首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When released from an initial, static, forward lean angle and instructed to recover with a single step, some older adults are able to meet the task requirements, whereas others either stumble or fall. The purpose of the present study was to use the concept of margin of stability (MoS) to investigate balance recovery responses in the anterior-posterior direction exhibited by older single steppers, multiple steppers and those that are able to adapt from multiple to single steps following exposure to repeated forward loss of balance. One hundred and fifty-one healthy, community dwelling, older adults, aged 65-80 years, participated in the study. Participants performed four trials of the balance recovery task from each of three initial lean angles. Balance recovery responses in the anterior-posterior direction were quantified at three events; cable release (CR), toe-off (TO) and foot contact (FC), for trials performed at the intermediate lean angle. MoS was computed as the anterior-posterior distance between the forward boundary of the Base of Support (BoS) and the vertical projection of the velocity adjusted centre of mass position (XCoM). Approximately one-third of participants adapted from a multiple to a single step recovery strategy following repeated exposure to the task. MoS at FC for the single and multiple step trials in the adaptation group were intermediate between the exclusively single step group and the exclusively multiple step group, with the single step trials having a significant, 3.7 times higher MoS at FC than the multiple step trials. Consistent with differences between single and multiple steppers, adaptation from multiple to single steps was attributed to an increased BoS at FC, a reduced XCoM at FC and an increased rate of BoS displacement from TO to FC. Adaptations occurred within a single test session and suggest older adults that are close to the threshold of successful recovery can rapidly improve dynamic stability following repeated exposure to a forward loss of balance.  相似文献   

2.
Experiments designed to assess balance recovery in older adults often involve exposing participants to repeated loss of balance. The purpose of this study was to investigate the adaptive balance recovery response exhibited by older adults following repeated exposure to forward loss of balance induced by releasing participants from a static forward lean angle. Fifty-eight healthy, community-dwelling older adults, aged 65-80 years, participated in the study. Participants were instructed to attempt to recover with a single step and performed four trials at each of three lean angles. Adaptive recovery responses at four events (cable release, toe-off of the stepping foot, foot contact and maximum knee flexion angle following landing in the stepping leg) were quantified for trials performed at the intermediate lean angle using the concept of margin of stability. The antero-posterior and medio-lateral margin of stability were computed as the difference between the velocity-adjusted position of the whole body centre of mass and the corresponding anterior or lateral boundary of the base of support. Across repeated trials adaptations in reactive stepping responses were detected that resulted in improved antero-posterior stability at foot contact and maximum knee flexion angle. Improved antero-posterior stability following repeated trials was explained by more effective control of the whole body centre of mass during the reactive stepping response and not by adjustments in step timing or base of support. The observed adaptations occurred within a single testing session and need to be considered in the design of balance recovery experiments.  相似文献   

3.
Yang F  Pai YC 《Journal of biomechanics》2011,44(12):2243-2249
Over-head-harness systems, equipped with load cell sensors, are essential to the participants' safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force, and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects' trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects' data revealed that the peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy.  相似文献   

4.
Previous studies have found substantial age and gender group differences in the ability of healthy adults to regain balance with a single step after a forward fall. It was hypothesized that differences in lower extremity joint strengths and ranges of motion (ROM) may have contributed to these observed differences. Kinematic and forceplate data were therefore used with a rigid-link biomechanical model simulating stepped leg dynamics to examine the joint torques and ROM used by subjects during successful single-step balance recoveries after release from a forward lean. The peak ROM and torques used by subjects in the study were compared to published estimates or measured values of the available maxima. No significant age or gender group differences were found in the mean ROM used by the subjects for any given initial lean angle. As initial lean angle increased, larger knee ROM and significantly larger hip ROM were used in the successful recoveries. There were substantial gender differences and some age group differences in peak lower extremity joint torques used in successful recoveries. Both young and older females often used nearly maximal joint torques to recover balance. Subjects' maximum joint strengths in plantarflexion and hip flexion were not good predictors of single-step balance recovery ability, particularly among the female subjects.  相似文献   

5.
Based on an idealized model of a homogeneous, isotropic beam-column, the second stiffest axis under static loading was derived. The maximum allowable force for the second stiffest axis was then examined. The ratio of the maximum allowable forces of the second stiffest axis to the stiffest axis was established. The stiffness ratio of the second stiffest axis to the stiffest axis was also found. Taking buckling into consideration, the safe load region for all possible acting directions was derived. The implications of the idealized model for cervical spine trauma are discussed.  相似文献   

6.
To our knowledge, no one has explored the effect of modifications in balance recovery instructions on the kinetics of the threshold of balance recovery. In particular, the effect of instructions limiting the number of steps on joint torques at the maximum lean angle has not been quantified. We determined the joint torques at the ankle, knee and hip of 28 younger adults recovering balance at their maximum lean angle using: (i) only a single step, (ii) no more than two steps and (iii) no limit on the number of steps. Results showed that instructions limiting the number of steps did not affect peak normalized joint torques by more than 0.0083 or 10Nm except for knee and hip flexion torques from first to second heel strike for the first step leg as well as from second toe-off to heel strike for the second step leg. However, these large differences in peak normalized joint torques after the first step were simply caused by the additional steps used when participants could take more than one step compared to when participants were limited to only a single step. Between the three limits on the number of steps, the kinetics of both legs were nearly identical up to the end of the first step and the additional steps did not help to increase the maximum lean angle. Therefore, we have demonstrated that instructions limiting or not limiting the number of steps appear to be equally valid to study falls in younger adults.  相似文献   

7.
The type of balance recovery, feet-in-place or stepping, is predicated on the perturbation intensity, often defined by the combination of applied force and displacement. Few studies examined the relationship between characteristics required to produce a stepping response with one of the postural perturbation methods. The purpose of this study was to investigate the relationship between perturbation characteristics (applied force and displacement) required to elicit a forward stepping response with platform-translation and shoulder-pull methods, and to establish whether a common set of perturbation characteristics existed across both perturbation methods. Fourteen young healthy males participated. Temporally unexpected platform translations and shoulder pulls were induced by release of free weights, which fell a controlled height exerting a pull on the platform or on the participant via a shoulder harness. Participants responded with either feet-in-place or stepping responses. The force and displacement were varied to investigate the range of force-displacement combinations required to elicit stepping responses. Force-displacement combinations that elicited stepping responses were recorded and normalized to the participant’s body weight (BW) and the base of support (BOS; participant’s foot length). The lowest force and associated displacement that elicited stepping responses showed an inverse linear relationship during both platform-translation and shoulder-pull trials. The lowest force-displacement combination common to both perturbation methods was found to be 8.75%BW and 105%BOS, which, in the future work, could enable a direct comparison of the neuromuscular and biomechanical responses to different perturbation methods in a manner that attempts to equilibrate the perturbation stimulus across the methods.  相似文献   

8.
Induced limb collapse in a sudden slip during termination of sit-to-stand   总被引:3,自引:0,他引:3  
Despite repeated demonstration of how balance can be restored with protective stepping after the initiation of an induced fall, little is known about how accidental falling to the ground with the participant's body resting in a non-standing posture can be avoided during balance recovery. This is due to the difficulties inherent in experimentally eliciting such an event. The purpose of this study was, therefore, to determine failure rate and the characterization for balance recovery after young adults exposed to an experimentally induced novel slipping perturbation. Twenty-four healthy young adults first performed three to nine trials of regular sit-to-stand. In the following trial, slipping suddenly occurred during the termination of the sit-to-stand when the low-friction platform on which the participant stood was released. Participants were given no prior practice or knowledge of the experiment design. Slipping was then repeated in the subsequent trials. The results demonstrated for the first time that a high percentage (62%) of participants failed to recover standing balance, despite the fact that 14 of these 15 participants had initiated stepping at their first encounter of a sudden slip. Such failure was avoided immediately after the first encounter. It was postulated that a delay in the step initiation might have contributed to substantial vertical descent of the center-of-mass, leading to failure of balance recovery in limb collapse. To verify this and other hypotheses, a shift in experimental paradigms is warranted to include the study of spontaneous protective responses elicited when individuals first encounter previously unfamiliar balance perturbation as in real-life situations.  相似文献   

9.
The purpose of this study was to determine the muscular contributions to the stepping phase of recovery from forward loss of balance in 5 young and 5 older adults that were able to recover balance in a single step, and 5 older adults that required multiple steps. Forward loss of balance was achieved by releasing participants from a static forward lean angle. All participants were instructed to attempt to recover balance by taking a rapid single step. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 94 muscle actuators were computed using static optimisation and induced acceleration analysis was used to compute individual muscle contributions to net lumbar spine joint, and stepping side hip joint and knee joint accelerations during recovery. Older adults that required multiple recovery steps used a significantly shorter and faster initial recovery step and adopted significantly more trunk flexion throughout recovery compared to the older single steppers. Older multiple steppers also produced significantly more force in the stance side hamstrings, which resulted in significantly higher hamstring induced flexion accelerations at the lumbar spine and extension accelerations at the hip. However since the net joint lumbar spine and hip accelerations remained similar between older multiple steppers and older single steppers, we suggest that the recovery strategy adopted by older multiple steppers was less efficient as well as less effective than for older single steppers.  相似文献   

10.
Anterior cruciate ligament (ACL) injury commonly occurs during single limb landing or stopping from a run, yet the conditions that influence ACL strain are not well understood. The purpose of this study was to develop, test and apply a 3D specimen-specific dynamic simulation model of the knee designed to evaluate the influence of deceleration forces during running to a stop (single-leg landing) on ACL strain. This work tested the conceptual development of the model by simulating a physical experiment that provided direct measurements of ACL strain during vertical impact loading (peak value 1294N) with the leg near full extension. The properties of the soft tissue structures were estimated by simulating previous experiments described in the literature. A key element of the model was obtaining precise anatomy from segmented MR images of the soft tissue structures and articular geometry for the tibiofemoral and patellofemoral joints of the knee used in the cadaver experiment. The model predictions were correlated (Pearson correlation coefficient 0.889) to the temporal and amplitude characteristic of the experimental strains. The simulation model was then used to test the balance between ACL strain produced by quadriceps contraction and the reductions in ACL strain associated with the posterior braking force. When posterior forces that replicated in vivo conditions were applied, the peak ACL strain was reduced. These results suggest that the typical deceleration force that occurs during running to a single limb landing can substantially reduce the strain in the ACL relative to conditions associated with an isolated single limb landing from a vertical jump.  相似文献   

11.
An experimental setup was developed for statically measuring seven vertical and three horizontal reaction forces on the foot. In the setup, the leg can be simultaneously loaded (1) by a vertical force, (2) by an externally applied axial moment, and (3) by simulated muscle forces. The foot is free to invert under influence of the external loads. Statical analysis and test experiments were used for evaluation. The setup can be used in combination with Roentgen photogrammetry to measure bone positions simultaneously with forces.  相似文献   

12.
Grip force adjustments to changes of object loading induced by external changes of the direction of gravity during discrete arm movements with a grasped object were analyzed during normal and anesthetized finger sensibility. Two subjects were seated upright in a rotatable chair and rotated backwards into a horizontal position during discrete movements with a hand-held instrumented object. The movement direction varied from vertical to horizontal inducing corresponding changes in the direction of gravity, but the orientation of the movement in relation to the body remained unaffected. During discrete vertical movements a maximum of load force occurs early in upward and late in downward movements; during horizontal movements two load force peaks result from both acceleratory and deceleratory phases of the movement. During performance with normal finger sensibility grip force was modulated in parallel with fluctuations of load force during vertical and horizontal movements. The grip force profile adopted to the varying load force profile during the transition from the vertical to the horizontal position. The maximum grip force occurred at the same time of maximum load force irrespective of the movement plane. During both subjects' first experience of digital anesthesia the object slipped from the grasp during rotation to the horizontal plane. During the following trials with anesthetized fingers subjects substantially increased their grip forces, resulting in elevated force ratios between maximum grip and load force. However, grip force was still modulated with the movement-induced load fluctuations and maximum grip force coincided with maximum load force during vertical and horizontal movements. This implies that the elevated force ratio between maximum grip and load force does not alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits seems to be important for the economic scaling of the grip force magnitude according to the actual loading conditions and for reactive grip force adjustments in response to load perturbations. However, it plays a subordinate role for the precise anticipatory temporal coupling between grip and load forces during voluntary object manipulation.  相似文献   

13.
Grip force adjustments to changes of object loading induced by external changes of the direction of gravity during discrete arm movements with a grasped object were analyzed during normal and anesthetized finger sensibility. Two subjects were seated upright in a rotatable chair and rotated backwards into a horizontal position during discrete movements with a hand-held instrumented object. The movement direction varied from vertical to horizontal inducing corresponding changes in the direction of gravity, but the orientation of the movement in relation to the body remained unaffected. During discrete vertical movements a maximum of load force occurs early in upward and late in downward movements; during horizontal movements two load force peaks result from both acceleratory and deceleratory phases of the movement. During performance with normal finger sensibility grip force was modulated in parallel with fluctuations of load force during vertical and horizontal movements. The grip force profile adopted to the varying load force profile during the transition from the vertical to the horizontal position. The maximum grip force occurred at the same time of maximum load force irrespective of the movement plane. During both subjects' first experience of digital anesthesia the object slipped from the grasp during rotation to the horizontal plane. During the following trials with anesthetized fingers subjects substantially increased their grip forces, resulting in elevated force ratios between maximum grip and load force. However, grip force was still modulated with the movement-induced load fluctuations and maximum grip force coincided with maximum load force during vertical and horizontal movements. This implies that the elevated force ratio between maximum grip and load force does not alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits seems to be important for the economic scaling of the grip force magnitude according to the actual loading conditions and for reactive grip force adjustments in response to load perturbations. However, it plays a subordinate role for the precise anticipatory temporal coupling between grip and load forces during voluntary object manipulation.  相似文献   

14.
The purpose of this study was to determine the reliability and validity of a portable force plate when analyzing jumping and landing tasks. Subjects performed 3 drop vertical jumps and 3 drop landings on both a standard strain gauge laboratory force plate and a portable force plate. In contrast to typical laboratory installed force plates, the portable 6-component force plate can be easily transported and used onsite at various training or data collection sites and incorporates Hall effect technology. The measured parameters included maximum force and time to maximum force for initial stance of the both tests, maximum takeoff force, and time to maximum takeoff force for the drop vertical jump. The Pearson correlation coefficients for the drop landing and the drop vertical jump for maximum force (r = 0.942, r = 0.940), time to maximum force (r = 0.891, r = 0.920) and for drop jump maximum jumping force (r = 0.971), and time to maximum takeoff force (r = 0.917) were all high and indicate that the force data collected by a resistor-type portable force plate provide similar measures to a standard strain-gauge laboratory force plate. Additionally, the within session reliability of the drop landing and the drop vertical jump measured by the portable force plate showed high interclass correlation coefficients for examined variables of 0.979 and 9.67 for maximum landing force and 0.917 and 0.920 for time to maximum landing force, respectively. The interclass correlation coefficients for the maximum takeoff force and time to maximum takeoff force during the drop vertical jump were 0.991 and 0.86. The results indicate the force and timing measurements from the portable force plate were both valid and reliable. Use of the portable force plate may facilitate methods of force measurement that can be applied out into the field and therefore a valuable tool for on site landing and jump force measurements in a variety of settings for large numbers of subjects.  相似文献   

15.
K Hall  D Cole  Y Yeh    R J Baskin 《Biophysical journal》1996,71(6):3467-3476
To measure force generation and characterize the relationship between force and velocity in kinesin-driven motility we have developed a centrifuge microscope sperm-gliding motility assay. The average (extrapolated) value of maximum isometric force at low kinesin density was 0.90 +/- 0.14 pN. Furthermore, in the experiments at low kinesin density, sperm pulled off before stall at forces between 0.40 and 0.75 pN. To further characterize our kinesin-demembranated sperm assay we estimated maximum isometric force using a laser trap-based assay. At low kinesin density, 4.34 +/- 1.5 pN was the maximum force. Using values of axoneme stiffness available from other studies, we concluded that, in our centrifuge microscope-based assay, a sperm axoneme functions as a lever arm, magnifying the centrifugal force and leading to pull-off before stall. In addition, drag of the distal portion of the axoneme is increased by the centrifugal force (because the axoneme is rotated into closer proximity to the glass surface) and represents an additional force that the kinesin motor must overcome.  相似文献   

16.
A previously described three-dimensional mathematical model of the human masticatory system, predicting maximum possible bite forces in all directions and the recruitment patterns of the masticatory muscles necessary to generate these forces, was validated in in vivo experiments. The morphological input parameters to the model for individual subjects were collected using MRI scanning of the jaw system. Experimental measurements included recording of maximum voluntary bite force (magnitude and direction) and surface EMG from the temporalis and masseter muscles. For bite forces with an angle of 0, 10 and 20 degrees relative to the normal to the occlusal plane the predicted maximum possible bite forces were between 0.9 and 1.2 times the measured ones and the average ratio of measured to predicted maximum bite force was close to unity. The average measured and predicted muscle recruitment patterns showed no striking differences. Nevertheless, some systematic differences, dependent on the bite force direction, were found between the predicted and the measured maximum possible bite forces. In a second series of simulations the influence of the direction of the joint reaction forces on these errors was studied. The results suggest that they were caused primarily by an improper determination of the joint force directions.  相似文献   

17.
Strong mechanical forces can, obviously, disrupt cell–cell and cell–matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin–integrin interaction and integrin–ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin–ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin–ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force.  相似文献   

18.
The stress during holding a fall of a climber was evaluated in practical tests with human subjects. Depending on the situation of the fall forces up to 4 kN are acting on the body through the harness. With extreme rope friction at the rock and running belays the forces can increase up to 6.5 kN. These forces depend on the method of belay and the situation of the fall and are mostly independent from the weight of the climber. Therefore light climbers are subjected to greater deceleration forces than heavy climbers. For a given force of 4 kN the biodynamics during impact is shown. If only a seat harness, surrounding only the pelvis, is used, the bending loads on the spine exceed under certain circumstances the human tolerance considerably. Whiplash effects, head down falls or severe pressure loads on the viscera can also occur. Besides these acute injuries chronic injuries of ligaments of the spine and the invertebral discs can occur because every stress overcharging the muscles must be taken up by the ligaments.  相似文献   

19.
20.
In modern motor vehicles with automatic power windows, a potential hazard exists for jam events of fingers between the window glass and seal entry. This study determined entrapment forces acting on adult fingers at the subjective maximum pain threshold during entrapment in such windows. The length and the girth of the proximal and distal interphalangeal joints of the triphalangeal fingers of the right hands of 109 participants (60 men, 49 women) were measured; the diameter was calculated from girth, which was assumed to be circular. The automatic power window system of a motor vehicle side door was changed to a mechanical system. During entrapment the force distributed across the four proximal interphalangeal joints (PIPs), and separately on the proximal interphalangeal (iPIP) and then the distal interphalangeal (iDIP) joints of the index finger was measured using a customized force sensor. The maximum bearable entrapment force was 97.2 ± 51.8 N for the PIPs, 43.4 ± 19.9 N for the iPIP, and 36.9 ± 17.8 N for the iDIP. The positive correlation between finger diameter and maximum entrapment force was significant. Particularly with regard to the risk to children's fingers, the 100 N statutory boundary value for closing force of electronic power windows should be reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号