首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mechanical properties of human soft tissue are crucial for impact biomechanics, rehabilitation engineering, and surgical simulation. Validation of these constitutive models using human data remains challenging and often requires the use of non-invasive imaging and inverse finite element (FE) analysis. Post-processing data from imaging methods such as tagged magnetic resonance imaging (MRI) can be challenging. Digital image correlation (DIC), however, is a relatively straightforward imaging method. DIC has been used in the past to study the planar and superficial properties of soft tissue and excised soft tissue layers. However, DIC has not been used to non-invasive study of the bulk properties of human soft tissue in vivo. Thus, the goal of this study was to assess the use of DIC in combination with FE modelling to determine the bulk material properties of human soft tissue. Indentation experiments were performed on a silicone gel soft tissue phantom. A two camera DIC setup was then used to record the 3D surface deformation. The experiment was then simulated using a FE model. The gel was modelled as Neo-Hookean hyperelastic, and the material parameters were determined by minimising the error between the experimental and FE data. The iterative FE analysis determined material parameters (μ=1.80 kPa, K=2999 kPa) that were in close agreement with parameters derived independently from regression to uniaxial compression tests (μ=1.71 kPa, K=2857 kPa). Furthermore the FE model was capable of reproducing the experimental indentor force as well as the surface deformation found (R2=0.81). It was therefore concluded that a two camera DIC configuration combined with FE modelling can be used to determine the bulk mechanical properties of materials that can be represented using hyperelastic Neo-Hookean constitutive laws.  相似文献   

2.
The objective of this study was to determine the biphasic viscoelastic properties of human temporomandibular joint (TMJ) discs, correlate these properties with disc biochemical composition, and examine the relationship between these properties and disc dynamic behavior in confined compression. The equilibrium aggregate modulus (HA), hydraulic permeability (k), and dynamic modulus were examined between five disc regions. Biochemical assays were conducted to quantify the amount of water, collagen, and glycosaminoglycan (GAG) content in each region. The creep tests showed that the average equilibrium moduli of the intermediate, lateral, and medial regions were significantly higher than for the anterior and posterior regions (69.75±11.47 kPa compared to 22.0±5.15 kPa). Permeability showed the inverse trend with the largest values in the anterior and posterior regions (8.51±1.36×10?15 m4/Ns compared with 3.75±0.72×10?15 m4/Ns). Discs were 74.5% water by wet weight, 62% collagen, and 3.2% GAG by dry weight. Regional variations were only observed for water content which likely results in the regional variation in biphasic mechanical properties. The dynamic modulus of samples during confined compression is related to the aggregate modulus and hydraulic permeability of the tissue. The anterior and posterior regions displayed lower complex moduli over all frequencies (0.01–3 Hz) with average moduli of 171.8–609.3 kPa compared with 454.6–1613.0 kPa for the 3 central regions. The region of the TMJ disc with higher aggregate modulus and lower permeability had higher dynamic modulus. Our results suggested that fluid pressurization plays a significant role in the load support of the TMJ disc under dynamic loading conditions.  相似文献   

3.
A measurement setup combined with a Finite Element (FE) simulation is presented to determine the elasticity modulus of soft materials as a function of frequency. The longterm goal of this work is to measure in vitro the elasticity modulus of human vocal folds over a frequency range that coincides with the range of human phonation. The results will assist numerical simulations modeling the phonation process by providing correct material parameters. Furthermore, the measurements are locally applied, enabling to determine spatial differences along the surface of the material. In this work the method will be presented and validated by applying it to silicones with similar characteristics as human vocal folds.Three silicone samples with different consistency were tested over a frequency range of 20–250 Hz. The results of the pipette aspiration method revealed a strong frequency dependency of the elasticity modulus, especially below 100 Hz. In this frequency range the elasticity moduli of the samples varied between 5 and 27 kPa.  相似文献   

4.
This study aims to quantify the biomechanical properties of murine temporomandibular joint (TMJ) articular disc and condyle cartilage using AFM-nanoindentation. For skeletally mature, 3-month old mice, the surface of condyle cartilage was found to be significantly stiffer (306 ± 84 kPa, mean ± 95% CI) than those of the superior (85 ± 23 kPa) and inferior (45 ± 12 kPa) sides of the articular disc. On the disc surface, significant heterogeneity was also detected across multiple anatomical sites, with the posterior end being the stiffest and central region being the softest. Using SEM, this study also found that the surfaces of disc are composed of anteroposteriorly oriented collagen fibers, which are sporadically covered by thinner random fibrils. Such fibrous nature results in both an F-D3/2 indentation response, which is a typical Hertzian response for soft continuum tissue under a spherical tip, and a linear F-D response, which is typical for fibrous tissues, further signifying the high degree of tissue heterogeneity. In comparison, the surface of condyle cartilage is dominated by thinner, randomly oriented collagen fibrils, leading to Hertzian-dominated indentation responses. As the first biomechanical study of murine TMJ, this work will provide a basis for future investigations of TMJ tissue development and osteoarthritis in various murine TMJ models.  相似文献   

5.
An intraluminal thrombus (ILT) forms in the majority of abdominal aortic aneurysms (AAAs). While the ILT has traditionally been perceived as a byproduct of aneurysmal disease, the mechanical environment within the ILT may contribute to the degeneration of the aortic wall by affecting biological events of cells embedded within the ILT. In this study, the drained secant modulus (E5~modulus at 5% strain) of ILT specimens (luminal, medial, and abluminal) procured from elective open repair was measured and compared using unconfined compression. Five groups of fibrin-based thrombus mimics were also synthesized by mixing various combinations of fibrinogen, thrombin, and calcium. Drained secant moduli were compared to determine the effect of the components’ concentrations on mimic stiffness. The stiffness of mimics was also compared to the native ILT. Preliminary data on the water content of the ILT layers and mimics was measured. It was found that the abluminal layer (E5=19.3 kPa) is stiffer than the medial (2.49 kPa) and luminal (1.54 kPa) layers, both of which are statistically similar. E5 of the mimics (0.63, 0.22, 0.23, 0.87, and 2.54 kPa) is dependent on the concentration of all three components: E5 decreases with a decrease in fibrinogen (60–20 and 20–15 mg/ml) and a decrease in thrombin (3–0.3 units/ml), and E5 increases with a decrease in calcium (0.1–0.01 M). E5 from two of the mimics were not statistically different than the medial and luminal layers of ILT. A thrombus mimic with similar biochemical components, structure, and mechanical properties as native ILT would provide an appropriate test medium for AAA mechanobiology studies.  相似文献   

6.
BackgroundThe cerebellum has never been mechanically characterised, despite its physiological importance in the control of motion and the clinical prevalence of cerebellar pathologies. The aim of this study was to measure the linear viscoelastic properties of the cerebellum in human volunteers using Magnetic Resonance Elastography (MRE).MethodsCoronal plane brain 3D MRE data was performed on eight healthy adult volunteers, at 80 Hz, to compare the properties of cerebral and cerebellar tissues. The linear viscoelastic storage (G′) and loss moduli (G) were estimated from the MRE wave images by solving the wave equation for propagation through an isotropic linear viscoelastic solid. Contributions of the compressional wave were removed via application of the curl-operator.ResultsThe storage modulus for the cerebellum was found to be significantly lower than that for the cerebrum, for both white and grey matter. Cerebrum: white matter (mean±SD) G′=2.41±0.23 kPa, grey matter G′=2.34±0.22 kPa; cerebellum: white matter, G′=1.85±0.18 kPa, grey matter G′=1.77±0.24 kPa; cerebrum vs cerebellum, p<0.001. For the viscous behaviour, there were differences in between regions and also by tissue type, with the white matter being more viscous than grey matter and the cerebrum more viscous than the cerebellum. Cerebrum: white matter G″=1.21±0.21 kPa, grey matter G″=1.11±0.03 kPa; cerebellum: white matter G″=1.1±0.23 kPa, grey matter G″=0.94±0.17 kPa.DiscussionThese data represent the first available data on the viscoelastic properties of cerebellum, which suggest that the cerebellum is less physically stiff than the cerebrum, possibly leading to a different response to mechanical loading. These data will be useful for modelling of the cerebellum for a range of purposes.  相似文献   

7.
《Journal of biomechanics》1999,32(9):999-1003
Quantification of the mechanical properties of the iris is necessary to assess the clinical significance of passive iris deformation, which has been suggested as a mechanism for certain forms of glaucoma. Extension tests were performed on isolated bovine irises to determine the passive mechanical behavior of the iris and the contribution of each of its two constituent muscles, the sphincter iridis and the dilator pupillae, to the overall properties. Because of the shape of the iris and our desire to use intact tissue, a “loop” experiment was performed in which the iris was stretched by hooking the sample and pulling. A simple mathematical model was used to account for the geometry of the experiment and the progressive recruitment of tissue. Radial extension experiments on samples dissected from the iris were also performed. The iris was found to be anisotropic, elastic, and incompressible. The average azimuthal Young's modulus of the sphincter was found to be 340 kPa; the average azimuthal Young's modulus of the dilator was found to be 890 kPa, which was significantly higher (p<0.01). The radial Young's modulus of the dilator was found to be 9.6 kPa, much lower than the azimuthal value.  相似文献   

8.
Rhizomorphs of wood-decay basidiomycetes are root-like structures produced by the coordinated growth of thousands of hyphae. Very little is known about their development nor the way that they penetrate soils and rotting wood. In this study, we applied techniques used in previous studies on hyphae to explore the mechanics of the invasive growth process in Armillaria gallica. Growth rate measurements were made in media with different gel strengths. The osmolyte composition of rhizomorph sap was determined spectroscopically and the forces exerted by growing tips were measured using a force transducer. Cultured rhizomorphs extended at much faster rates than unbundled hyphae (3.5 mm d−1 versus 1.5 mm d−1) and their growth accelerated in response to increased medium gel strength (to 7.4 mm d−1). Measurements of rhizomorph osmolality provided a turgor pressure estimate of 760 kPa (7.5 atm.), and spectroscopic analysis showed that this pressure was generated by the accumulation of erythritol, mannitol, and KCl. Forces exerted by growing tips ranged from 1 to 6 mN, corresponding to pressures of 40–300 kPa (0.4–3.0 atm.). Pressures exerted by extending rhizomorphs are comparable to those produced by individual vegetative hyphae. This suggests that the mechanical behavior of hyphae is similar whether they grow as unbundled cells or aggregate to form macroscopic rhizomorphs.  相似文献   

9.
The Pacinian corpuscle (PC) is a cutaneous mechanoreceptor sensitive to high-frequency vibrations (20–1000 Hz). The PC is of importance due to its integral role in somatosensation and the critical need to understand PC function for haptic feedback system development. Previous theoretical and computational studies have modeled the physiological response of the PC to sustained or vibrating mechanical stimuli, but they have used estimates of the receptor’s mechanical properties, which remain largely unmeasured. In this study, we used micropipette aspiration (MPA) to determine an apparent Young’s modulus for PCs isolated from a cadaveric human hand. MPA was applied in increments of 5 mm H2O (49 Pa), and the change in protrusion length of the PC into the pipette was recorded. The protrusion length vs. suction pressure data were used to calculate the apparent Young’s modulus. Using 10 PCs with long-axis lengths of 2.99 ± 0.41 mm and short-axis lengths of 1.45 ± 0.22 mm, we calculated a Young’s modulus of 1.40 ± 0.86 kPa. Our measurement is on the same order of magnitude as those approximated in previous models, which estimated the PC to be on the same order of magnitude as skin or isolated cells, so we recommend that a modulus in the kPa range be used in future studies.  相似文献   

10.
Telomeres progressively shorten with repeated somatic tissue cell division, their length being an indicator of cellular ageing. Telomeric dysfunction may be implicated in a variety of diseases. We measured mean telomere length in peripheral blood leukocytes (PBL) from patients with various rheumatologic diseases. Mean PBL telomere length was measured using real-time quantitative polymerase chain reaction (Q-PCR) assay in a control population (n = 130; age range: 3–94 years) and in subjects diagnosed with rheumatoid arthritis (RA; n = 86; age range: 31–82 years), psoriatic arthritis (PA; n = 56; age range: 26–79 years) and ankylosing spondylitis (AS; n = 59; age range: 21–75 years). These diseases are associated with chronic systemic inflammatory activity. Telomere length was also quantified in subjects with osteoarthritis (OA; n = 34; age range: 43–82 years) and osteoporosis (OP; n = 35; age range: 59–95 years), diseases without a chronic systemic inflammatory component. Telomere length in OA showed no differences from age-matched controls (p = 0.234), but was significantly shorter in OP (p = 0.001). Telomere length was significantly longer than controls in RA (p = 0.015), PA (p < 0.001) and AS (p < 0.001). Different patterns in telomere length from PBL are evidenced in rheumatologic pathologies, possibly dependent on the presence or absence of chronic systemic inflammation.  相似文献   

11.
Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were characterized using dynamic and stress-relaxation testing at the apparent-level and with creep nanoindentation at the tissue-level. In addition, bone tissue elasticity was determined using scanning acoustic microscope (SAM). Tissue composition and collagen crosslinks were assessed using Raman micro-spectroscopy and high performance liquid chromatography (HPLC), respectively. Values of material parameters were obtained from finite element (FE) models by optimizing tissue-level creep and apparent-level stress-relaxation to experimental nanoindentation and unconfined compression testing values, respectively, utilizing the second order Prony series to depict viscoelasticity. FE simulations showed that tissue-level equilibrium elastic modulus (Eeq) increased with increasing crystallinity (r = 0.730, p = .011) while at the apparent-level it increased with increasing hydroxylysyl pyridinoline content (r = 0.718, p = .019). In addition, the normalized shear modulus g1 (r = −0.780, p = .005) decreased with increasing collagen ratio (amide III/CH2) at the tissue-level, but increased (r = 0.696, p = .025) with increasing collagen ratio at the apparent-level. No significant relations were found between the measured or simulated viscoelastic parameters at the tissue- and apparent-levels nor were the parameters related to tissue elasticity determined with SAM. However, only Eeq, g2 and relaxation time τ1 from simulated viscoelastic values were statistically different between tissue- and apparent-levels (p < .01). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone.  相似文献   

12.
《Cryobiology》2008,56(3):261-268
Cryopreservation, which is the most important procedure in ovarian tissue banking, can be divided into two methods: conventional freezing and rapid freezing. In previous study, the higher effectiveness of rapid freezing in comparison with the conventional freezing for human oocytes and embryos was shown. Data on comparison of these two methods for human ovarian tissue are limited. The aim of this study was to compare conventional freezing and rapid freezing for human ovarian tissue. Ovarian tissue fragments from 14 patients were transported to the laboratory within 22–25 h in a special, isolated transport box, which can maintain a stable temperature of between 5 and 8 °C for 36 h. Small pieces of ovarian tissue (1 × 1–1.5 × 0.7–1 mm) were randomly distributed into four groups: Group 1: control, fresh pieces immediately after receiving transport box, Groups 2 and 3: experimental pieces after rapid freezing/warming, and Group 4: experimental pieces after conventional freezing/thawing. All pieces were cultured in vitro for 14 days. The viability of the tissue by in vitro production of hormones and development of follicles after culture was evaluated. The level of estradiol 17-β and progesterone was measured using heterogeneous competitive magnetic separation immunoassay. For histological analysis, the number of viable and damaged follicles was counted. After culture of fresh tissue pieces (Group 1), rapidly frozen/warmed pieces (Groups 2 and 3), and conventionally frozen/thawed pieces (Group 4), the supernatants showed estradiol 17-β concentrations of 358, 275, 331, and 345 pg/ml, respectively, and progesterone concentrations of 3.02, 1.77, 1.99, and 2.01 ng/ml, respectively. It was detected that 96%, 36%, 39%, and 84% follicles for Groups 1, 2, 3, and 4, respectively, were normal. For cryopreservation of human ovarian tissue, conventional freezing is more promising than rapid freezing.  相似文献   

13.
The success of cell-based tissue engineering approaches in restoring biological function will be facilitated by a comprehensive fundamental knowledge of the temporal evolution of the structure and properties of the newly synthesized matrix. Here, we quantify the dynamic oscillatory mechanical behavior of the engineered matrix associated with individual chondrocytes cultured in vitro for up to 28 days in alginate scaffolds. The magnitude of the complex modulus (|E*|) and phase shift (δ) were measured in culture medium using Atomic Force Microscopy (AFM)-based nanoindentation in response to an imposed oscillatory deformation (amplitude ~5 nm) as a function of frequency (f=1–316 Hz), probe tip geometry (2.5 μm radius sphere and 50 nm radius square pyramid), and in the absence and presence of growth factors (GF, insulin growth factor-1, IGF-1, and osteogenic protein-1, OP-1). |E*| for all conditions increased nonlinearly with frequency dependence approximately f1/2 and ranged between ~1 and 25 kPa. This result, along with theoretical calculations of the characteristic poroelastic relaxation frequency, fp, (~50–90 Hz) suggested that this time-dependent behavior was governed primarily by fluid flow-dependent poroelasticity, rather than flow-independent viscoelastic processes associated with the solid matrix. |E*(f)| increased, (f) decreased, and the hydraulic permeability, k, decreased with time in culture and with growth factor treatment. This trend of a more elastic-like response was thought to be associated with increased macromolecular biosynthesis, density, and a more mature matrix structure/organization.  相似文献   

14.
The purpose of this study was to determine the changes that occur in tendinous tissue properties during the early phase of tetanic summation in the in vivo human tibialis anterior muscle (TA). The torque response and tendinous tissue elongation following single stimuli, two-pulse trains, and three-pulse trains were recorded in the TA during isometric contractions. The elongation, compliance, and lengthening velocity of tendinous tissue were determined by real-time ultrasonography. The contribution of the response to the second stimulation (C2) was obtained by subtracting the response to the single stimulation (C1) from the response of doublet. The third contribution (C3) was obtained by subtracting the response to the doublet from that of the triplet. C2 (7.8±0.5 Nm) and C3 (7.3±0.6 Nm) had torque responses significantly higher than C1 (3.6±0.7 Nm). In contrast, the elongations of tendinous tissue for C2 (2.8±0.4 mm) and C3 (1.7±0.2 mm) were significantly lower than for C1 (4.9±0.3 mm), indicating that the summation pattern of tendinous tissue elongation is different from the summation pattern of torque response. In addition, this showed considerable difference both between C1 (0.12±0.01 mm/N; 83±4.6 mm/s) and C2 (0.03±0.005 mm/N; 50±6.3 mm/s) and between C1 and C3 (0.02±0.002 mm/N; 39±6.4 mm/s) in the compliance and lengthening velocity of tendinous tissue. These results suggest that changes in tendinous tissue properties between first and second contraction are related to different summation patterns of force and tendinous tissue elongation during early phase of tetanic summation.  相似文献   

15.
Aldosterone and cortisol are useful biomarkers of dehydration and stress, respectively. The aim of this study was to develop an HPLC–tandem mass spectrometric method for the simultaneous measurement of aldosterone and cortisol in human plasma that could be applied to the study of athletes undergoing exercise and rehydration. Samples were prepared and analysed using an on-line sample preparation/HPLC system coupled to a triple quadrupole tandem-mass spectrometer. Samples (200 μL) were pre-treated and extracted on Hysphere C18 HD cartridges (7 μm, Spark Holland). Chromatography was performed on a Sunfire C18 analytical column (50 mm × 3.0 mm, 3 μm, Waters) under isocratic conditions at a flow rate of 0.3 mL/min. The mobile phase consisted of 35% acetonitrile/water. Mass spectrometric detection was by selected reaction monitoring using negative electrospray ionization conditions. The assay had an analytical range of 25–500 pg/mL and 25–500 ng/mL for aldosterone and cortisol, respectively (r2 > 0.992, n = 22). Inter-day accuracy and imprecision for quality control samples was 99.4–106% and <16%, respectively (n = 10). In a study of nine human subjects, both aldosterone and cortisol concentrations reflected the expected physiological responses to dehydration, rehydration and exercise when measured by this method. The reported method is suitable to facilitate the study of athletes undergoing dehydration and rehydration protocols.  相似文献   

16.
The photoreaction and adsorption properties on surfaces, thermal decomposition, chemical transformation, and other properties of the formamide molecule are widely used to understand the origins of the formation of biological molecules (nucleosides, amino acids, DNA, monolayers, etc.) needed for life. The titanium oxide (TiO2) surface can act both as a template on which the accumulation of adsorbed molecules like formamide occurs through the concentration effect, and as a catalytic material that lowers the activation energy needed for the formation of intermediate products. In this paper, a formamide–water solution interacting with TiO2 (anatase) surface is simulated using the molecular dynamics method. The structural, diffusion and density properties of formamide–water mixture on TiO2 are established for a wide temperature range from T = 250 K up to T = 400 K.  相似文献   

17.
《Cytokine》2010,51(3):284-291
Cytokines are inflammatory mediators of major relevance during sepsis. Recent evidence shows that adipose tissue can produce many distinct cytokines under physiological and pathological conditions, but the role of cytokines produced in adipose tissue was not addressed in sepsis. In the present study the open-flow microperfusion (OFM) technique was used to investigate whether the cytokines produced in subcutaneous adipose tissue (SAT) of patients with severe sepsis correlate with clinical variables. Interstitial fluid effluent samples were collected using an OFM catheter inserted in the abdominal SAT of nine patients with severe sepsis. Blood samples were withdrawn concomitantly and interleukin-1beta (IL-1beta), IL-8, IL-6 and tumor necrosis factor alpha (TNF-alpha) were measured both in SAT effluent and serum samples. Different time profiles were registered for each cytokine. IL-1beta increased in a time-dependent manner, indicating a localized response against the catheter insertion. Interleukin-1beta, 6 and 8 were higher in SAT than in serum suggesting they were locally produced. Diastolic blood pressure (DBP) negatively correlated with IL-1beta, IL-6 and IL-8 in SAT indicating a possible interaction between adipose tissue inflammation and vascular tone regulation. A multiple regression analysis disclosed that mean DBP was significantly related to IL-6 concentrations in SAT (B = −43.9; R-square = 0.82; P = 0.002).  相似文献   

18.
Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472±0.097 and the mean failure stress is 34.80±12.62 kPa. A first-order Ogden material model with ground-state shear modulus (μ) of 23.97±5.52 kPa and exponent (α1) of 3.66±1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.  相似文献   

19.
Gambogic acid (GA), a promising anticancer candidate, is a polyprenylated xanthone abundant in the resin of Garcinia morella and Garcinia hanburyi. The major circulating metabolite of GA in human, 10-hydroxygambogic acid (10-OHGA), was identified by comparison of the retention time and mass spectra with those of reference standard using liquid chromatography–tandem mass spectrometry. The reference standard of 10-OHGA was isolated from bile samples of rats after intravenous injection of GA injection, and its structure was confirmed by NMR. Then, a selective and sensitive method was developed for the quantitative determination of this metabolite in human plasma. After liquid–liquid extraction by ethyl acetate, the analyte and the internal standard were separated on a Sepax HPC18 column (100 mm × 2.1 mm i.d., 3.0 μm) with a mobile phase of 10 mM ammonium acetate water solution containing 0.1% formic acid–acetonitrile (20:80, v/v). The detection was performed on a single quadrupole mass spectrometer equipped with electrospray ionization (ESI) source. The calibration curve was linear over the range of 3–2000 ng/mL for 10-OHGA. The developed quantification method can now be used for the pharmacokinetic and pharmacological studies of 10-OHGA after intravenous infusion of GA injection in human.  相似文献   

20.
In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2 g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4–7% RSD and spike recoveries were 97–100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n = 10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans’ semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号