首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Low protein intake occurs in humans in relation to diseases, starvation and post-operatively. Low-protein diets may affect the gastrointestinal structure and mechanical function. The aim was to study the passive biomechanical properties and tissue remodelling of the intestine in minks on reduced protein diets. Twenty-seven male minks were divided into three groups receiving different protein level in the diet for 6 weeks: High protein level (group H, 55% energy from protein), moderate protein level (group M, 30% energy from protein) and low protein level (group L, 15% energy from protein) (n=9 for each group). Ten centimetre long segments from duodenum, jejunum and ileum were excised at the end of the study period. The mechanical test was performed as a ramp distension experiment. The intestinal diameter and length, wall thickness, wall area and opening angle were obtained from digitized images of the intestinal segments at pre-selected pressures, no-load and zero-stress states, respectively. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed. The layer thickness was measured from intestinal histological images. No difference in body weight was found between groups at the start of the experiment. However, at the end of the experiment the body weight was smallest in group L (P=0.0003 and 0.0004 compared with groups H and M). Similarly, the wet weight per unit length, wall thickness and area were smallest in group L (P<0.05, P<0.01). The lowest wall thickness was found in the jejunum and ileum in group L (P<0.05), mainly due to decreased mucosa and submucosa thickness. The smallest opening angle and absolute values of residual strain were found in the jejunal segment in group L (P<0.05). No difference was observed for duodenal and ileal segments among the three groups. Feeding the low-protein diet shifted the stress–strain curves to the right for the circumferential direction, indicating the wall become softer in the circumferential direction. However, no significant difference was observed in the longitudinal direction for any of the intestinal segments. In conclusion, this study demonstrated that low-protein diet in minks induce histomorphometric and biomechanical remodelling of the intestine.  相似文献   

2.
Signaling through sphingosine-1-phosphate receptor1 (S1P1) promotes blood vessel barrier function. Degradation of S1P1 results in increased vascular permeability in the lung and may explain side effects associated with administration of FTY720, a functional antagonist of the S1P1 receptor that is currently used to treat multiple sclerosis. Ulcerative colitis (UC) is characterized by an increased density of abnormal vessels. The expression or role of S1P1 in blood vessels in the colon has not been investigated. In the present study, we show that S1P1 is overexpressed in the colonic mucosa of UC patients. This increase in S1P1 levels reflects increased vascular density in the inflamed mucosa. Genetic deletion of S1pr1 in mice increases colonic vascular permeability under basal conditions and increases bleeding in experimental colitis. In contrast, neither FTY720 nor AUY954, two S1P receptor-targeting agents, increases bleeding in experimental colitis. Taken together, our findings demonstrate that S1P1 is critical to maintaining colonic vascular integrity and may play a role in UC pathogenesis.  相似文献   

3.

Objectives

Dysbiosis of intestinal microbiota has been implicated in ulcerative colitis (UC). Fucosyltransferase (FUT) 2 and FUT3 determine expression of histo-blood group antigens in the gut and may affect the intestinal microbiota. We investigated the association between FUT2 and FUT3 polymorphisms and UC in Chinese patients.

Methods

We genotyped FUT2 (rs281377, rs1047781 and rs601338) and FUT3 (rs28362459, rs3745635 and rs3894326) in 485 UC patients and 580 healthy controls using SNaPshot. We also evaluated expression of Lewis a and b antigens in the sigmoid colon of 7 UC patients and 7 patients with benign colonic polyps.

Results

The frequencies of mutant allele (A) and genotype (GA+AA) in FUT3 (rs3745635) were higher in UC patients than controls (P = 0.016, 95%CI: 1.339–1.699; P = 0.038, 95%CI: 1.330–1.742, respectively). Stratified analyses revealed that the frequencies of mutant allele (G) and genotype (TG+GG) of FUT3 (rs28362459) were significantly lower in patients with extensive colitis than those with distal colitis (P<0.001, 95%CI: 0.503–0.742; P = 0.001, 95%CI: 0.567–0.786, respectively). Similar conclusions were drawn for the mutant allele (A) and genotype (GA+AA) of FUT3 (rs3745635) in patients with extensive colitis compared to those with distal colitis (P = 0.006, 95%CI: 0.553–0.845; P = 0.011, 95%CI: 0.621–0.900, respectively). Although expression of Lewis b antigen in the sigmoid colon did not differ between UC patients and controls, Lewis a antigen expression was higher in the cryptic epithelium of both inflammatory and non-inflammatory sigmoid colon of UC patients than controls (P = 0.028).

Conclusions

Our findings indicated that polymorphisms in FUT3 and its intestinal expression might be associated with UC pathogenesis.  相似文献   

4.
BackgroundUlcerative colitis (UC) is an intricate enteric disease with a rising incidence that is closely related to mucosa-barrier destruction, gut dysbacteriosis, and immune disorders. Emodin (1,3,8-trihydroxy-6-methyl-9,10-anthraquinone, EMO) is a natural anthraquinone derivative that occurs in many Polygonaceae plants. Its multiple pharmacological effects, including antioxidant, immune-suppressive, and anti-bacteria activities, make it a promising treatment option for UC. However, its poor solubility, extensive absorption, and metabolism in the upper gastrointestinal tract may compromise its anti-colitis effects.PurposeEMO was loaded in a colon-targeted delivery system using multifunctional biomedical materials and the enhanced anti-colitis effect involving mucosa reconstruction was investigated in this study.MethodsEMO-loaded Poly (DL-lactide-co-glycolide)/Eudragit S100/montmorillonite nanoparticles (EMO/PSM NPs) were prepared by a versatile single-step assembly approach. The colon-specific release behavior was characterized in vitro and in vivo, and the anti-colitis effect was evaluated in dextran sulfate sodium (DSS)-induced acute colitis in mice by weight loss, disease activity index (DAI) score, colon length, histological changes, and colitis biomarkers. The integrity of the intestinal mucosal barrier was evaluated through transwell co-culture model in vitro and serum zonulin-related tight junctions and mucin2 (MUC2) in vivo.ResultsEMO/PSM NPs with a desirable hydrodynamic diameter (~ 235 nm) and negative zeta potential (~ -31 mV) could prevent the premature drug release (< 4% in the first 6 h in vitro) in the upper gastrointestinal tract (GIT) and boost retention in the lower GIT and inflamed colon mucosa in vivo. Compared to free EMO-treatment of different doses in UC mice, the NPs could enhance the remedial efficacy of EMO in DAI decline, histological remission, and regulation of colitis indicators, such as myeloperoxidase (MPO), nitric oxide (NO), and glutathione (GSH). The inflammatory factors including induced nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-1β were suppressed by EMO/PSM NPs at both mRNA and protein levels. The obtained NPs could also promote the regeneration of the mucosal barrier via reduced fluorescein isothiocyanate (FITC)-dextran leakage in the transwell co-culture model and decreased serum zonulin levels, which was demonstrated to be associated with the upregulated tight junctions (TJs)-related proteins (claudin-2, occludin, and zo-1) and MUC2 at mRNA level. Moreover, the NPs could contribute to attenuating the liver injury caused by free EMO under excessive immune inflammation.ConclusionOur results demonstrated that EMO/PSM NPs could specifically release EMO in the diseased colon, and effectively enhance the anti-colitis effects of EMO related to intestinal barrier improvement. It can be considered as a novel potential alternative for oral colon-targeted UC therapy by increasing therapeutic efficacy and reducing side-effects.  相似文献   

5.
Orexins (orexin-A and orexin-B) are hypothalamic peptides that are produced by the same precursor and are involved in sleep/wake control, which is mediated by two G protein-coupled receptor subtypes, OX1R and OX2R. Ulcerative colitis (UC) is an inflammatory bowel disease, (IBD) which is characterized by long-lasting inflammation and ulcers that affect the colon and rectum mucosa and is known to be a significant risk factor for colon cancer development. Based on our recent studies showing that OX1R is aberrantly expressed in colon cancer, we wondered whether orexin-A could play a role in UC. Immunohistochemistry studies revealed that OX1R is highly expressed in the affected colonic epithelium of most UC patients, but not in the non-affected colonic mucosa. Injection of exogenous orexin-A specifically improved the inflammatory symptoms in the two colitis murine models. Conversely, injection of inactive orexin-A analog, OxB7–28 or OX1R specific antagonist SB-408124 did not have anti-inflammatory effect. Moreover, treatment with orexin-A in DSS-colitis induced OX1R?/? knockout mice did not have any protective effect. The orexin-A anti-inflammatory effect was due to the decreased expression of pro-inflammatory cytokines in immune cells and specifically in T-cells isolated from colonic mucosa. Moreover, orexin-A inhibited canonical NFκB activation in an immune cell line and in intestinal epithelial cell line. These results suggest that orexin-A might represent a promising alternative to current UC therapies.  相似文献   

6.

Aim

To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice.

Methods

Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage.

Results

The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model.

Conclusions

Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L. fermentum CCTCC M206110 proved to be effective at attenuating DSS-induced colitis. The potential probiotic effect of L. plantarum NCIMB8826 on UC has yet to be assessed.  相似文献   

7.
Periostin is a matricellular protein that interacts with various integrin molecules on the cell surface. Although periostin is expressed in inflamed colonic mucosa, its role in the regulation of intestinal inflammation remains unclear. We investigated the role of periostin in intestinal inflammation using Postn-deficient (Postn-/-) mice. Intestinal epithelial cells (IECs) were transfected by Postn small interfering RNAs. Periostin expression was determined in colon tissue samples from ulcerative colitis (UC) patients. Oral administration of dextran sulfate sodium (DSS) or rectal administration of trinitrobenzene sulfonic acid, induced severe colitis in wild-type mice, but not in Postn-/- mice. Administration of recombinant periostin induced colitis in Postn-/- mice. The periostin neutralizing-antibody ameliorated the severity of colitis in DSS-treated wild-type mice. Silencing of Postn inhibited inteleukin (IL)-8 mRNA expression and NF-κB DNA-binding activity in IECs. Tumor necrosis factor (TNF)-α upregulated mRNA expression of Postn in IECs, and recombinant periostin strongly enhanced IL-8 expression in combination with TNF-α, which was suppressed by an antibody against integrin αv (CD51). Periostin and CD51 were expressed at significantly higher levels in UC patients than in controls. Periostin mediates intestinal inflammation through the activation of NF-κB signaling, which suggests that periostin is a potential therapeutic target for inflammatory bowel disease.  相似文献   

8.
Lactic acid bacteria are generally sensitive to hydrogen peroxide (H2O2). Lactobacillus plantarum ATCC14431 is one of the few lactic acid bacteria able to degrade H2O2 through the action of a manganese-dependent catalase (containing the katA gene). However, it is not a natural inhabitant of the intestinal tract and its bio-efficacy and survival in the gastrointestinal tract have never been tested. In this study, we successfully expressed the katA gene from L. plantarum ATCC14431 in L. fermentum I5007 and the recombinant L. fermentum exhibited almost 20-fold higher catalase activity than the empty vector control. The anti-oxidative properties of this catalase-producing L. fermentum were evaluated using a dextran sodium sulphate (DSS) induced colitis mice model. Compared with the control, mice receiving DSS alone had increased diarrhea and mucosa histological scores (P < 0.05), as well as lipid peroxidation (P < 0.05), myeloperoxidase (P < 0.05), and active NF-κB in colonic tissue (P < 0.05). Similar to vitamin E, treatment with recombinant L. fermentum mitigate these effects accompanied by a improvement in mucosa histological scores in the proximal colon (P < 0.05) and decreased lipid peroxidation (P < 0.05), myeloperoxidase (P < 0.05) and active NF-κB in colonic tissue (P < 0.05). In conclusion, the expression of catalase in L. fermentum increased its ability to survive when exposed to aerated environment in vitro and conferred the anti-oxidative and anti-inflammatory effects in the DSS induced colitis model.  相似文献   

9.
摘要 目的:探讨双歧杆菌MIMBb75通过调节血管活性肠肽(VIP)/环磷酸腺苷(cAMP)/蛋白激酶A(PKA)和哺乳动物雷帕霉素靶蛋白(mTOR)通路对溃疡性结肠炎(UC)小鼠的影响。方法:BALB/c小鼠随机分为正常对照(NC)组、结肠炎模型(UC)组、Mesalazine组和MIMBb75低、高剂量组、MIMBb75高剂量+VIP antagonist组、MIMBb75高剂量+MHY1485组(每组10只),除NC组外均采用5%葡聚糖硫酸钠(DSS)诱导UC模型。治疗结束后,观察小鼠的一般情况及UC疾病活动指数(DAI),检测小鼠肠道组织病理损伤、结肠组织中髓过氧化物酶(MPO)活性、肠道菌群多样性(Chao指数、Shannon指数和Simpson指数)及结肠组织VIP、cAMP、PKA、水通道蛋白3(AQP3)、mTOR、核糖体蛋白S6激酶(S6K1)的mRNA和蛋白水平。结果:与UC组相比,MIMBb75低、高剂量组和Mesalazine组小鼠的体重升高、DAI评分降低,组织病理损伤得到改善,结肠长度增加,MPO活性降低,Chao指数、Shannon指数和Simpson指数升高;VIP、cAMP、PKA、AQP3的mRNA水平和VIP、cAMP、AQP3蛋白的表达及PKA的磷酸化水平升高,mTOR和S6K1 mRNA及其蛋白的磷酸化水平降低(P<0.05)。与MIMBb75高剂量组相比,MIMBb75高剂量+VIP antagonist组VIP、cAMP、PKA、AQP3的mRNA水平和VIP、cAMP、AQP3蛋白的表达及PKA的磷酸化水平降低(P<0.05);MIMBb75高剂量+MHY1485组mTOR和S6K1 mRNA及其蛋白的磷酸化水平升高(P<0.05)。VIP antagonist和MHY1485均能逆转MIMBb75对UC小鼠的保护作用,使其结肠损伤加重,MPO活性增高(P<0.05)。结论:双歧杆菌可改善UC小鼠的结肠损伤,增加肠道菌群的多样性,这可能与激活VIP/cAMP/PKA通路、抑制mTOR通路有关。  相似文献   

10.
11.
IntroductionInflammatory bowel disease (IBD) develops through complex interplay of genetic, microbial, immune, and environmental factors. Trace elements alterations are commonly present in IBD and may have influence on IBD development. Heavy metal pollution is one of the major environmental issues nowadays and IBD incidence is rising in countries where industry starts to develop. Metals are implicated in processes that are connected to IBD pathogenesis.AimThe aim of this study was to investigate toxic and trace element levels in pediatric population of IBD patients both in serum and intestinal mucosa.Materials and methodsThis prospective study enrolled children newly diagnosed with IBD in University children’s hospital in Belgrade. Concentrations of thirteen elements: Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Se and Zn in serum and intestinal mucosa of 17 newly diagnosed children with IBD (10 Crohn’s disease (CD) and 7ulcerative colitis (UC)) and 10 controls were assessed using inductively coupled plasma mass spectrometry (ICP-MS). Intestinal mucosa samples were taken from terminal ileum and six different colon segments (cecum, ascending colon, colon transversum, descending and sigmoid colon and rectum).ResultsThe results demonstrated significant alterations in serum and intestinal mucosa concentrations of investigated elements. Serum iron was significantly decreased in IBD and CD group, compared to controls while serum Cu significantly differed between three investigated groups with highest concentration observed in CD children. Serum manganese was the highest in the UC subgroup. Terminal ileums of IBD patients contained significantly lower amount of Cu, Mg, Mn and Zn with Mn being significantly decreased also in CD patients compared to control. IBD patients’ caecum contained significantly less Mg and Cu while colon transversum tissue samples from IBD and Crohn’s patients contained significantly more chromium than controls. Moreover, sigmoid colon of IBD patients were poorer in Mg than controls (p < 0.05). Colon Al, As and Cd were significantly reduced in IBD, and UC children compared to control. Correlations of investigated elements in CD and UC groups were different from controls. Biochemical and clinical parameters showed correlation with element concentrations in intestines.ConclusionSera of CD, UC and control children significantly differ in Fe, Cu and Mn levels. Serum manganese was the highest in the UC subgroup creating the most prominent and only significant difference between UC and CD subgroups. Terminal ileum of IBD patients contained significantly lower amount of majority of investigated essential trace elements and toxic elements were significantly reduced in colon of IBD and UC patients. Investigation of macro- and microelement alterations in children and adults has potential to further elucidate IBD pathogenesis.  相似文献   

12.
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease. The receptor‐interacting protein kinase 3 (RIP3) was reported to be involved in many inflammatory disease. However, the mechanism of RIP3 in the pathogenesis of UC is still unclear. To investigate the effects and possible mechanism of RIP3 in UC pathogenesis, RIP3‐/‐ mice was used in dextran sulfate sodium (DSS)‐induced colitis model. It was found that by DSS‐induced colitis, RIP3‐/‐ mice showed significantly enhanced colitis symptoms, including increased weight loss, colon shortening, and colonic mucosa damage and severity, but decreased production of interleukin 6 and interleukin 1β. The results showed that RIP3 deficiency could not ameliorate but exacerbate the severity of colitis. On the mechanism, it was found that messenger RNA expressions of several repair‐associated cytokines including interleukin 6, interleukin 22, cyclooxygenase 2, epithelial growth factor receptor ligand Epiregulin and matrix metalloproteinase 10 were siginificant decreased in RIP3‐/‐ mice. Thus, RIP3‐/‐ mice exhibited an impaired tissue repair in response to DSS. In a conclusion, RIP3 deficiency exerted detrimental effects in DSS induced colitis partially because of the impaired repair‐associated cytokines expression.  相似文献   

13.
Mucus alterations are a feature of ulcerative colitis (UC) and can drive inflammation by compromising the mucosal barrier to luminal bacteria. The exact pathogenesis of UC remains unclear, but CD4+ T cells reacting to commensal antigens appear to contribute to pathology. Given the unique capacity of dendritic cells (DCs) to activate naive T cells, colon DCs may activate pathogenic T cells and contribute to disease. Using Muc2-/- mice, which lack a functional mucus barrier and develop spontaneous colitis, we show that colitic animals have reduced colon CD103+CD11b- DCs and increased CD103-CD11b+ phagocytes. Moreover, changes in colonic DC subsets and distinct cytokine patterns distinguish mice with distally localized colitis from mice with colitis spread proximally. Specifically, mice with proximally spread, but not distally contained, colitis have increased IL-1β, IL-6, IL-17, TNFα, and IFNγ combined with decreased IL-10 in the distal colon. These individuals also have increased numbers of CD103+CD11b+ DCs in the distal colon. CD103+CD11b+ DCs isolated from colitic but not noncolitic mice induced robust differentiation of Th17 cells but not Th1 cells ex vivo. In contrast, CD103-CD11b+ DCs from colitic Muc2-/- mice induced Th17 as well as Th1 differentiation. Thus, the local environment influences the capacity of intestinal DC subsets to induce T cell proliferation and differentiation, with CD103+CD11b+ DCs inducing IL-17-producing T cells being a key feature of extensively spread colitis.  相似文献   

14.
Ghrelin‐O‐acyltransferase (GOAT) is a membrane‐bound enzyme that attaches eight‐carbon octanoate to a serine residue in ghrelin and thereby acylates inactive ghrelin to produce active ghrelin. In this study, we investigated the function of GOAT in the intestinal mucosal barrier. The intestinal mucosal barrier prevents harmful substances such as bacteria and endotoxin from entering the other tissues, organs, and blood circulation through the intestinal mucosa. Here, we established 5% dextran sodium sulfate (DSS)‐induced colitis in mice and found that the body weight and colon weight were significantly decreased in these mice. Furthermore, increased inflammation and apoptosis were observed in the tissues of DSS‐induced colitis mice, with increased expression of tumor necrosis factor‐α, interleukin‐6, phosphorylation of nuclear factor kappa B‐p65 (p‐NF‐κB‐p65), and cleaved caspase‐3, and decreased expression of tight junction (TJ) proteins such as zonula occluden‐1 and occludin. The knockdown of GOAT significantly attenuated colitis‐induced inflammation responses and apoptosis, while GOAT overexpression significantly enhanced the induction of colitis. These results suggest that knockdown of GOAT may attenuate colitis‐induced inflammation, ulcers, and fecal occult blood by decreasing the intestinal mucosal permeability via the modulation of inflammatory factors and TJ proteins.  相似文献   

15.
Inflammatory bowel disease (IBD) is a group of disorders that are characterized by chronic, uncontrolled inflammation in the intestinal mucosa. Although the aetiopathogenesis is poorly understood, it is widely believed that IBD stems from a dysregulated immune response towards otherwise harmless commensal bacteria. Chemokines induce and enhance inflammation through their involvement in cellular trafficking. Reducing or limiting the influx of these proinflammatory cells has previously been demonstrated to attenuate inflammation. CXCR3, a chemokine receptor in the CXC family that binds to CXCL9, CXCL10 and CXCL11, is strongly overexpressed in the intestinal mucosa of IBD patients. We hypothesised that CXCR3 KO mice would have impaired cellular trafficking, thereby reducing the inflammatory insult by proinflammatory cell and attenuating the course of colitis. To investigate the role of CXCR3 in the progression of colitis, the development of dextran sulfate sodium (DSS)-induced colitis was investigated in CXCR3−/− mice over 9 days. This study demonstrated attenuated DSS-induced colitis in CXCR3−/− mice at both the macroscopic and microscopic level. Reduced colitis correlated with lower recruitment of neutrophils (p = 0.0018), as well as decreased production of IL-6 (p<0.0001), TNF (p = 0.0038), and IFN-γ (p = 0.0478). Overall, our results suggest that CXCR3 plays an important role in recruiting proinflammatory cells to the colon during colitis and that CXCR3 may be a therapeutic target to reduce the influx of proinflammatory cells in the inflamed colon.  相似文献   

16.
Background and aimsPartial obstruction of the small intestine results in severe hypertrophy of smooth muscle cells, dilatation and functional denervation. Hypertrophy of the small intestine is associated with alteration of the wall structure and the mechanical properties. The aims of this study were to determine three dimensional material properties of the obstructed small intestine in guinea pigs and to obtain the 3D stress–strain distributions in the small intestinal wall.MethodsPartial obstruction of mid-jejunum was created surgically in five guinea pigs that were euthanized 2 weeks after the surgery. Ten-cm-long segments proximal to the obstruction site were used for the stretch-inflation mechanical test using a tri-axial test machine. The outer diameter, longitudinal force and the luminal pressure during the test were recorded simultaneously. An anisotropic exponential pseudo-strain energy density function was used as the constitutive equation to fit the experimental loading curve and for computation of the stress–strain distribution.ResultsThe wall thickness and the wall area increased significantly in the obstructed jejunum (P<0.001). The pressure—outer radius curves in the obstructed segments were translated to the left of the normal segments, indicating wall stiffening after the obstruction. The circumferential stress and the longitudinal stress through the wall were higher in the obstructed segments (P<0.02). This was independent of whether the zero-stress state or the no-load states were used as the reference state.ConclusionThe mechanical behaviour of the obstructed small intestine can be described using a 3D constitutive model. The obstruction-induced biomechanical properties change was characterized by higher circumferential and longitudinal stresses in the wall and altered material constants in the 3D constitutive model.  相似文献   

17.
目的:探讨四君子汤对溃疡性结肠炎(UC)小鼠模型结肠粘膜中occludin、claudin-1表达的影响。方法:采用右旋葡聚糖硫酸钠(DSS)诱导UC小鼠模型,实验分为五组,即正常组、模型组、四君子汤低剂量治疗组、中剂量治疗组、高剂量治疗组、西药组,共治疗7天。对小鼠肠黏膜的大体形态和组织病理变化进行观察,使用RT-PCR和Western blot检测occludin、claudin-1 m RNA和蛋白的表达。结果:与模型组相比较,四君子汤低、中、高剂量治疗组以及西药组小鼠的饮食、体重、精神、活动度、脓血便等一般情况有所改善,黏膜层缺损、隐窝破坏、炎症细胞浸润等病理表现有所缓解。与模型组相比较,高剂量治疗组小鼠结肠组织中occludin、claudin-1蛋白和m RNA的表达升高(P0.05),低剂量和中剂量治疗组也有不同程度的升高。与西药组相比较,低、中、高剂量治疗组小鼠结肠组织中occludin、claudin-1蛋白和m RNA的表达无统计学差异(P0.05)。结论:四君子汤可以改善脓血便等症状,缓解肠粘膜的损伤,上调occludin和claudin-1的表达,对UC小鼠有治疗作用。  相似文献   

18.
It is well established that the intestinal microbiota plays a key role in the pathogenesis of Crohn''s disease (CD) and ulcerative colitis (UC) collectively referred to as inflammatory bowel disease (IBD). Epidemiological studies have provided strong evidence that IBD patients bear increased risk for the development of colorectal cancer (CRC). However, the impact of the microbiota on the development of colitis-associated cancer (CAC) remains largely unknown. In this study, we established a new model of CAC using azoxymethane (AOM)-exposed, conventionalized-Il10−/− mice and have explored the contribution of the host intestinal microbiota and MyD88 signaling to the development of CAC. We show that 8/13 (62%) of AOM-Il10−/− mice developed colon tumors compared to only 3/15 (20%) of AOM- wild-type (WT) mice. Conventionalized AOM-Il10−/− mice developed spontaneous colitis and colorectal carcinomas while AOM-WT mice were colitis-free and developed only rare adenomas. Importantly, tumor multiplicity directly correlated with the presence of colitis. Il10−/− mice mono-associated with the mildly colitogenic bacterium Bacteroides vulgatus displayed significantly reduced colitis and colorectal tumor multiplicity compared to Il10−/− mice. Germ-free AOM-treated Il10−/− mice showed normal colon histology and were devoid of tumors. Il10−/−; Myd88−/− mice treated with AOM displayed reduced expression of Il12p40 and Tnfα mRNA and showed no signs of tumor development. We present the first direct demonstration that manipulation of the intestinal microbiota alters the development of CAC. The TLR/MyD88 pathway is essential for microbiota-induced development of CAC. Unlike findings obtained using the AOM/DSS model, we demonstrate that the severity of chronic colitis directly correlates to colorectal tumor development and that bacterial-induced inflammation drives progression from adenoma to invasive carcinoma.  相似文献   

19.
Ulcerative colitis (UC) is an inflammatory bowel disease, and its pathogenesis includes genetic, environmental, and immunological factors, such as T helper cells and their secreted cytokines. T helper cells are classified as Th1, Th2, and Th17 cells. However, it is unclear which T helper cells are important in UC. Dextran sulfate sodium (DSS)-induced colitis is a commonly used model of UC. In this study, we induced DSS colitis in Th1 dominant (T-bet transgenic (Tg)) mice, Th2 dominant (GATA-3 Tg) mice, and Th17 dominant (RORγt Tg) mice to elucidate the roles of T helper cell in DSS colitis. The results showed that GATA-3 Tg mice developed the most severe DSS colitis compared with the other groups. GATA-3 Tg mice showed a significant decreased in weight from day 1 to day 7, and an increased high score for the disease activity index compared with the other groups. Furthermore, GATA-3 Tg mice developed many ulcers in the colon, and many neutrophils and macrophages were detected on day 4 after DSS treatment. Measurement of GATA-3-induced cytokines demonstrated that IL-13 was highly expressed in the colon from DSS-induced GATA-3 Tg mice. In conclusion, GATA-3 overexpression in T-cells and IL-13 might play important roles in the development of DSS colitis.  相似文献   

20.
BackgroundGegen Qinlian decoction (GQ) is a well-known traditional Chinese medicine that has been clinically proven to be effective in treating ulcerative colitis (UC). However, its therapeutic mechanism has not been fully elucidated. Notch signaling plays an essential role in the regeneration of the intestinal epithelium.PurposeThis study was designed to ascertain the mechanism by which GQ participates in the recovery of the colonic mucosa by regulating Notch signaling in acute and chronic UC models.MethodsAcute and chronic UC mice (C57BL/6) were established with 3 and 2% dextran sulfate sodium (DSS), respectively, and treated with oral administration of GQ. The expression of the Notch target gene Hes1 and the Notch-related proteins RBP-J, MAML and Math1 was analyzed by western blotting. PTEN mRNA levels were detected by qRT-PCR. Mucin production that is characteristic of goblet cells was determined by Alcian blue/periodic acid-Schiff staining and verified by examining MUC2 mRNA levels by qRT-PCR. Cell proliferation was assayed by immunohistochemistry analysis of Ki67. HT-29 and FHC cells and Toll-like receptor 4 knockout (TLR4−/−) acute UC mice were also used in this study.ResultsGQ restored the injured colonic mucosa in both acute and chronic UC models. We found that Notch signaling was hyperactive in acute UC mice and hypoactive in chronic UC mice. GQ downregulated Hes1, RBP-J and MAML proteins and augmented goblet cells in the acute UC models, whereas GQ upregulated Hes1, RBP-J and MAML proteins in chronic UC mice, reducing goblet cell differentiation and promoting crypt base columnar (CBC) stem cell proliferation. Hes1 mRNA was suppressed in TLR4−/− UC mice, and GQ treatment reversed this effect. In vitro, GQ reduced Hes1 protein in Notch-activated HT29 and FHC cells but increased Hes1 protein in Notch-inhibited cells.ConclusionsGQ restored the colonic epithelium by maintaining mucosal homeostasis via bidirectional regulation of Notch signaling in acute/chronic UC models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号