首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical environment during stair climbing has been associated with patellofemoral pain, but the contribution of loading to this condition is not clearly understood. It was hypothesized that the loading conditions during stair climbing induce higher patellofemoral pressures, a more lateral force distribution on the trochlea and a more lateral shift and tilt of the patella compared to walking at early knee flexion. Optical markers for kinematic measurements were attached to eight cadaveric knees, which were loaded with muscle forces at instances of walking and stair climbing cycles at 12° and 30° knee flexion. Contact mechanics were determined using a pressure sensitive film. At 12° knee flexion, stair climbing loads resulted in higher peak pressure (p=0.012) than walking, more lateral force distribution (p=0.012) and more lateral tilt (p=0.012), whilst mean pressure (p=0.069) and contact area (p=0.123) were not significantly different. At 30° knee flexion, although stair climbing compared to walking loads resulted in significantly higher patellofemoral mean (p=0.012) and peak pressures (p=0.012), contact area (p=0.025), as well as tilt (p=0.017), the medial–lateral force distribution (p=0.674) was not significantly different. No significant differences were observed in patellar shift between walking and stair climbing at either 12° (p=0.093) or 30° (p=0.575) knee flexion. Stair climbing thus leads to more challenging patellofemoral contact mechanics and kinematics than level walking at early knee flexion. The increase in patellofemoral pressure, lateral force distribution and lateral tilt during stair climbing provides a possible biomechanical explanation for the patellofemoral pain frequently experienced during this activity.  相似文献   

2.
The study aimed to test the hypothesis that the restraining role of the anterior cruciate ligament (ACL) of the knee is significant during the activities of normal walking and stair ascent. The role of the ACL was determined from the effect of ACL excision on tibiofemoral displacement patterns measured in vitro for fresh-frozen knee specimens subjected to simulated knee kinetics of walking (n = 12) and stair ascent (n = 7). The knee kinetics were simulated using a newly developed dynamic simulator able to replicate the sagittal-plane knee kinetics with reasonable accuracy while ensuring unconstrained tibiofemoral kinematics. The displacements were measured using a calibrated six degree-of-freedom electromechanical goniometer. For the simulation of the walking cycle, two types of knee flexion/extension moment patterns were used: the more common "biphasic" pattern, and an extensor muscle force intensive pattern. For both of these patterns, the restraining role of the ACL to tibial anterior translation was found to be significant throughout the stance phase and in the terminal swing phase, when the knee angle was in the range of 4 degrees to 30 degrees. The effect of ACL excision was an increase in tibial anterior translation by 4 mm to 5 mm. For the stair ascent cycle, however, the restraining role of the ACL was significant only during the terminal stance phase, and not during the initial and middle segments of the phase. Although, in these segments, the knee moments were comparable to that in walking, the knee angle was in the range of 60 degrees to 70 degrees. These results have been shown to be consistent with available data on knee mechanics and ACL function measured under static loading conditions.  相似文献   

3.
PurposeAn increased likelihood of developing obesity-related knee osteoarthritis may be associated with increased peak internal knee abduction moments (KAbM). Increases in step width (SW) may act to reduce this moment. The purpose of this study was to determine the effects of increased SW on knee biomechanics during stair negotiation of healthy-weight and obese participants.MethodsParticipants (24: 10 obese and 14 healthy-weight) used stairs and walked over level ground while walking at their preferred speed in two different SW conditions – preferred and wide (200% preferred). A 2 × 2 (group × condition) mixed model analysis of variance was performed to analyze differences between groups and conditions (p < 0.05).ResultsIncreased SW increased the loading-response peak knee extension moment during descent and level gait, decreased loading-response KAbMs, knee extension and abduction range of motion (ROM) during ascent, and knee adduction ROM during descent. Increased SW increased loading-response peak mediolateral ground reaction force (GRF), increased peak knee abduction angle during ascent, and decreased peak knee adduction angle during descent and level gait. Obese participants experienced disproportionate changes in loading-response mediolateral GRF, KAbM and peak adduction angle during level walking, and peak knee abduction angle and ROM during ascent.ConclusionIncreased SW successfully decreased loading-response peak KAbM. Implications of this finding are that increased SW may decrease medial compartment knee joint loading, decreasing pain and reducing joint deterioration. Increased SW influenced obese and healthy-weight participants differently and should be investigated further.  相似文献   

4.
The gastrocnemius medialis (GM) muscle plays an important role in stair negotiation. The aim of the study was to investigate the influence of cadence on GM muscle fascicle behaviour during stair ascent and descent. Ten male subjects (young adults) walked up and down a four-step staircase (with forceplates embedded in the steps) at three velocities (63, 88 and 116 steps/min). GM muscle fascicle length was measured using ultrasonography. In addition, kinematic and kinetic data of the lower legs, and GM electromyography (EMG) were measured. For both ascent and descent, the amount of fascicular shortening, shortening velocity, knee moment, ground reaction force and EMG activity increased monotonically with gait velocity. The ankle moment increased up to 88 steps/min where it reached a plateau. The lack of increase in ankle moment coinciding with further shortening of the fascicles can be explained by an increased shortening of the GM musculotendon complex (MTC), as calculated from the knee and ankle angle changes, between 88 and 116 steps/min only. For descent, the relative instant of maximum shortening, which occurred during touch down, was delayed at higher gait velocities, even to the extent that this event shifted from the double support to the single support phase.  相似文献   

5.
The knowledge of normal patellar tracking is essential for understanding the knee joint function and for diagnosis of patellar instabilities. This paper investigated the patellar tracking and patellofemoral joint contact locations during a stair ascending activity using a validated dual-fluoroscopic imaging system. The results showed that the patellar flexion angle decreased from 41.9° to 7.5° with knee extension during stair ascending. During first 80% of the activity, the patella shifted medially about 3.9mm and then slightly shifted laterally during the last 20% of the ascending activity. Anterior translation of 13mm of the patella was measured at the early 80% of the activity and the patella slightly moved posteriorly by about 2mm at the last 20% of the activity. The path of cartilage contact points was slightly lateral on the cartilage surfaces of patella and femur. On the patellar cartilage surface, the cartilage contact locations were about 2mm laterally from heel strike to 60% of the stair ascending activity and moved laterally and reached 5.3mm at full extension. However, the cartilage contact locations were relatively constant on the femoral cartilage surface (~5mm lateral). The patellar tracking pattern was consistent with the patellofemoral cartilage contact location pattern. These data could provide baseline knowledge for understanding of normal physiology of the patellofemoral joint and can be used as a reference for clinical evaluation of patellofemoral disorders.  相似文献   

6.
The design, manufacture and validation of a new free standing staircase for motion analysis measurements are described in this paper. The errors in vertical force measurements introduced when the stairs interface with a force plate (FP) are less than 0.6%. The centre of pressure error introduced is less than 0.7 mm compared to the error from the FP. The challenges of introducing stair gait into a clinical trial with a limited number of FPs and time limitations for assessment sessions are addressed by introducing this cost effective solution.

The staircase was used in a study to measure non-pathological knee function of 10 subjects performing stair ascent and descent. The resulting knee kinematics and knee joint moments are in agreement with previous studies. The kinematic and joint moment profiles provide a normative range, which will be useful in future studies for identifying alterations in joint function associated with pathology and intervention.  相似文献   

7.
One possible cause of patellofemoral pain syndrome is excessive lateral force acting on the patella. Although several treatment methods focus on decreasing the lateral force acting on the patella, the relationship between the lateral force and the patellofemoral contact pressure distribution is unclear. A computational model has been developed to determine how loading variations alter the patellofemoral force and pressure distributions for individual knees. The model allows variation in the quadriceps and patella tendon forces, and calculates the predicted contact pressure distribution using the discrete element analysis technique. To characterize the accuracy of the model, four cadaver knees were flexed on a knee simulator with three initial Q-angles, while recording the force and pressure distributions with a pressure sensor. A model of each knee was created from CT data. Using the external force applied to the knee, the geometry of the knee, and the quadriceps origin as input, the pressure distribution was calculated during flexion. Similar trends were noted for the computational and experimental results. The percentage of the total force applied to the lateral cartilage increased with the Q-angle. The maximum contact pressure increased during flexion. The maximum lateral contact pressure increased with the Q-angle for three knees. For the other knee, increasing the Q-angle decreased the maximum lateral pressure. The maximum medial contact pressure decreased as the Q-angle increased. By characterizing the influence of patellofemoral loading on the force and pressure distributions, the computational model could be used to evaluate treatment methods prescribed for patellofemoral pain.  相似文献   

8.
The purpose of this study was to describe an imaging based, subject specific model that was developed to quantify patellofemoral joint reaction forces (PFJRF's). The secondary purpose was to test the model in a group of healthy individuals while performing various functional tasks. Twenty healthy subjects (10 males, 10 females) were recruited. All participants underwent two phases of data collection: 1) magnetic resonance imaging of the knee, patellofemoral joint, and thigh, and 2) kinematic, kinetic and EMG analysis during walking, running, stair ascent, and stair descent. Using data obtained from MRI, a subject specific representation of the extensor mechanism was created. Individual gait data were used to drive the model (via an optimization routine) and three-dimensional vasti muscle forces and subsequent three-dimensional PFJRF's were computed. The average peak PFJRF was found to be highest during running (58.2 N/kg-bwt), followed by stair ascent (33.9 N/kg-bwt), stair descent (27.9 N/kg-bwt), and walking (10.1 N/kg-bwt). No differences were found between males and females. For all conditions, the direction of the PFJRF was always in the posterior, superior, and lateral directions. The posterior component of the PFJRF always had the greatest magnitude, followed by superior and lateral components. Our results indicate that estimates of the magnitude and direction of the PFJRF during functional tasks can be obtained using a 3D-imaging based model.  相似文献   

9.
The aim of the present study was to establish the behavior of human medial gastrocnemius (GM) muscle fascicles during stair negotiation. Ten healthy male subjects performed normal stair ascent and descent at their own comfortable speed on a standard-dimension four-step staircase with embedded force platforms in each step. Kinematic, kinetic, and electromyographic data of the lower limbs were collected. Real-time ultrasound scanning was used to determine GM muscle fascicle length changes. Musculotendon complex (MTC) length changes were estimated from ankle and knee joint kinematics. The GM muscle was mainly active during the push-off phase in stair ascent, and the muscle fascicles contracted nearly isometrically. The GM muscle was mainly active during the touch-down phase of stair descent where the MTC was lengthened; however, the GM muscle fascicles shortened by approximately 7 mm. These findings show that the behavior and function of GM muscle fascicles in stair negotiation is different from that expected on the basis of length changes of the MTC as derived from joint kinematics.  相似文献   

10.
Lee HJ  Chou LS 《Journal of biomechanics》2007,40(11):2530-2536
Stair negotiation is among the most challenging and hazardous types of locomotion for older people. However, the effect of aging on balance control during stair negotiation has not been investigated. Instantaneous inclination angles between the center of mass (CoM) and center of pressure (CoP) have been reported to detect gait instability effectively in the elderly. The purpose of this study was to compare the CoM-CoP inclination angles between 12 healthy elderly and 13 healthy young adults when performing stair ascent (SA) and descent (SD) on a three-step staircase. Whole body motion data were collected with an eight-camera motion analysis system. Four force plates were mounted on the floor as well as the first two steps to measure ground reaction forces. No significant group differences were detected in any of the temporal-distance gait measures and CoM-CoP inclination angles during SA and SD. Compared to the floor-to-stair transition phase, both groups demonstrated a significantly greater CoM-CoP medial inclination angle while ascending the stairs. However, a significant reduction in medial inclination was only detected in young adults when transferring from SD to level ground walking. Elderly adults were found to demonstrate a significantly greater medial inclination angle during the stair-to-floor transition phase when compared to young adults. Age-related degenerations in the elderly could compromise their ability to regulate body sway during the stair-to-floor transition, which may subsequently increase the risk of falling.  相似文献   

11.
Gait characteristics of patients with knee osteoarthritis.   总被引:15,自引:0,他引:15  
The knee kinematics and kinetics of 139 patients (47 males and 92 females) with Grade II knee osteoarthritis (OA) were measured during level walking, stair ascent and stair descent. There was no significant difference in knee motion between the patients and normal subjects. The patients with knee OA had a significantly reduced internal knee extensor moment compared to normal subjects. This difference reflects the patient's compensation to reduce the knee joint loading. Further, subjects with OA and a higher body mass index have a lower knee extensor moment. The female subjects had significantly greater knee flexion and a greater knee extensor moment. This gender difference may partially explain the increased prevalence of OA in females. Most tests of OA treatments are assessed by criteria that do not reflect functional activities. This study demonstrates that objective gait analysis can be used to document gait adaptations used by patients with knee OA.  相似文献   

12.
Individuals with a unilateral transtibial amputation have a greater risk of falling compared to able-bodied individuals, and falling on stairs can lead to serious injuries. Individuals with transtibial amputations have lost ankle plantarflexor muscle function, which is critical for regulating whole-body angular momentum to maintain dynamic balance. Recently, powered prostheses have been designed to provide active ankle power generation with the goal of restoring biological ankle function. However, the effects of using a powered prosthesis on the regulation of whole-body angular momentum are unknown. The purpose of this study was to use angular momentum to evaluate dynamic balance in individuals with a transtibial amputation using powered and passive prostheses relative to able-bodied individuals during stair ascent and descent. Ground reaction forces, external moment arms, and joint powers were also investigated to interpret the angular momentum results. A key result was that individuals with an amputation had a larger range of sagittal-plane angular momentum during prosthetic limb stance compared to able-bodied individuals during stair ascent. There were no significant differences in the frontal, transverse, or sagittal-plane ranges of angular momentum or maximum magnitude of the angular momentum vector between the passive and powered prostheses during stair ascent or descent. These results indicate that individuals with an amputation have altered angular momentum trajectories during stair walking compared to able-bodied individuals, which may contribute to an increased fall risk. The results also suggest that a powered prosthesis provides no distinct advantage over a passive prosthesis in maintaining dynamic balance during stair walking.  相似文献   

13.
Ascending stairs is a challenging activity of daily living for many populations. Frontal plane joint dynamics are critical to understand the mechanisms involved in stair ascension as they contribute to both propulsion and medio-lateral stability. However, previous research is limited to understanding these dynamics while initiating stair ascent from a stand. We investigated if initiating stair ascent from a walk with a comfortable self-selected speed could affect the frontal plane lower-extremity joint moments and powers as compared to initiating stair ascent from a stand and if this difference would exist at consecutive ipsilateral steps on the stairs. Kinematics data using a 3-D motion capture system and kinetics data using two force platforms on the first and third stair treads were recorded simultaneously as ten healthy young adults ascended a custom-built staircase. Data were collected from two starting conditions of stair ascent, from a walk (speed: 1.42 ± 0.21 m/s) and from a stand. Results showed that subjects generated greater peak knee abductor moment and greater peak hip abductor moment when initiating stair ascent from a walk. Greater peak joint moments and powers at all joints were also seen while ascending the second ipsilateral step. Particularly, greater peak hip abductor moment was needed to avoid contact of the contralateral limb with the intermediate step by counteracting the pelvic drop on the contralateral side. This could be important for therapists using stair climbing as a testing/training tool to evaluate hip strength in individuals with documented frontal plane abnormalities (i.e. knee and hip osteoarthritis, ACL injury).  相似文献   

14.
Stair walking is a demanding task in old age. Ground reaction force (GRF) analysis, relative EMG activation, and muscular coactivation were performed during stair walking. The aim was to investigate the ageing effect on GRF distribution and muscle antagonist coactivation during stair walking, at varied speed. During ascending at maximal velocity old subjects demonstrated reduced GRF in all examined phases (range: 28-35%), whereas muscle coactivation only was elevated for the Entire stance phase (18.5%). GRF parameters during ascent and descent at freely chosen speed demonstrated differences between age groups (5-28%). Furthermore, muscle coactivation was elevated in old subjects (e.g. Entire stance phase (17-19%)) along with greater EMG activation in all muscles (16-65%). At standardized gait velocity only minor differences in GRF were observed between age groups. However, elderly subjects showed elevated muscular coactivation (e.g. loading phase and entire stance phase (18-22%)) along with greater EMG activation (35-66%). CONCLUSIONS: Differences between age groups in neuromotor and kinetic stair walking strategy do not depend upon the age-related decline in velocity alone, but rather reflect a uniform alteration. This needs to be considered during rehabilitation and/or clinical settings at old age.  相似文献   

15.
Valgus or varus malpositioning of the tibial component of a total knee implant may cause increased propensity for loosening or implant wear and eventually may lead to revision surgery. The aim of this study was to determine the effect of valgus/varus malalignment on tibio-femoral mechanics during surgical trial reduction and simulated gait loading. In seven cadaver legs, posterior cruciate sparing total knee replacements were implanted and tibial inserts representing a neutral alignment and 3 degrees and 5 degrees varus and valgus alignments were sequentially inserted. Each knee with each insert was loaded in a manner representative of a trial reduction performed during knee surgery and loaded in a physiological knee simulator. Simulated gait performed on the simulator demonstrated that internal/external and adduction/abduction rotations showed statistical changes with some of the angled inserts at different points in the walking cycle. Neither medial/lateral nor anterior/posterior translations changed statistically during simulated walking. The pressure distribution and total load in the medial and lateral compartments of the tibial component changed significantly with as little as a 3 degrees variation in angulation when loaded in a manner representative of a trial reduction or with a knee simulator. These results support the need for precise surgical reconstruction of the mechanical axis of the knee and proper alignment of the tibial component. These results further demonstrate that tibial contact pressures measured during a trial reduction method may be predictive of contact mechanics at the higher loading seen in the knee simulator.  相似文献   

16.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   

17.
Although the relationship between contact area and pressure under physiological loading has been described in the feline patellofemoral joint, this interaction has only been examined under simplified loading conditions and/or considerably lower forces than those occurring during demanding activities in humans. We hypothesized that patellofemoral contact area increases non-linearly under an increasing joint reaction force to regulate patellofemoral pressure. Eight human cadaveric knees were ramp loaded with muscle forces representative of the stance phase of stair climbing at 30° knee flexion. Continuous pressure data were acquired with a pressure sensitive film that was positioned within the patellofemoral joint. While pressure was linearly dependent upon the resulting joint reaction force, contact area asymptotically approached a maximum value and reached 95% of this maximum at patellofemoral forces of 349–723 N (95% CI). Our findings indicate that the regulatory influence of increasing contact area to protect against high patellofemoral pressure is exhausted at relatively low loads.  相似文献   

18.
Three-dimensional mathematical model analysis of the patellofemoral joint   总被引:1,自引:0,他引:1  
This paper is concerned with a mathematical model analysis of the patellofemoral joint in the human knee, taking into account the articular surface geometry and mechanical properties of the ligament. It was made by the application of a computer-aided design theory (previously studied) and it was possible to express the articular surface geometries in a mathematical formulation and hence elucidate the joint movement mechanics. This method was then applied to a three-dimensional geometrical model of the patellofemoral joint. For the modelling of tendofemoral contact at large angles of knee flexion, the geodestic line theory was adopted. Applying the Newton-Raphson method and the Runge-Kutta Gil method to the model, variables such as patellar attitudes, patellofemoral contact force and tensile force of the patellar ligament for various knee flexion angles were computed. Applying the Hertzian elastic theory, contact stress was also computed. These results showed good agreement with the previously reported experimental results. As an application for the model, some parameter analyses were performed in terms of the contact stress variations and compared with those of the normal knee. The simulation results indicated that both the Q-angle increase and decrease increased contact stress, the patella alta showed undulating variations of stress while the patella infera showed little change of stress, and the tibial tuberositas elevation showed 20-30% reduction of stress.  相似文献   

19.
Clinical studies demonstrate substantial variation in kinematic and functional performance within the total knee replacement (TKR) patient population. Some of this variation is due to differences in implant design, surgical technique and component alignment, while some is due to subject-specific differences in joint loading and anatomy that are inherently present within the population. Combined finite element and probabilistic methods were employed to assess the relative contributions of implant design, surgical, and subject-specific factors to overall tibiofemoral (TF) and patellofemoral (PF) joint mechanics, including kinematics, contact mechanics, joint loads, and ligament and quadriceps force during simulated squat, stance-phase gait and stepdown activities. The most influential design, surgical and subject-specific factors were femoral condyle sagittal plane radii, tibial insert superior-inferior (joint line) position and coronal plane alignment, and vertical hip load, respectively. Design factors were the primary contributors to condylar contact mechanics and TF anterior-posterior kinematics; TF ligament forces were dependent on surgical factors; and joint loads and quadriceps force were dependent on subject-specific factors. Understanding which design and surgical factors are most influential to TKR mechanics during activities of daily living, and how robust implant designs and surgical techniques must be in order to adequately accommodate subject-specific variation, will aid in directing design and surgical decisions towards optimal TKR mechanics for the population as a whole.  相似文献   

20.
Patellofemoral joint forces   总被引:1,自引:0,他引:1  
In this review of patellofemoral joint forces as they might apply to implant design, methodologies for estimating forces on the patella and estimates of the forces, as reported in the literature, are summarized. Two methodologies exist for studying joint loads; one that measures kinematics in-vivo and uses analysis to estimate the joint loads and another that measures ground reaction forces and uses analysis to estimate the joint loads. In both these analyses many assumptions are required with varying degrees of uncertainty; here, those assumptions are examined with data from the published literature. The topics covered include: relationships between quadriceps forces and patellofemoral forces or patella ligament forces, relationships between knee joint moments and quadriceps forces, knee joint moments in various gaits, relationships between patellofemoral forces and lateral subluxation forces, and relationships between patella forces and inferior-superior forces. In many cases, there is little data on patella forces during normal activities, in other cases, there are some discrepancies in reported patella forces, i.e. during squat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号