal alpha-N-acetylglucosaminidase (NAGLU). In Dromaius novaehollandiae (emu), a progressive neurologic disease was recently discovered, which was characterized by NAGLU deficiency and heparan sulfate accumulation. To define the molecular basis, the sequences of the normal emu NAGLU cDNA and gene were determined by PCR-based approaches using primers for highly conserved regions of evolutionarily distant NAGLU homologues. It was observed that the emu NAGLU gene is structurally similar to that of human and mouse, but the introns are considerably shorter. The cDNA had an open reading frame (ORF) of 2259 bp. The deduced amino acid sequence is estimated to share 64% identity with human, 63% with mouse, 41% with Drosophila, 39% with tobacco, and 35% with the Caenorhabditis elegans enzyme. Three normal and two affected emus were studied for nucleotide sequence covering the entire coding region and exon-intron boundaries. Unlike the human gene, emu NAGLU appeared to be highly polymorphic: 19 variations were found in the coding region alone. The two affected emus were found to be homozygous for a 2-bp deletion, 1098-1099delGG, in exon 6. The resulting frameshift predicts a longer ORF of 2370 bp encoding a polypeptide with 37 additional amino acids and 387 altered amino acids. The availability of mutation screening in emus now permits early detection of MPS IIIB in breeding stocks and is an important step in characterizing this unique, naturally occurring avian model for the development of gene transfer studies. 相似文献
12.
13.
The emu (Dromaius novaehollandiae) occupies most regions of the Australian continent and in recent times has been farmed for meat, oil, and leather. Very little is known about the genetic structure of natural or farmed populations of these birds. We report a preliminary study of genetic variation in emus undertaken by typing birds from five farms and two natural populations at five polymorphic microsatellite loci. Genetic diversity was high for all populations and there was little evidence of inbreeding, with most populations conforming to Hardy-Weinberg equilibrium for most loci. Significant heterozygote deficiencies at one locus in a number of populations were detected and may indicate the presence of null alleles. Comparisons of allele frequencies showed little evidence of genetic differentiation either among farmed populations or between farmed and natural populations. 相似文献
14.
15.
The muscle fibers of the pectoralis (M. pectoralis pars thoracicus) of a male and a female ostrich (Struthio camelus) and a male and a female emu (Dromaius novaehollandiae) were studied histochemically for succinate dehydrogenase and myofibrillar adenosine triphosphatase. Slow-tonic (ST), fast-twitch oxidative-glycolytic (FOG) and fast-twitch glycolytic (FG) fibers were approximately equal in number and distribution in the emu pectoralis examined. In the ostriches, both predominantly FG and approximately equal areas, were present. ST fibers were significantly (P ≤ 0.05) larger than the similarly (P ≥ 0.05) sized FG and FOG fibers in the female ostrich and emus. In the male ostrich ST fibers were smaller (P ≤ 0.05) than FG fibers, neither of which were significantly (P ≥ 0.05) different from FOG fibers. The ratites have the greatest percentage and widest distribution of ST fibers found in any avian pectoralis studied to date. This could represent the ancestoral avian pectoralis, neoteny or an effect of flightlessness. ST fibers are used in the maintenance of posture, which is probably the main role of the pectoralis in the emu. The predominantly FG areas of the ostrich are indicative of an additional function, namely, behavioural display. Sexual dimorphism in the ostrich pectoralis is strongly suggested. 相似文献
16.
17.
18.
19.
ABSTRACT: BACKGROUND: Tonsils are secondary lymphoid organs located in the naso- and oropharynx of most mammalian species. Most tonsils are characterised by crypts surrounded by dense lymphoid tissue. However, tonsils without crypts have also been recognised. Gut-associated lymphoid tissue (GALT), although not well-organised and lacking tonsillar crypts, is abundant in the avian oropharynx and has been referred to as the "pharyngeal tonsil". In this context the pharyngeal folds present in the oropharynx of ratites have erroneously been named the pharyngeal tonsils. This study distinguishes between the different types and arrangements of lymphoid tissue in the pharyngeal region of D. novaehollandiae and S. camelus and demonstrates that both species possess a true pharyngeal tonsil which fits the classical definition of tonsils in mammals. RESULTS: The pharyngeal tonsil (Tonsilla pharyngea) of D. novaehollandiae was located on the dorsal free surface of the pharyngeal folds and covered by a small caudo-lateral extension of the folds whereas in S. camelus the tonsil was similarly located on the dorsal surface of the pharyngeal folds but was positioned retropharyngeally and encapsulated by loose connective tissue. The pharyngeal tonsil in both species was composed of lymph nodules, inter-nodular lymphoid tissue, mucus glands, crypts and intervening connective tissue septa. In S. camelus a shallow tonsillar sinus was present. Aggregated lymph nodules and inter-nodular lymphoid tissue was associated with the mucus glands on the ventral surface of the pharyngeal folds in both species and represented the Lymphonoduli pharyngeales. Similar lymphoid tissue, but more densely packed and situated directly below the epithelium, was present on the dorsal, free surface of the pharyngeal folds and represented a small, non-follicular tonsil. CONCLUSIONS: The follicular pharyngeal tonsils in D. novaehollandiae and S. camelus are distinct from the pharyngeal folds in these species and perfectly fit the classical mammalian definition of pharyngeal tonsils. The presence of a true pharyngeal tonsil differentiates these two ratite species from other known avian species where similar structures have not been described. The pharyngeal tonsils in these ratites may pose a suitable and easily accessible site for immune response surveillance as indicated by swelling and inflammation of the tonsillar tissue and pharyngeal folds. This would be facilitated by the fact that the heads of these commercially slaughtered ratites are discarded, thus sampling at these sites would not result in financial losses. 相似文献
20.
The testicular capsule and peritubular boundary tissue of the emu and ostrich, as typical representatives of ratite birds,
were studied in sexually mature and active birds. The testicular capsule was much thicker (578.1±73.4 μm for the free surface
of the ostrich testis, and 176.2±57.5 μm for the emu) than those of members of the Galloanserae. The cellular composition
of both testicular capsule and peritubular tissue was similar generally to that of members of the previously studied Galloanserae
and of mammals. The tunica albuginea of the testicular capsule mainly comprised smooth-muscle-like or myoid cells mostly running
in one direction and occurring in one main mass. Unlike the Galloanserae, the tunica albuginea contained more collagen fibres
than smooth muscle cells, especially in the ostrich. Peritubular tissue was similarly composed of smooth-muscle-like cells
distributed in several layers. Actin microfilaments and desmin and vimentin intermediate filaments were variably immunoexpressed
in these two tissue types in both birds, with a clear dichotomy in the peritubular tissue. Thus, taken together with studies
of some members of the Galloanserae, avian testes clearly contain a morphological mechanism that is represented partly by
the smooth muscle cells of the testicular capsule and peritubular tissue for transporting the testicular fluid, which is usually
copious in birds, and its cellular content from the testis into the excurrent duct system; this mechanism is similar to that
found in mammals.
The authors are grateful for a University of Pretoria research grant, which aided this work. Dr Peter Ozegbe of the Department
of Veterinary Anatomy, University of Ibadan is a recipient of the University of Pretoria Foreign Post-Doctoral Fellowship. 相似文献