首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider a simple physical model for the reopening of a collapsed lung airway involving the unsteady propagation of a long bubble of air, driven at a prescribed flow-rate, into a liquid-filled channel formed by two flexible membranes that are held under large longitudinal tension and are confined between two parallel rigid plates. This system is described theoretically using an asymptotic approximation, valid for uniformly small membrane slopes, which reduces to a fourth-order nonlinear evolution equation for the channel width ahead of the bubble tip, from which the time-evolution of the bubble pressure pb* and bubble speed may be determined. The model shows that there can be a substantial delay between the time at which the bubble starts to grow in volume and the time at which its tip starts to move. Under certain conditions, the start of the bubble's motion is accompanied by a transient overshoot in pb*, as seen previously in experiment; the model predicts that the overshoot is greatest in narrow channels when the bubble is driven with a large volume flux. It is also shown how the threshold pressure for steady bubble propagation in wide channels has distinct contributions from the capillary pressure drop across the bubble tip and viscous dissipation in the channel ahead of the bubble.  相似文献   

2.
Motivated by the physiological problem of pulmonary airway reopening, we study the steady propagation of an air finger into a buckled elastic tube, initially filled with viscous fluid. The system is modeled using geometrically non-linear, Kirchhoff-Love shell theory, coupled to the free-surface Navier-Stokes equations. The resulting three-dimensional, fluid-structure-interaction problem is solved numerically by a fully coupled finite element method. Our study focuses on the effects of fluid inertia, which has been neglected in most previous studies. The importance of inertial forces is characterized by the ratio of the Reynolds and capillary numbers, ReCa, a material parameter. Fluid inertia has a significant effect on the system's behavior, even at relatively small values of ReCa. In particular, compared to the case of zero Reynolds number, fluid inertia causes a significant increase in the pressure required to drive the air finger at a given speed.  相似文献   

3.
Airway collapse and reopening due to mechanical ventilation exerts mechanical stress on airway walls and injures surfactant-compromised lungs. The reopening of a collapsed airway was modeled experimentally and computationally by the progression of a semi-infinite bubble in a narrow fluid-occluded channel. The extent of injury caused by bubble progression to pulmonary epithelial cells lining the channel was evaluated. Counterintuitively, cell damage increased with decreasing opening velocity. The presence of pulmonary surfactant, Infasurf, completely abated the injury. These results support the hypotheses that mechanical stresses associated with airway reopening injure pulmonary epithelial cells and that pulmonary surfactant protects the epithelium from this injury. Computational simulations identified the magnitudes of components of the stress cycle associated with airway reopening (shear stress, pressure, shear stress gradient, or pressure gradient) that may be injurious to the epithelial cells. By comparing these magnitudes to the observed damage, we conclude that the steep pressure gradient near the bubble front was the most likely cause of the observed cellular damage.  相似文献   

4.
Recent advances in the ventilation of patients with acute respiratory distress syndrome (ARDS), including ventilation at low lung volumes, have resulted in a decreased mortality rate. However, even low-lung volume ventilation may exacerbate lung injury due to the cyclic opening and closing of fluid-occluded airways. Specifically, the hydrodynamic stresses generated during airway reopening may result in epithelial cell (EpC) injury. We utilized an in vitro cell culture model of airway reopening to investigate the effect of reopening velocity, airway diameter, cell confluence, and cyclic closure/reopening on cellular injury. Reopening dynamics were simulated by propagating a constant-velocity air bubble in an adjustable-height parallel-plate flow chamber. This chamber was occluded with different types of fluids and contained either a confluent or a subconfluent monolayer of EpC. Fluorescence microscopy was used to quantify morphological properties and percentage of dead cells under different experimental conditions. Decreasing channel height and reopening velocity resulted in a larger percentage of dead cells due to an increase in the spatial pressure gradient applied to the EpC. These results indicate that distal regions of the lung are more prone to injury and that rapid inflation may be cytoprotective. Repeated reopening events and subconfluent conditions resulted in significant cellular detachment. In addition, we observed a larger percentage of dead cells under subconfluent conditions. Analysis of this data suggests that in addition to the magnitude of the hydrodynamic stresses generated during reopening, EpC morphological, biomechanical, and microstructural properties may also be important determinants of cell injury.  相似文献   

5.
6.
The regional distribution of inhaled gas within the lung is affected in part by normal variations in airway geometry or by obstructions resulting from disease. In the present work, the effects of heterogeneous airway obstructions on the distribution of air and helium-oxygen were examined using an in vitro model, the two compartments of a dual adult test lung. Breathing helium-oxygen resulted in a consistently more uniform distribution, with the gas volume delivered to a severely obstructed compartment increased by almost 80%. An engineering approach to pipe flow was used to analyze the test lung and was extrapolated to a human lung model to show that the in vitro experimental parameters are relevant to the observed in vivo conditions. The engineering analysis also showed that helium-oxygen can decrease the relative weight of the flow resistance due to obstructions if they are inertial in nature (i.e., density dependent) due to either turbulence or laminar convective losses.  相似文献   

7.
The entrainment of ventilation frequency to exercise rhythm   总被引:1,自引:0,他引:1  
To investigate whether ventilation frequency could be entrained to a sub-harmonic of the exercise rhythm, 19 experimentally naive male volunteers were tested during steady state bicycle ergometry and arm cranking under conditions of constant applied workload. Each exercise was performed at two separate ventilatory loads, one within the linear range and the other in the curvilinear range of ventilatory response to exercise. A preferred exercise rhythm was initially adopted (4 min.) followed by forced incremented and decremented rhythm changes each lasting 3 min during a 12 min exercise period. Ventilation, pedal pulse train and heart rate were sampled at 17 Hz on a PDP 11/23 computer. Ratios of limb frequency to dominant respiratory frequency were determined following Fourier analysis of these signals. Data that lay within +/- 0.05 of an integer and half-integer ratio were accepted as indices of entrainment, provided that the observed entrained scores were statistically significant. Ventilation frequency showed a clear, but intermittent tendency to entrain with limb frequency. This tendency was greater during bicycle ergometry, possibly as a consequence of task familiarisation, although both exercise entrainments were independent of workload. No difference between preferred versus varied exercise rhythm was evident, but more entrainment (p less than 0.01) was observed during a decremental change in exercise rhythm. These responses do not appear to support an appreciable role for limb-based afferents in the control of entrainment. The results of this study provide evidence that exercise rhythm has some regulatory role in the control of breathing during moderate rhythmical laboratory-based exercise ergometry.  相似文献   

8.
Guo HM  Luo YL  Zhou WL 《生理科学进展》2010,41(3):189-192
ATP不但是各种细胞的能量来源,而且更是一种自分泌或旁分泌的胞外信使,参与细胞一系列的生物学效应。ATP从呼吸道上皮细胞中释放,在调节呼吸道表面液体量的平衡、黏膜纤毛清除能力和呼吸道防御功能方面起重要作用,并参与呼吸道疾病及炎症的发生。本文对ATP从呼吸道上皮释放的途径,ATP调节呼吸道上皮离子转运的机制,ATP对呼吸道平滑肌的双重调节作用,以及ATP参与呼吸道疾病和炎症的发生机制等方面予以综述。  相似文献   

9.
The role of bestrophin in airway epithelial ion transport   总被引:4,自引:0,他引:4  
The purpose of this study was to identify Cl- channels in the basolateral membrane of airway epithelial cells at the molecular level. We have focused on a new family of Cl- channels, bestrophins, which have previously been identified in retinal pigment epithelium. RT-PCR, Western blot and confocal microscopy studies revealed the presence of bestrophin in airway epithelial cells. Decreasing bestrophin expression using siRNA resulted in diminished 36Cl- flux. These studies also showed that bestrophin regulation is similar to that of native basolateral Cl- channels. The data indicate that the presence of a functional bestrophin may contribute to the basolateral cell conductance in airway epithelial cells.  相似文献   

10.
11.
12.
The effectiveness of targeting IL-13 in models where airway hyperresponsiveness (AHR) and airway inflammation have already been established is not well-described. We investigated the effects of blocking IL-13 on the early and late phase airway responses and the development of AHR in previously sensitized and challenged mice. BALB/cByJ mice were sensitized (days 1 and 14) and challenged (days 28-30) with OVA. Six weeks later (day 72), previously sensitized/challenged mice were challenged with a single OVA aerosol and the early and late phase response and development of AHR were determined. Specific in vivo blockade of IL-13 was attained after i.p. injection of a soluble IL-13Ralpha2-IgG fusion protein (sIL-13Ralpha2Fc) on days 71-72 for the early and late responses and on days 71-73 for the development of AHR. sIL-13Ralpha2Fc administration inhibited the late, but not early, phase response and the OVA challenge-induced changes in lung resistance and dynamic compliance; as well, sIL-13Ralpha2Fc administration decreased bronchoalveolar lavage eosinophilia and mucus hypersecretion following the secondary challenge protocols. These results demonstrate that targeting IL-13 alone regulates airway responses when administrated to mice with established allergic airway disease. These data identify the importance of IL-13 in the development of allergen-induced altered airway responsiveness following airway challenge, even when administered before rechallenge of mice in which allergic disease had been previously established.  相似文献   

13.
Nonreversible conductive airway ventilation heterogeneity in mild asthma.   总被引:1,自引:0,他引:1  
A multiple-breath washout technique was used to assess residual ventilation heterogeneity in the conductive and acinar lung zones of asthmatic patients after maximal beta(2)-agonist reversibility. Reversibility was assessed in 13 patients on two separate visits corresponding to a different baseline condition in terms of forced expiratory volume in 1 s [FEV(1); average FEV(1) over 2 visits: 92 +/- 21% of predicted (SE)]. On the visit corresponding to each patient's best baseline, 400 micro g salbutamol led to normal acinar ventilation heterogeneity, normal FEV(1), and normal peak expiratory flow; i.e., none was significantly different from that obtained in 13 matched controls. By contrast, conductive ventilation heterogeneity and forced expiratory flow after exhalation of 75% forced vital capacity remained significantly different from controls (P < or = 0.005 on both indexes). In addition, the degree of postdilation conductive ventilation heterogeneity was similar to what was previously obtained in asthmatic individuals with a 19% lower baseline FEV(1) and twofold larger acinar ventilation heterogeneity (Verbanck S, Schuermans D, Noppen M, Van Muylem A, Paiva M, and Vincken W. Am J Respir Crit Care Med 159: 1545-1550, 1999). We conclude that, even in the mildest forms of asthma, the most consistent pattern of non-beta(2)-agonist-reversible ventilatory heterogeneity is in the conductive lung zone, most probably in the small conductive airways.  相似文献   

14.
Lung mechanics and morphometry of 10 normal open-chest rabbits (group A), mechanically ventilated (MV) with physiological tidal volumes (8-12 ml/kg), at zero end-expiratory pressure (ZEEP), for 3-4 h, were compared with those of five rabbits (group B) after 3-4 h of MV with a positive end-expiratory pressure (PEEP) of 2.3 cmH(2)O. Relative to initial MV on PEEP, MV on ZEEP caused a progressive increase in quasi-static elastance (+36%) and airway (Rint; +71%) and viscoelastic resistance (+29%), with no change in the viscoelastic time constant. After restoration of PEEP, quasi-static elastance and viscoelastic resistance returned to control levels, whereas Rint remained elevated (+22%). On PEEP, MV had no effect on lung mechanics. Gas exchange on PEEP was equally preserved in groups A and B, and the lung wet-to-dry ratios were normal. Both groups had normal alveolar morphology, whereas only group A had injured respiratory and membranous bronchioles. In conclusion, prolonged MV on ZEEP induces histological evidence of peripheral airway injury with a concurrent increase in Rint, which persists after restoration of normal end-expiratory volumes. This is probably due to cyclic opening and closing of peripheral airways on ZEEP.  相似文献   

15.
Warburg and coworkers (Warburg O, Posener K, Negelein E. Z Biochem 152: 319, 1924) first reported that cancerous cells switch glucose metabolism from oxidative phosphorylation to aerobic glycolysis, and that this switch is important for their proliferation. Nothing is known about aerobic glycolysis in T cells from asthma. The objective was to study aerobic glycolysis in human asthma and the role of this metabolic pathway in airway hyperreactivity and inflammation in a mouse model of asthma. Human peripheral blood and mouse spleen CD4 T cells were isolated by negative selection. T cell proliferation was measured by thymidine incorporation. Cytokines and serum lactate were measured by ELISA. Mouse airway hyperreactivity to inhaled methacholine was measured by a FlexiVent apparatus. The serum lactate concentration was significantly elevated in clinically stable asthmatic subjects compared with healthy and chronic obstructive pulmonary disease controls, and negatively correlated with forced expiratory volume in 1 s. Proliferating CD4 T cells from human asthma and a mouse model of asthma produced higher amounts of lactate upon stimulation, suggesting a heightened glycolytic activity. Lactate stimulated and inhibited T cell proliferation at low and high concentrations, respectively. Dichloroacetate (DCA), an inhibitor of aerobic glycolysis, inhibited lactate production, proliferation of T cells, and production of IL-5, IL-17, and IFN-γ, but it stimulated production of IL-10 and induction of Foxp3. DCA also inhibited airway inflammation and hyperreactivity in a mouse model of asthma. We conclude that aerobic glycolysis is increased in asthma, which promotes T cell activation. Inhibition of aerobic glycolysis blocks T cell activation and development of asthma.  相似文献   

16.
17.
Ventilation frequency (FV) in motionless common sole Solea solea was measured before and after a startling stimulus in normoxia and in hypoxia (15% air saturation). Startling reduced FV in normoxia (from mean ±s.e. 41 ± 3·3 beats min?1 to near zero, i.e. 2·0 ± 1·8 beats min?1) and in hypoxia (from mean ±s.e. 80 ± 4·4 to 58·8 ± 12·9 beats min?1). It is suggested that the maintenance of high FV in hypoxia may increase the probability of detection by predators compared to normoxia.  相似文献   

18.
A patient with the rare genetic disease of mitochondrial oxidative phosphorylation is presented. The phenotypic presentation included localized, idiosyncratic lipodystrophy that caused life-threatening respiratory obstruction. Plastic surgical excision and suction-assisted lipoplasty of huge deposits of fat and skin led to marked improvement in patient posture and ventilation. This rare disorder, stages of treatment, and salient references are discussed.  相似文献   

19.
High frequency oscillatory ventilation (HFOV) is a new method of artificial ventilation which has been advocated for use in critically ill individuals. It alters the discharge in pulmonary stretch receptors (SAR) from a phasic to a continuous pattern. Since some cardiovascular neurones in the medulla are influenced by the discharge from SAR, experiments were undertaken to determine whether the reflexes from the left atrial (volume) receptors (LAR) were influenced by HFOV. The reflex increases in heart rate and urine flow which result from activation of the (LAR) were examined during both intermittent positive pressure ventilation (IPPV) and HFOV. In five dogs, the increase in heart rate was 23.9 +/- 4.3 and 24.5 +/- 5.4 beats/min during IPPV and HFOV, respectively. In six dogs the response of an increase in urine flow was examined and this response also was not altered by HFOV. It is concluded that the integrity of these reflexes was unaffected by HFOV in the anesthetized dog model.  相似文献   

20.
Airway hyper-reactivity is a characteristic feature of many inflammatory lung diseases and is defined as an exaggerated degree of airway narrowing. Chemokines and their receptors are involved in several pathological processes that are believed to contribute to airway hyper-responsiveness, including recruitment and activation of inflammatory cells, collagen deposition and airway wall remodeling. These proteins are therefore thought to represent important therapeutic targets in the treatment of airway hyper-responsiveness. This review highlights the processes thought to be involved in airway hyper-responsiveness in allergic asthma, and the role of chemokines in these processes. Overall, the application of chemokines to the prevention or treatment of airway hyper-reactivity has tremendous potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号