首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-phase partitioning bioreactors (TPPBs) are characterized by a cell-containing aqueous phase and a second immiscible phase that contains toxic and/or hydrophobic substrates that partition to the cells at subinhibitory levels in response to the metabolic demand of the organisms. To date, the delivery phase in TPPBs has been a hydrophobic solvent that traditionally needed to possess a variety of important properties including biocompatibility, nonbioavailability, low volatility, and low cost, among others. In the present work we have shown that the organic solvent phase can be replaced by inexpensive polymer beads that function in a similar fashion as organic solvents, delivering a toxic substrate to cells based on equilibrium considerations. Specifically, 3.4 mm diameter beads of poly(ethylene-co-vinyl acetate) (EVA) were used to reduce the aqueous concentration of phenol in a bioreactor from toxic levels ( approximately 2,000 mg/L) to subinhibitory levels ( approximately 750 mg/L), after which Pseudomonas putida ATCC 11172 was added to the system and allowed to consume the total phenol loading. Thus, the beads absorbed the toxic substrate and released it to the cells on demand. The EVA beads, which could be reused, were able to absorb 14 mg phenol/g EVA. This work has opened the possibility of using widely mixed cultures in TPPB systems without concern for degradation of the delivery material and without concern of contamination.  相似文献   

2.
A solid–liquid two-phase partitioning bioreactor (TPPB) in which the non-aqueous phase consisted of polymer (HYTREL) beads was used to degrade a model mixture of phenols [phenol, o-cresol, and 4-chlorophenol (4CP)] by a microbial consortium. In one set of experiments, high concentrations (850 mg l−1 of each of the three substrates) were reduced to sub-inhibitory levels within 45 min by the addition of the polymer beads, followed by inoculation and rapid (8 h) consumption of the total phenolics loading. In a second set of experiments, the beneficial effect of using polymer beads to launch a fermentation inhibited by high substrate concentrations was demonstrated by adding 1,300 and 2,000 mg l−1 total substrates (equal concentrations of each phenolic) to a pre-inoculated bioreactor. At these levels, no cell growth and no degradation were observed; however, after adding polymer beads to the systems, the ensuing reduced substrate concentrations permitted complete destruction of the target molecules, demonstrating the essential role played by the polymer sequestering phase when applied to systems facing inhibitory substrate concentrations. In addition to establishing alternative modes of TPPB operation, the present work has demonstrated the differential partitioning of phenols in a mixture between the aqueous and polymeric phases. The polymeric phase was also observed to absorb a degradation intermediate (arising from the incomplete biodegradation of 4CP), which opens the possibility of using solid–liquid TPPBs during biosynthetic transformation to sequester metabolic byproducts.  相似文献   

3.
Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitroreductase, rather than a type II enzyme. The enteric bacterium Morganella morganii strain B2 with documented hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nitroreductase activity, and Enterobacter cloacae strain 96-3 with documented 2,4,6-trinitrotoluene (TNT) nitroreductase activity, were used here to show that the explosives TNT and RDX were both reduced by a type I nitroreductase. Morganella morganii and E. cloacae exhibited RDX and TNT nitroreductase activities in whole cell assays. Type I nitroreductase, purified from E. cloacae, oxidized NADPH with TNT or RDX as substrate. When expression of the E. cloacae type I nitroreductase gene was induced in an Escherichia coli strain carrying a plasmid, a simultaneous increase in TNT and RDX nitroreductase activities was observed. In addition, neither TNT nor RDX nitroreductase activity was detected in nitrofurazone-resistant mutants of M. morganii. We conclude that a type I nitroreductase present in these two enteric bacteria was responsible for the nitroreduction of both types of explosive.  相似文献   

4.
This research demonstrated the microbial treatment of concentrated phenol wastes using a two-phase partitioning bioreactor (TPPB). TPPBs are characterized by a cell-containing aqueous phase and an immiscible and biocompatible organic phase that partitions toxic substrates to the cells on the basis of their metabolic demand and the thermodynamic equilibrium of the system. Process limitations imposed by the capability of wild-type Pseudomonas putida ATCC 11172 to utilize long chain alcohols were addressed by strain modification (transposon mutagenesis) to eliminate this undesirable biochemical characteristic, enabling use of a range of previously bioavailable organics as delivery solvents. Degradation of phenol in a system with the modified strain as catalyst and industrial grade Adol 85 NF (primarily oleyl alcohol) as the solvent was demonstrated, with the system ultimately degrading 36 g of phenol within 38 h. Volumetric phenol consumption rates by wild type P. putida ATCC 11172 and the genetically modified derivative revealed equivalent phenol degrading capabilities (0.49 g/L x h vs 0.47 g/L x h respectively, in paired fermentations), with the latter presenting a more efficient remediation option due to decreased solvent losses arising from the modified strain's forced inability to consume the delivery solvent as a substrate. Two feeding strategies and system configurations were evaluated to expand practical applications of TPPB technology. The ability to operate with a lower solvent ratio over extended periods revealed potential for long-term application of TPPB to the treatment of large masses of phenol while minimizing solvent costs. Repeated recovery of 99% of phenol from concentrated phenol solutions and subsequent treatment within a TPPB scheme demonstrated applicability of the approach to the remediation of highly contaminated "effluents" as well as large masses of bulk phenol. Operation of the TPPB system in a dispersed manner, rather than as two distinct phases, resulted in volumetric consumption rates similar to those previously achieved only in systems operated with enriched air.  相似文献   

5.
Mycobacterium PYR-1 was used in a two-phase partitioning bioreactor (TPPB) to degrade low and high molecular weight polycyclic aromatic hydrocarbons. TPPBs are characterized by a cell-containing aqueous phase, and an immiscible and biocompatible organic phase that partitions toxic substrates to the cells based on their metabolic demand and the thermodynamic equilibrium of the system. A bioavailable solvent, that is, a solvent usable as a carbon source, was used as the organic layer. Although bioavailable solvents are traditionally deemed unsuitable for use in TPPBs, bis(ethylhexyl) sebacate had superior chemical properties to other solvents examined and was cost-effective. In this system, 1 g of phenanthrene and 1 g of pyrene were completely degraded within 4 days, at rates of 168 mg l(-1) day(-1) and 138 mg l(-1 )day(-1), respectively, based on a 3-l aqueous volume. This is the highest pyrene degradation rate reported in the literature to date. Significant degradation of naphthalene and anthracene was also obtained. This work demonstrates that bioavailable solvents can be successfully used in TPPB systems, and may change the protocols commonly used to select solvents for TPPBs in the future.  相似文献   

6.
A 2-l (1-l working volume) two-phase partitioning bioreactor (TPPB) was used as an integrated scrubber/bioreactor in which the removal and destruction of benzene from a gas stream was achieved by the reactor's organic/aqueous liquid contents. The organic solvent used to trap benzene was n-hexadecane, and degradation of benzene was achieved in the aqueous phase using the bacterium Alcaligenes xylosoxidans Y234. A gas stream with a benzene concentration of 340 mg l(-1) at a flow rate of 0.414 l h(-1) was delivered to the system at a loading capacity of 140 g m(-3) h(-1), and an elimination capacity of 133 g m(-3 )h(-1) was achieved (the volume in this term is the total liquid volume of the TPPB). This elimination capacity is between 3 and 13 times greater than any benzene elimination achieved by biofiltration, a competing biological air treatment strategy. It was also determined that the evaluation of TPPB performance in terms of elimination capacity should include the cell mass present in the system, as this is a readily controllable quantity. A specific benzene utilization rate of 0.57 g benzene (g cells)(-1) h(-1) was experimentally determined in a bioreactor with a cell concentration that varied dynamically between 0.2 and 1 g l(-1). If it assumed that this specific benzene utilization rate (0.57 g g(-1) h(-1)) is independent of cell concentration, then a TPPB operated at high cell concentrations could potentially achieve elimination capacities several hundred times greater than those obtained with biofilters.  相似文献   

7.
In an effort to improve reactor performance and process operability, the microbial biotransformation of (-)-trans-carveol to (R)-(-)-carvone by hydrophobic Rhodococcus erythropolis DCL14 was carried out in a two phase partitioning bioreactor (TPPB) with solid polymer beads acting as the partitioning phase. Previous work had demonstrated that the substrate and product become inhibitory to the organism at elevated aqueous concentrations and the use of an immiscible second phase in the bioreactor was intended to provide a reservoir for substrates to be delivered to the aqueous phase based on the metabolic rate of the cells, while also acting as a sink to uptake the product as it is produced. The biotransformation was previously undertaken in a two liquid phase TPPB with 1-dodecene and with silicone oil as the immiscible second phase and, although improvement in the reactor performance was obtained relative to a single phase system, the hydrophobic nature of the organism caused the formation of severe emulsions leading to significant operational challenges. In the present work, eight types of polymer beads were screened for their suitability for use in a solid-liquid TPPB for this biotransformation. The use of selected solid polymer beads as the second phase completely prevented emulsion formation and therefore improved overall operability of the reactor. Three modes of solid-liquid TPPB operation were considered: the use of a single polymer bead type (styrene/butadiene copolymer) in the reactor, the use of a mixture of polymer beads in the reactor (styrene/butadiene copolymer plus Hytrel(R) 8206), and the use of one type of polymer beads in the reactor (styrene/butadiene copolymer), and another bead type (Hytrel(R) 8206) in an external column through which fermentation medium was recirculated. This last configuration achieved the best reactor performance with 7 times more substrate being added throughout the biotransformation relative to a single aqueous phase benchmark reactor and 2.7 times more substrate being added relative to the best two liquid TPPB case. Carvone was quantitatively recovered from the polymer beads via single stage extraction into methanol, allowing for bead re-use.  相似文献   

8.
Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine   总被引:15,自引:8,他引:7       下载免费PDF全文
Biodegradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) occurs under anaerobic conditions, yielding a number of products, including: hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine, hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine, hexahydro-1,3,5-trinitroso-1,3,5-triazine, hydrazine, 1,1-dimethyl-hydrazine, 1,2-dimethylhydrazine, formaldehyde, and methanol. A scheme for the biodegradation of RDX is proposed which proceeds via successive reduction of the nitro groups to a point where destabilization and fragmentation of the ring occurs. The noncyclic degradation products arise via subsequent reduction and rearrangement reactions of the fragments. The scheme suggests the presence of several additional compounds, not yet identified. Several of the products are mutagenic or carcinogenic or both. Anaerobic treatment of RDX wastewaters, which also contain high nitrate levels, would permit the denitrification to occur, with concurrent degradation of RDX ultimately to a mixture of hydrazines and methanol. The feasibility of using an aerobic mode in the further degradation of these products is discussed.  相似文献   

9.
Summary A two phase organic-aqueous bioreactor system was used to degrade high concentrations of phenol by partitioning the inhibitory substrate into the aqueous phase at sub-inhibitory levels. Pseudomonas putida was used to degrade 4 g of phenol in a fermentor containing 0.5L of 2-undecanone, in which the phenol was dissolved, and 1L of medium in just over 48 hours. This system has the advantage of being self regulating in terms of phenol delivery to the aqueous phase in response to the rate of consumption by the cells, and it eliminates the problem of substrate inhibition commonly observed at high concentrations in a batch system.  相似文献   

10.
Application of two-phase partitioning bioreactors (TPPB) to the degradation of phenol and xenobiotics has been limited by the fact that many organic compounds that would otherwise be desirable delivery solvents can be utilized by the microorganisms employed. The ability to metabolize the solvent itself could interfere with xenobiotic degradation, limiting remediation efficiency, and hence represents a microbial characteristic incompatible with process goals. To avoid the issue of bioavailability, previous TPPB applications have relied on complex and often expensive delivery solvents or suboptimal catalyst-solvent pairings. In an effort to enhance TPPB activity and applicability, a genetically engineered derivative of Pseudomonas putida ATCC 11172 mutated in its ability to utilize medium-chain-length alcohols was generated (AVP2) and applied as the catalyst within a TPPB system with decanol as the delivery solvent. Kinetic analysis verified that the genetic alteration had not negatively affected phenol degradation. The volumetric productivity of AVP2 (0.48 g/L x h(-1)) was equivalent to that seen for wild-type ATCC 11172 (0.51 g/L x h(-1)), but a comparison of initial cell concentrations and yields revealed an improved phenol-degrading efficiency for the mutant under process conditions. Yield coefficients, cell dry weight, and viable count determinations all confirmed the stability of the modified phenotype. This work illustrates the possibilities for TPPB process enhancement through a careful combination of genetic modification and solvent selection.  相似文献   

11.
In previous work, we found that an anaerobic sludge efficiently degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), but the role of isolates in the degradation process was unknown. Recently, we isolated a facultatively anaerobic bacterium, identified as Klebsiella pneumoniae strain SCZ-1, using MIDI and the 16S rRNA method from this sludge and employed it to degrade RDX. Strain SCZ-1 degraded RDX to formaldehyde (HCHO), methanol (CH3OH) (12% of total C), carbon dioxide (CO(2)) (72% of total C), and nitrous oxide (N2O) (60% of total N) through intermediary formation of methylenedinitramine (O(2)NNHCH(2)NHNO(2)). Likewise, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was degraded to HCHO, CH3OH, and N2O (16.5%) with a removal rate (0.39 micromol. h(-1). g [dry weight] of cells(-1)) similar to that of RDX (0.41 micromol. h(-1). g [dry weight] of cells(-1)) (biomass, 0.91 g [dry weight] of cells. liter(-1)). These findings suggested the possible involvement of a common initial reaction, possibly denitration, followed by ring cleavage and decomposition in water. The trace amounts of MNX detected during RDX degradation and the trace amounts of hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine detected during MNX degradation suggested that another minor degradation pathway was also present that reduced -NO2 groups to the corresponding -NO groups.  相似文献   

12.
Biodegradation of pyrene by Mycobacterium frederiksbergense was studied in a two-phase partitioning bioreactor (TPPB) using silicone oil as non-aqueous phase liquid (NAPL). The TPPB achieved complete biodegradation of pyrene; and during the active degradation phase, utilization rates of 270, 230, 139, 82 mg l(-1)d(-1) for initial pyrene loading concentrations (in NAPL) of 1000, 600, 400 and 200 mg l(-1), respectively, were obtained. The degradation rates achieved using M. frederiksbergense in TPPB were much higher than the literature reported values for an ex situ PAH biodegradation system operated using single and pure microbial species. The degradation data was fitted to simple Monod, logistic, logarithmic, three-half-order kinetic models. Among these models, only exponential growth form of the three-half-order kinetic model provided the best fit to the entire degradation profiles with coefficient of determination (R2) value >0.99. From the experimental findings, uptake of pyrene by the microorganism in TPPB was proposed to be a non-interfacial based mechanism.  相似文献   

13.
In this work, crude oil biodegradation has been optimized in a solid‐liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d ‐optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model‐predicted and experimental results. When applying the optimum parameters, gas chromatography‐mass spectrometry showed a significant reduction in n‐alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:797–805, 2014  相似文献   

14.
Extensive biodegradation of hexahydro-1,3,5 -trinitro-1,3,5 -triazine (RDX) by the white-rot fungus Phanerochaete chrysosporium in liquid and solid matrices was observed. Some degradation in liquid occurred under nonligninolytic conditions, but was approximately 10 times higher under ligninolytic conditions. Moreover, elimination was accounted for almost completely as carbon dioxide. No RDX metabolites were detected. The degradation rates in liquid appeared to be limited to RDX concentration in solution (approximately 80 mg/L), but degradation rates in soil were nonsaturable to 250 mg/kg. Manganese-dependent peroxidase (MnP) and cellobiose dehydrogenase (CDH) from P. chrysosporium, but not lignin peroxidase, were able to degrade RDX. MnP degradation of RDX required addition of manganese, but CDH degraded RDX anaerobically without addition of mediators. Attempts to improve biodegradation by supplementing cultures with micronutrients showed that addition of manganese and oxalate stimulated degradation rates in liquid, sawdust, and sand by the fungus, but not in loam soil. RDX degradation by P. chrysosporium in sawdust and sand was better than observed in liquid. However, degradation in solid matrices by the fungus only began after a lag period of 2 to 3 weeks, during which time extractable metabolites from wood were degraded.  相似文献   

15.
A two-phase partitioning bioreactor (TPPB) utilizing the bacterium Sphingomonas aromaticivorans B0695 was used to degrade four low molecular weight (LMW) polycyclic aromatic hydrocarbons (PAHs). The TPPB concept is based on the use of a biocompatible, immiscible organic solvent in which high concentrations of recalcitrant substrates are dissolved. These substances partition into the cell-containing aqueous phase at rates determined by the metabolic activity of the cells. Experiments showed that the selected solvent, dodecane, could be successfully used in both solvent extraction experiments (to remove PAHs from soil) and in a TPPB application. Further testing demonstrated that solvent extraction from spiked soil was enhanced when a solvent combination (dodecane and ethanol) was used, and it was shown that the co-solvent did not significantly affect TPPB performance. The TPPB achieved complete biodegradation of naphthalene, phenanthrene, acenaphthene and anthracene at a volumetric consumption rate of 90 mg l(-1) h(-1) in approximately 30 h. Additionally, a total of 20.0 g of LMW PAHs (naphthalene and phenanthrene) were biodegraded at an overall volumetric rate of 98 mg l(-1) h(-1) in less than 75 h. Degradation rates achieved using the TPPB and S. aromaticivorans B0695 are much greater than any others previously reported for an ex situ PAH biodegradation system operating with a single species.  相似文献   

16.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xplA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization.  相似文献   

17.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 microM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 microg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4- greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics.  相似文献   

18.
A shallow, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-contaminated aquifer at Naval Submarine Base Bangor has been characterized as predominantly manganese-reducing, anoxic with local pockets of oxic conditions. The potential contribution of microbial RDX degradation to localized decreases observed in aquifer RDX concentrations was assessed in sediment microcosms amended with [U-14C] RDX. Greater than 85% mineralization of 14C-RDX to 14CO2 was observed in aquifer sediment microcosms under native, manganese-reducing, anoxic conditions. Significant increases in the mineralization of 14C-RDX to 14CO2 were observed in anoxic microcosms under NO3-amended or Mn(IV)-amended conditions. No evidence of 14C-RDX biodegradation was observed under oxic conditions. These results indicate that microbial degradation of RDX may contribute to natural attenuation of RDX in manganese-reducing aquifer systems.  相似文献   

19.
20.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xplA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号