首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is considerable evidence that the renal nerves contribute to the regulation of salt and water excretion by a direct effect on tubular reabsorption, independent of changes in renal hemodynamics. Whereas the effect of the adrenergic nervous system on sodium reabsorption appears to be established in anesthetized animals, it has been suggested that the basal activity of the renal sympathetic nerves in conscious dogs is too low to have a significant effect on sodium reabsorption by the proximal tubules. However, denervation natriuresis and diuresis have recently been demonstrated in conscious euvolemic and conscious volume-expanded rats. The effects of renal nerve stimulation on the handling of sodium and water by the proximal tubule can be mimicked by infusion of the α-adrenergic agonist norepinephrine and prevented by infusion of an α-adrenergic antagonist. This confirms that they are mediated by α-receptors. The adrenergic nervous system may have an independent role in the control of sodium excretion or may be complementary to other systems such as the renin-angiotensin-aldosterone system.  相似文献   

2.
The role of the renal nerves in determining renal function after relief of 24-h unilateral ureteral obstruction (UUO) was studied using clearance techniques in anaesthetized rats. Acute renal denervation during the first 1--2 h after relief of UUO resulted in a significant increase in glomerular filtration rate (GFR), renal plasma flow (RPF), urine flow, and sodium and potassium excretion, changes which were not seen in the sham-denervated postobstructive kidney. Acute denervation of sham-operated normal kidneys caused a similar natriuresis and diuresis but with no change in GFR or RPF. Chronic renal denervation 4--5 days before UUO denervated postobstructive controls, while chronic denervation alone was associated with a significantly higher urine flow and sodium excretion rate from the denervated kidney. The effectiveness of renal denervation was confirmed by demonstrating marked depletion of tissue catecholamines in the denervated kidney. It was concluded that renal nerve activity plays a significant but not a major role in the functional changes present after relief of UUO. Chronic renal denervation did not protect against the functional effects of unilateral ureteral obstruction.  相似文献   

3.
Insulin sensitivity regulated by feeding in the conscious unrestrained rat   总被引:1,自引:0,他引:1  
Hepatic insulin sensitizing substance (HISS), a putative hormone released from the liver in response to insulin in fed animals, accounts for 50-60% of insulin action. HISS release is regulated by permissive control of the hepatic parasympathetic nerves. The objectives were to develop the rapid insulin sensitivity test (RIST) in conscious rats, and to assess the effects of anesthesia, atropine, feeding, and fasting on insulin action. The RIST index, expressed as milligrams glucose per kilogram body weight required to maintain euglycemia after a 50 mU/kg bolus of insulin, was similar in conscious and anesthetized rats (238.6+/-42.5 vs. 225.3+/-30.4 mg/kg). Atropine produced a 56% inhibition of insulin action in fed rats. After a 24 h fast, full HISS-dependent insulin resistance had developed as shown by a low RIST index that was not reduced further by atropine. Fasting caused a 10.5% decrease in insulin action per hour over six hours. HISS-dependent insulin resistance in 24-h fasted rats was reversed 4 h after re-feeding (90.9+/-12.3 vs. 204.5+/-30.5 mg/kg). We conclude that HISS-dependent and HISS-independent insulin action, as assessed by the RIST, is similar in conscious and pentobarbital-anesthetized rats. Pharmacological blockade of HISS-dependent insulin action and physiological regulation of HISS action by feeding-fasting is confirmed. Re-feeding fasted rats reversed HISS-dependent insulin resistance. Merits of use of the RIST in conscious versus anesthetized rats are discussed.  相似文献   

4.
Intracerebroventricular injection of kappa-opioid agonists produces diuresis, antinatriuresis, and a concurrent increase in renal sympathetic nerve activity (RSNA). The present study examined whether endogenous central kappa-opioid systems contribute to the renal excretory responses produced by the stress of an acute hypotonic saline volume expansion (HSVE). Cardiovascular, renal excretory, and RSNA responses were measured during control, acute HSVE (5% body weight, 0.45 M saline over 30 min), and recovery (70 min) in conscious rats pretreated intracerebroventricularly with vehicle or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). In vehicle-pretreated rats, HSVE produced a marked increase in urine flow rate but only a low-magnitude and delayed natriuresis. RSNA was not significantly suppressed during the HSVE or recovery periods. In nor-BNI-treated rats, HSVE produced a pattern of diuresis similar to that observed in vehicle-treated rats. However, during the HSVE and recovery periods, RSNA was significantly decreased, and urinary sodium excretion increased in nor-BNI-treated animals. In other studies performed in chronic bilateral renal denervated rats, HSVE produced similar diuretic and blunted natriuretic responses in animals pretreated intracerebroventricularly with vehicle or nor-BNI. Thus removal of the renal nerves prevented nor-BNI from enhancing urinary sodium excretion during HSVE. These findings indicate that in conscious rats, endogenous central kappa-opioid systems are activated during hypotonic saline volume expansion to maximize urinary sodium retention by a renal sympathoexcitatory pathway that requires intact renal nerves.  相似文献   

5.
The role of renal nerves in the effects of concomitant NO synthase and non-selective ET(A/)ET(B) receptor inhibition on renal function was investigated in conscious normotensive Wistar rats. NO synthase inhibition alone (10 mg/kg b. w. i.v. L-NAME) in sham-operated rats with intact renal nerves induced an increase in systolic, diastolic and mean arterial pressure, urine flow rate, sodium, chloride and calcium excretion (p<0.05). The effect of L-NAME was markedly reduced by bosentan (10 mg/kg b.w. i.v.) and the values of urine flow rate, sodium, chloride and calcium excretions returned to control level (p<0.05). L-NAME administration one week after a bilateral renal denervation increased blood pressure to a similar extent as in sham-operated rats but decreased urine flow rate (p<0.05) and did not change electrolyte excretion. ET(A/)ET(B) receptor inhibition with bosentan during NO synthase inhibition in the renal denervated rats did not produce changes in urine flow rate or electrolyte excretion. NO synthase inhibition as well as concurrent NO synthase and ET(A/)ET(B) receptor inhibition did not change clearance of inulin or paraaminohippuric acid in sham-operated or renal denervated rats. These results indicate that renal sympathetic nerves play an important modulatory role in NO and endothelin induced effects on renal excretory function.  相似文献   

6.
Adrenalectomized, medullectomized and sham operated rats were treated with either a chronic infusion or a bolus injection of the synthetic atrial natriuretic factor (ANF). ANF did not enhance natriuresis and diuresis in sham operated conscious animals during chronic infusion, but it had a potent action when injected as a bolus into anesthetized rats. The absence of the whole adrenal glands, but not adrenal medulla profoundly modified the renal response to ANF: a) following chronic administration of ANF, the baseline natriuresis paradoxically decreased in adrenalectomized rats, and b) in response to a bolus injection of ANF the natriuretic and diuretic actions of the peptide were attenuated in these animals. The medullectomy-induced decreased natriuresis and dopamine excretion were corrected by ANF infusion. Furthermore, ANF suppressed the compensatory increase of norepinephrine excretion secondary to adrenalectomy. The data suggest that the presence of the adrenal cortex is necessary for the natriuretic and diuretic actions of ANF. The decrease in urinary DA excretion may reflect diminished dopaminergic activity and contribute to the post-medullectomy antinatriuresis, a phenomenon which can be corrected by ANF infusion. ANF may also have a depressing activity on the increased sympathetic tone.  相似文献   

7.
The effects of stressful environmental stimuli on urinary sodium excretion in conscious dogs, rats, and humans are reviewed. Environmental stress can increase sympathetic neural outflow and decrease sodium excretion. The antinatriuretic response to environmental stress is accompanied by an unchanged renal blood flow and glomerular filtration rate, which indicates mediation via an increased renal tubular sodium reabsorption. The antinatriuresis resulting from environmental stress is associated with increased renal sympathetic nerve activity, and is abolished by surgical renal denervation. In the central nervous system, but not in the kidney, beta adrenoceptors mediate the increased renal sympathetic nerve activity and antinatriuretic responses to environmental stress. The increased renal sympathetic nerve activity and antinatriuretic responses to environmental stress are greater in spontaneously hypertensive rats (SHR) than in normotensive Wistar-Kyoto (WKY) rats. In SHR, but not WKY rats, the increased renal sympathetic nerve activity and antinatriuretic responses are enhanced by a high-sodium diet. Similarly, stressful competition in human young adult males results in an antinatriuresis only if a positive family history of hypertension is present. Thus, environmental stress can increase renal tubular sodium reabsorption via a central beta-adrenoceptor mechanism with activation of the renal sympathetic nerves in both conscious dogs and SHR. The antinatriuretic response to environmental stress is greater in rats and humans with a genetic predisposition to develop hypertension.  相似文献   

8.
K P Patel 《Life sciences》1991,48(3):261-267
The relationship between the renal nerves and vasopressin in terms of the natriuretic and diuretic responses to atrial natriuretic factor (ANF--0.25 microgram/kg/min for 15 min), was investigated in unilaterally denervated anesthetized rats before and after the administration of a vasopressin V2 specific antagonist (AVPX)--(40 micrograms/kg bolus followed by 0.4 microgram/kg/min infusion). Administration of the AVPX or ANF did not alter the arterial pressure. Acute renal denervation or AVPX administration independently produced significant increases in sodium and water excretion. ANF infusion by itself produced a greater increase in urine flow and sodium excretion from the denervated kidney compared to the intact kidney before the administration of AVPX. However, after the administration of AVPX renal responses to ANF from the intact kidneys were enhanced such that they were not significantly different from the denervated kidneys. These results suggest that the full physiological response to ANF may be masked by tonic renal nerve activity or antidiuretic actions of vasopressin. Furthermore, since combined renal denervation and AVPX administration does not produce any greater potentiation of the renal responses to ANF than either of these manipulations alone, it is suggested that they may act via a common mechanism, possibly altering activity in the renal nerves.  相似文献   

9.
In previous experiments we have demonstrated that the renal nerves play a significant role in all genetic and (or) induced models of hypertension that we have studied. The current experiments extended this research by investigating the contribution of the renal nerves to hypertension in the Dahl NaCl-sensitive rat. This was investigated by assessing the effect of bilateral phenol renal denervation carried out prior to initiation of a high NaCl (8% NaCl) diet. In two separate studies, renal denervation did not affect systolic blood pressure in either Dahl NaCl-sensitive rats or their normotensive counterparts, Dahl NaCl-resistant rats. Further, denervation did not increase absolute urinary sodium excretion, percent urinary sodium excretion, urinary volume output, or food or water intake; nor did it differentially alter creatinine clearance or body weight. Denervation was verified at the termination of each study by a greater than 80% depletion of renal noradrenaline stores. These results indicate that the renal nerves do not provide a major contribution to hypertension in the Dahl NaCl-sensitive rat.  相似文献   

10.
Activation of renal mechanosensory nerves is enhanced by high and suppressed by low sodium dietary intake. Afferent renal denervation results in salt-sensitive hypertension, suggesting that activation of the afferent renal nerves contributes to water and sodium balance. Another model of salt-sensitive hypertension is the endothelin B receptor (ETBR)-deficient rat. ET and its receptors are present in sensory nerves. Therefore, we examined whether ET receptor blockade altered the responsiveness of the renal sensory nerves. In anesthetized rats fed high-sodium diet, renal pelvic administration of the ETBR antagonist BQ-788 reduced the afferent renal nerve activity (ARNA) response to increasing renal pelvic pressure 7.5 mmHg from 26+/-3 to 9+/-3% and the PGE2-mediated renal pelvic release of substance P from 9+/-1 to 3+/-1 pg/min. Conversely, in rats fed low-sodium diet, renal pelvic administration of the ETAR antagonist BQ-123 enhanced the ARNA response to increased renal pelvic pressure from 9+/-2 to 23+/-6% and the PGE2-mediated renal pelvic release of substance P from 0+/-0 to 6+/-1 pg/min. Adding the ETAR antagonist to ETBR-blocked renal pelvises restored the responsiveness of renal sensory nerves in rats fed a high-sodium diet. Adding the ETBR antagonist to ETAR-blocked pelvises suppressed the responsiveness of the renal sensory nerves in rats fed a low-sodium diet. In conclusion, activation of ETBR and ETAR contributes to the enhanced and suppressed responsiveness of renal sensory nerves in conditions of high- and low-sodium dietary intake, respectively. Impaired renorenal reflexes may contribute to the salt-sensitive hypertension in the ETBR-deficient rat.  相似文献   

11.
The objective of this study was to determine the effect of N(G)-monomethyl-L-arginine (L-NMMA) infusion on plasma renin activity (PRA) in the presence or absence of the renal nerves in normotensive Wistar-Kyoto (WKY) rats and Okamoto spontaneously hypertensive rats (SHR). All rats were unilaterally nephrectomized two weeks before the acute experiment. On the day of the experiment, acute renal denervation (Dnx) of the remaining kidney was performed in one group of WKY rats (Dnx-WKY; n= 10) and one group of SHRs (Dnx-SHR: n=7). The renal nerves were left intact in a group of WKY rats (Inn-WKY; n=8) and SHRs (Inn-SHR; n=9). After a control clearance period, L-NMMA was administered i.v. (15 mg/kg bolus followed by 500 microg/kg/min infusion) and another clearance period of 20 min was taken. In all experimental groups L-NMMA infusion resulted in a significant natriuresis. L-NMMA infusion increased fractional excretion of sodium (FE(Na)) to a greater extent in the Inn-SHR than in the Inn-WKY (delta FE(Na) = 5.23+/-0.87% vs delta FE(Na) = 2.87+/-0.73% respectively; P=0.05), PRA did not change in the SHR with the infusion of L-NMMA. However, in the Inn-WKY group, the natriuresis of L-NMMA infusion was associated with a tendency for lower PRA levels as compared to a group of time control Inn-WKY rats. In Dnx-WKY, the natriuresis of L-NMMA infusion (delta FE(Na) = 4.60+/-0.52%) was associated with a significantly lower level of PRA (4.26+/-1.18 ng AI/ml/hr) as compared to a group of time control Dnx-WKY rats (9.83+/-1.32 ng AI/ml/hr; P<0.05). In the Dnx-SHR, the natriuretic response to L-NMMA infusion was significantly attenuated by renal denervation (delta FE(Na) = 2.36+/-0.34%) and PRA was unchanged. In conclusion, the natriuretic effect of systemic inhibition of nitric oxide (NO) synthesis was associated with decreased PRA in the Dnx-WKY suggesting that a potential interaction exists between NO and the renal nerves in the modulation of PRA in the normotensive WKY rat. Whereas, the natriuretic effect of L-NMMA infusion in the SHR in the presence and absence of the renal nerves, were independent of changes in PRA.  相似文献   

12.
The influence of renal nerves on the effects of concurrent NO synthase inhibition (10 mg kg(-1) b.w. i.v. L-NAME) and ET(A)/ET(B) receptor inhibition (10 mg kg(-1) b.w. i.v. bosentan) on renal excretory function and blood pressure in conscious spontaneously hypertensive rats (SHR) was investigated. L-NAME increased blood pressure, urine flow rate, fractional excretion of sodium, chloride and phosphate in both normotensive Wistar rats and SHR with intact renal nerves (p<0.01). GFR or RBF did not change in any of the groups investigated. The effects of L-NAME on renal excretory function were markedly reduced by bosentan and the values returned to control level in the normotensive rats, while in SHR the values were reduced by bosentan, but they remained significantly elevated as compared to control level (p<0.05). The hypertensive response induced by L-NAME in SHR is partially due to activation of endogenous endothelins, but it does not depend on renal nerves. Chronic bilateral renal denervation abolished the effect of L-NAME on sodium and chloride excretion in normotensive rats, whereas it did not alter this effect in SHR. The participation of endogenous endothelins in changes of renal excretory function following NO synthase inhibition is diminished in SHR as compared to Wistar rats.  相似文献   

13.
The autonomic nervous system plays an important role in rat anaphylactic hypotension. It is well known that sympathetic nerve activity and cardiovascular function are affected by anesthetics. However, the effects of different types of anesthesia on the efferent renal sympathetic nerve activity (RSNA) during anaphylactic hypotension remain unknown. Therefore, we determined the renal sympathetic responses to anaphylactic hypotension in anesthetized and conscious rats and the roles of baroreceptors in these responses. Sprague-Dawley rats were randomly allocated to anesthetic groups that were given pentobarbital, urethane, or ketamine-xylazine and to a conscious group. The rats were sensitized using subcutaneously injected ovalbumin. The systemic arterial pressure (SAP), RSNA and heart rate (HR) were measured. The effects of sinoaortic baroreceptor denervation on RSNA during anaphylaxis were determined in pentobarbital-anesthetized and conscious rats. In all of the sensitized rats, the RSNA increased and SAP decreased after antigen injection. At the early phase within 35 min of the antigen injection, the antigen-induced sympathoexcitation in the conscious rats was significantly greater than that in the anesthetized rats. Anaphylactic hypotension was attenuated in the conscious rats compared to the anesthetized rats. The anesthetic-induced suppression of SAP and RSNA was greater in the order ketamine-xylazine >urethane = pentobarbital. Indeed, in the rats treated with ketamine-xylazine, RSNA did not increase until 40 min, and SAP remained at low levels after the antigen injection. The baroreceptor reflex, as evaluated by increases in RSNA and HR in response to the decrease in SAP induced by sodium nitroprusside (SNP), was suppressed in the anesthetized rats compared with the conscious rats. Consistent with this finding, baroreceptor denervation attenuated the excitatory responses of RSNA to anaphylaxis in the conscious rats but not in the pentobarbital-anesthetized rats. RSNA was increased markedly in conscious rats during anaphylactic hypotension. Anesthetics attenuated this antigen-induced renal sympathoexcitation through the suppression of baroreceptor function.  相似文献   

14.
Obstructive sleep apnea is characterized by intermittent obstruction of the upper airway, which leads to intermittent hypoxia. Myocardial glycogen is a major energy resource for heart during hypoxia. Previous studies have demonstrated that intermittent hypoxia rapidly degrades myocardial glycogen and activates glycogen synthase (GS). However, the underlying mechanisms remain undefined. Because sleep apnea/intermittent hypoxia usually happens at night, whether intermittent hypoxia leads to GS activation in the postabsorptive state is not known. In the present study, male adult rats were studied after either an overnight fast or ad libitum feeding with or without intermittent ventilatory arrest (3 90-s periods at 10-min intervals). Hearts were quickly excised and freeze-clamped. Intermittent hypoxia induced a significant decrease in myocardial glycogen content in fed rats and stimulated GS in both fasted and fed rats. However, the portion of GS in the active form increased by approximately 38% in fasted rats compared with a larger, approximately 130% increase in fed rats. The basal G-6-P content was comparable in fasted and fed animals and increased approximately threefold after hypoxia. The basal phosphorylation states of Akt and GSK-3beta and the activity of protein phosphatase 1 (PP1) were comparable between fasted and fed control rats. Hypoxia significantly increased Akt phosphorylation and PP1 activity only in fed rats. In contrast, hypoxia did not induce significant change in GSK-3beta phosphorylation in either fasted or fed rats. We conclude that hypoxia activates GS in fed rat myocardium through a combination of rapid glycogenolysis, elevated local G-6-P content, and increased PP1 activity, and fasting attenuates this action independent of local G-6-P content.  相似文献   

15.
Assessment of certain parameters of renal function were carried out before and 1 wk after total denervation of the heart by a method which leaves nerves to other organs intact. No changes in mean blood pressure, central venous pressure, cardiac output, GFR, or RPF were noted after cardiac denervation. UNaV after a low sodium diet was similar during a control period before and after denervation, but in response to expansion of the plasma volume a 3-fold greater natriuresis was seen in the denervated group. Alterations in the filtered load of sodium, the secretion of aldosterone, or most of the recently described physical and compositional factors known to influence sodium excretion cannot adequately explain this natriuresis. Expansion of an already augmented plasma volume after denervation or the possibility of a natriuretic or antinatriuretic factor with afferents interrupted in the process of cardiac denervation must be considered as etiologic factors.  相似文献   

16.
Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280–350 g) were anesthetized with sodium thiopental (40 mg. kg−1, i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6), OT infusion (0.03 µg • kg−1, i.v.) induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg−1 b.wt., i.v.) was infused over 60 s. In sham rats (n = 6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg−1 • h−1, i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.  相似文献   

17.
Urinary and fecal endogenous steroid excretion of fed or fasted New Zealand white rabbits was determined by the isotopic steady state method after subcutaneous implantation of radioactive cholesterol. While plasma cholesterol was increasing during a 9-day fast, fecal steroid excretion decreased to 10% of the excretion rates in the fed state. Refeeding the fasted rabbits led to a decrease in plasma cholesterol and an increase in fecal endogenous steroid excretion. Urinary steroid excretion, which represented 18% of total endogenous steroid excretion for fed animals, decreased during fasting and increased during refeeding, but these changes were relatively small. The small intestine, cecum, and colon of fed or fasted rabbits had similar endogenous steroid was acidic steroid. During attempts to alter the circulating bile acid concentration by supplying deoxycholate (200 mg/day) to fed rabbits or cholestyramine (2 g/day) to fasted rabbits, plasma cholesterol concentration did not change to the same extent as during fasting or refeeding, respectively. The decreased cholesterol catabolism and the hypercholesterolemia that are seen in the fasting rabbit may result from decreased clearance of plasma cholesterol.  相似文献   

18.
Recent work suggests that hypophysectomized (HYPOX) rats show low levels of atrial natriuretic factor (ANF) and an attenuated diuresis and natriuresis to blood volume expansion. The purpose of this was (i) to examine the effect of various hormone replacements on ANF and renal excretion in HYPOX rats and (ii) to compare the renal responses to exogenous ANF in intact and HYPOX rats. Groups of rats received subcutaneous pellet implant of either dexamethasone (DEX), thyroxine (T4), or a placebo. Approximately 1 week later, they were anesthetized and subjected to a 20% blood volume expansion. DEX rats had a higher mean arterial pressure than placebo-treated rats while both MAP and heart rate were higher in T4 rats. Only the DEX rat showed augmented renal responses to volume expansion while no group showed significant changes in plasma ANF concentration during volume expansion. In a second series, groups of HYPOX rats received renal capsular transplants of either six hemi-pituitaries or six pieces of muscle which markedly raised serum prolactin levels in the hemi-pituitary group. The hemi-pituitary rats showed a greater diuresis and natriuresis during volume expansion than the muscle group and also showed a transient increase in plasma ANF. In addition, groups of either intact or HYPOX rats were anesthetized and received intravenous bolus injections of ANF. Both intact and HYPOX rats showed a very similar diuresis and natriuresis to exogenous ANF. However, potassium excretion was markedly reduced in HYPOX rats. The results show that DEX augments the renal responses to volume expansion by some mechanism which does not involve changes in plasma ANF. Thyroxine increases mean arterial pressure and heart rate in HYPOX rats but does not augment the renal or ANF responses to volume expansion. Chronic elevations in prolactin increase the renal response to volume expansion. Finally, the kidneys of HYPOX rats are capable of increasing sodium and water output in response to large doses of exogenous ANF.  相似文献   

19.
The effect of water deprivation for 19 h on renal Na excretion of conscious adrenalectomized (ADX) sheep maintained on a constant intravenous infusion of aldosterone and cortisol (ADX-constant steroid sheep) was investigated. Both ADX and normal sheep showed large increases in renal Na excretion when they were deprived of water. ADX-constant steroid sheep also exhibited a normal postprandial natriuresis 3-6 h after feeding, whether or not water was available to drink. In another experiment, sheep deprived of water for 41 h were then allowed to drink water. Both normal and ADX-constant steroid sheep exhibited a large reduction of renal Na excretion in the 6 h after rehydration. Changes in plasma Na and K concentration and osmolality were similar in normal and ADX-constant steroid sheep during periods of dehydration and rehydration. These results show that change in aldosterone secretion is not a major factor in causing either dehydration-induced or postprandial natriuresis. Neither is it a major cause of rehydration-induced renal Na retention.  相似文献   

20.
We assessed renal function in fasting adult Nagase analbuminemic rats (NAR). Sodium output in male and female NAR was 68% and 46%, respectively, of the output of age- and sex-matched normal Sprague-Dawley (SD) rats. Potassium excretion was significantly greater in female NAR but there was no difference between male NAR and SD rats. The renal clearances of urea and creatinine were reduced in NAR with corresponding increases in plasma concentrations; however, the urea and creatinine concentrations were not different in plasma samples taken from normally fed and hydrated SD and NAR rats. Exchangeable body sodium and sodium space was significantly larger in normally fed and hydrated NAR than in SD but there were no differences in plasma sodium concentrations or plasma volumes. Although plasma concentrations of albumin in NAR were only about 0.07% of the concentration in SD rats, the renal clearance of albumin in NAR was threefold greater. Kidney weights in NAR were 10 to 16% less than in SD rats but liver weights were 22 to 42% greater. Clearly, renal function was markedly abnormal in Nagase rats during a 24-hour fast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号