首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mine I  Takezaki N  Sekida S  Okuda K 《Planta》2007,226(4):971-979
In the tip-growing filamentous cell of the xanthophycean alga Vaucheria terrestris sensu Götz, a new growing tip develops in the non-growing, cylindrical region of the cell that was exposed by local illumination. The present study examined changes in the strength and extensibility of the cell wall of the new growing tip and in the matrix components of the inner surface of the cell wall. The internal pressure required to rupture the cell walls decreased remarkably during the early to middle stages of growing tip development, but the cell wall hardly extended before rupture. In contrast, during the middle and late stages of development, cell walls were extended by internal pressure. Atomic force microscopy revealed that protease-resistant, fine granular matrix components were present only at the apical portion of a normal growing tip, and were absent in the non-growing cylindrical region. In the early and middle stages of new growing tip development, these matrix components appeared in the cell walls in patches. These results suggest that first cell wall strength decreases and then cell wall extensibility increases in the development of new growing tips, and that protease-resistant, fine granular matrix components may be involved in rendering a cell wall extensible.  相似文献   

2.
In a recent publication (Kutschera, 1996), it was reported thatthe cell walls of growing rye coleoptiles exhibit irreversible(plastic) extensibility in a rheological extension test. Basicallysimilar measurements with cell walls of maize coleoptiles hadpreviously shown that the apparent plastic extensibility determinedin this material is in reality due to the slowly reversible(viscoelastic) extensibility of the walls. A recent reinvestigationof this discrepancy showed that rye coleoptile walls also behaveas a perfectly viscoelastic material if precautions are takento prevent measuring artefacts. Similar results were obtainedwith cell walls from the growing zone of various other seedlingorgans (maize mesocotyl, maize root, cucumber hypocotyl). Itis concluded that plastic extensibility has not yet been convincinglydemonstrated by rheological tests that determine the intrinsicmaterial properties of cell walls. Reported changes in mechanicalmaterial properties of cell walls produced by growth-controllingfactors such as auxin or light may generally be attributed tochanges in viscoelasticity which are not directly related tothe chemo-rheological processes controlling wall extension ofgrowing cells. Key words: Cell wall extensibility, extension growth, plastic cell wall extensibility, viscoelastic cell wall extensibility  相似文献   

3.
Hypergravity inhibited elongation growth of azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls by decreasing the mechanical extensibility of cell walls via the increase in the molecular mass of xyloglucans [Soga et al. (1999) Plant Cell Physiol. 40: 581]. Here, we report that the pH value of the apoplastic fluid in epicotyls increased from 5.8 to 6.6 by hypergravity (300 x g) treatment. When the xyloglucan-degrading enzymes extracted from cell walls of the 1 x g control epicotyls were assayed in buffer at pH 6.6 and 5.8, the activity at pH 6.6 was almost half of that at pH 5.8. In addition, when enzymically active cell wall preparations obtained from 1 x g control epicotyls were autolyzed in buffer at pH 5.8 and 6.6 and then xyloglucans were extracted from the autolyzed cell walls, the molecular mass of xyloglucans incubated at pH 5.8 decreased during the autolysis, while that at pH 6.6 did not change. Thus, the xyloglucans were not depolymerized by autolysis at the pH value (6.6) observed in the hypergravity-treated epicotyls. These findings suggest that in azuki bean epicotyls, hypergravity decreases the activities of xyloglucan-degrading enzymes by increasing the pH in the apoplastic fluid, which may be involved in the processes of the increase in the molecular mass of xyloglucans, leading to the decrease in the cell wall extensibility.  相似文献   

4.
Cell wall extensibility controls the rate of plant cell growth. It is determined by intrinsic mechanical properties of wall polymers and by wall proteins modifying these polymers and their interactions. Heat-inactivation of endogenous cell wall proteins inhibited acid-induced extension of onion epidermis peels transverse to the net cellulose alignment in the cell wall but not parallel to it. In the former case the acid-induced extension could be controlled by expansins and in the latter case by pectins restricting shear between microfibrils. Heat-inactivated cell walls stretched transversely to the net cellulose orientation extended faster at pH 5.7 and slower at pH 4.5 compared to native walls. Expansins seem to be inactive at pH 5.7, so that faster extension may result from heat-induced viscous flow of pectins and conformational changes in the cuticle of the epidermis. This stimulation of wall extension is not seen at pH 4.5 as it is outweighed by the inhibitory effect of expansin heat-inactivation. Thus, cell wall extension in higher plants might be controlled by a complex interplay between protein-dependent and protein-independent mechanisms, the result of which depends on pH and preferential orientation of main wall polymers.  相似文献   

5.
Cell enlargement in primary leaves of bean (Phaseolus vulgaris L.) can be induced, free of cell divisions, by exposure of 10-d-old, red-light-grown seedlings to white light. The absolute rate of leaf expansion increases until day 12, then decreases until the leaves reached mature size on day 18. The cause of the reduction in growth rate following day 12 has been investigated. Turgor calculated from measurements of leaf water and osmotic potential fell from 6.5 to 3.5 bar before day 12, but remained constant thereafter. The decline of growth after day 12 is not caused by a decrease in turgor. On the other hand, Instron-measured cell-wall extensibility decreased in parallel with growth rate after day 12. Two parameters influencing extensibility were examined. Light-induced acidification of cell walls, which has been shown to initiate wall extension, remained constant over the growth period (days 10–18). Furthermore, cells of any age could be stimulated to excrete H+ by fusicoccin. However, older tissue was not able to grow in response to fusicoccin or light. Measurements of acid-induced extension on preparations of isolated cell walls showed that as cells matured, the cell walls became less able to extend when acidified. These data indicate that it is a decline in the capacity for acid-induced wall loosening that reduces wall extensibility and thus cell enlargement in maturing leaves.Abbreviations and symbols FC fusicoccin - P turgor pressure - RL red light - WEx wall extensibility - WL white light - P w leaf water potential - P s osmotic potential  相似文献   

6.
应用实验室常用仪器和电子部件,包括直流稳压电源、等臂双盘天平、记录仪、恒流泵、程控仪、线性可变差动变压器(LVDT)、电磁间等,改装和配置成的植物细胞壁伸展性能测定仪,具有操作简便、测量准确和灵敏度高等优点;对大豆幼苗下胚轴生长区细胞壁的内源伸展活性和重组伸展活性的实测结果与文献报告相符,表明该仪器是一种较为理想的准确测定植物细胞壁伸展性能的自动化仪器。  相似文献   

7.
Zusammenfassung Das Ziel vorliegender Arbeit war, die Wirkung von Tannin auf die Zellwanddehnbarkeit zu untersuchen. Sämtliche Versuche wurden mit 35 mm langen Hypokotylspalthälften 6 Tage alter Sonnenblumenkeimlinge ausgeführt. Die Zellwanddehnbarkeit solcher Spalthälften, die mit Glycerinlösung infiltriert waren, erfolgte mit einer Streckwaage. Nach einer 24stündigen Vorbehandlung in Tanninlösungen (5·10–4 molar) wurde die Dehnbarkeit der Zellwände um 26% erniedrigt. Die tanninbedingte Abnahme der Wanddehnbarkeit war pH-abhängig. Sie war am stärksten bei pH 6 und sank mit zunehmender Säure des Inkubations-mediums. Bei pH 7 war die Dehnbarkeit tanninbehandelter Hypokotyle sogar stärker als die entsprechender Pufferkontrollen. Die Erniedrigung der Zellwanddehnbarkeit durch Tannin lief parallel zu einer Wachstumshemmung. Offensichtlich wirkt der Gerbstoff Tannin nicht direkt auf die Zellwand, da die Dehnbarkeit von Hypokotylgewebe nicht verändert wurde, wenn diese ohne Vorbehandlung mit einer tanninhaltigen Glycerinlösung infiltriert und plasmolysiert wurden. Die Wirkung auf die Zellwand scheint sekundärer Natur zu sein und über den Stoffwechsel abzulaufen. Mögliche Reaktionsmechanismen wurden ausführlich besprochen.
Summary The aim of this paper was to investigate the effect of tannin on the extensibility of cell walls. All experiments were done with 35 mm hypocotyl sections of six days old sunflower-seedlings which were split longitudinally into two identical halves. The wall extensibility of those split halves which were plasmolysed by infiltration with glycerin was measured by using a special stretching apparatus. It was found that after a 24 hours preincubation period in tannin solutions (5·10–4 molar) the extensibility of cell walls became reduced by 26 per cent. The rate of the tannin-caused decrease of cell wall extensibility was dependent on the acidity of the incubation fluid. It was highest at pH 6 and sank with increasing acidity of incubation medium. The extensibility of hypocotyls treated with tannin was at pH 7 even higher than that of corresponding buffer controls. The reduction of cell wall extensibility by tannin ran fairly parallel with a growth inhibition. It has been shown that there is obviously no direct action on the cell wall by tannin, since the extensibility of hypocotyl tissue was not affected if it was infiltrated and plasmolysed by a tannin containing glycerin solution without any pretreatment. The effect on the cell wall seems of secondary nature and acts probably via metabolic factors. Possible mechanisms are extensively discussed.
  相似文献   

8.
The relationship between autolytic degradation of ß(1–3),(1–4)-D-glucanand acid pH-induced extension of isolated Zea mays cell wallshas been investigated using a constant-load extension technique.Acidic buffer (4.5) was able to induce an additional extension(Ea) on cell walls already extended at pH 6.8 buffer under a20 g-mass load, indicating that the additional extension (Ea)was the parameter that better represented the effect of thedifferent treatments on the mechanical properties of maize coleoptilecell walls. The additional extension in response to acidic pHwas higher when cell walls had been previously autolysed for24 h at pH 5.5. Furthermore, the acid-pH effect was dependenton the presence during the constant load extension of some thermo-labilefactors, suggesting the participation of expansins. Acid pHincreased Ea of native cell walls through an increase in theplastic extension (Ep) in agreement with a one step mechanismleading directly to irreversible (plastic) wall extension assuggested by Cosgrove (1977). The autolytic degradation of ß(1–3),(1–4)-D-glucan was also able to modify the mechanicalproperties of maize coleoptile cell walls increasing its elasticextension (Ee) in response to pH 4.5 buffer but that modificationonly leads to an increase in wall extension when expansins areactive, suggesting a cooperation between ß-glucanturnover and expansin action. (Received August 5, 1998; Accepted March 16, 1999)  相似文献   

9.
Cell wall deposition during morphogenesis in fucoid algae   总被引:6,自引:0,他引:6  
Bisgrove SR  Kropf DL 《Planta》2001,212(5-6):648-658
Cell wall deposition was investigated during morphogenesis in zygotes of Pelvetia compressa (J. Agardh) De Toni. Young zygotes are spherical and wall is deposited uniformly, but at germination (about 10 h after fertilization) wall deposition becomes localized to the apex of the tip-growing rhizoid. Wall deposition was investigated before and after the initiation of tip growth by disrupting cytoskeleton, secretion or cellulose deposition; effects on wall strength and structure were examined. All three were involved in generating wall strength in both spherical and tip-growing zygotes, but their relative importance were different at the two developmental stages. Much of the wall strength in young zygotes was dependent on F-actin, whereas cellulose and a sulfated component, probably a fucan (F2), were most important in tip growing zygotes. Some treatments had contrasting effects at the two developmental stages; for example, disruption of F-actin or inhibition of secretion weakened walls in spherical zygotes but strengthened those in tip-growing zygotes. Transmission electron microscopic analysis showed that most treatments that altered wall strength induced modifications of internal wall structure. Received: 12 June 2000 / Accepted: 26 July 2000  相似文献   

10.
The cell wall of the tip‐growing cells of the giant‐cellular xanthophycean alga Vaucheria frigida is mainly composed of cellulose microfibrils (CMFs) arranged in random directions and the major matrix component into which the CMFs are embedded throughout the cell. The mechanical properties of a cell‐wall fragment isolated from the tip‐growing region, which was inflated by artificially applied pressure, were measured after enzymatic removal of the matrix component by using a protease; the results showed that the matrix component is involved in the maintenance of cell wall strength. Since glucose and uronic acid are present in the matrix component of Vaucheria cell walls, we measured the mechanical properties of the cell wall after treatment with endo‐1,3‐ß‐glucanase and observed the fine structures of its surfaces by atomic force microscopy. The major matrix component was partially removed from the cell wall by glucanase, and the enzyme treatment significantly weakened the cell wall strength without affecting the pH dependence of cell wall extensibility. The enzymatic removal of the major matrix component by using a protease released polysaccharide containing glucose and glucuronic acid. This suggests that the major matrix component of the algal cell walls contains both proteins (or polypeptides) and polysaccharides consisting of glucose and glucuronic acid as the main constituents.  相似文献   

11.

Background  

Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility.  相似文献   

12.
Redox reactions affecting the cell wall extensibility proceed in the apoplast of growing cells. The reactions involve dozens of oxidoreductases localized in cell walls (Class I and III heme peroxidases, FAD- and Cu-dependent amine oxidases, oxalate oxidase, ascorbate oxidase, superoxide dismutase, etc.) together with NADPH oxidase and quinone reductase of the plasma membrane. The cell wall extensibility decreases due to peroxidase-catalyzed phenolic cross-links of polymers. Cell growth is proven to be directly dependent on production of reactive oxygen species (ROS) in the apoplast. A special value is attached to hydroxyl radical OH?, which is able to locally cleave polysaccharides and, thus, increase wall extensibility. Generation of OH? results from one-electron reduction of H2O2 and, consequently, is related to the complex of enzymatic and spontaneous reactions of H2O2 turnover in the apoplast. The extensibility also depends on an ascorbate concentration in the apoplast and on a ratio of its oxidized to reduced forms. This dependence is expressed not only in the well-known down-regulation of phenols oxidation but also through pro-oxidant and signal activities. There is only indirect evidence of a role of apoplast-originated redox signaling in the cell growth regulation. In addition to ascorbate, the signaling may supposedly involve ROS, glutathione recycling reactions, numerous redox-sensitive peptides, and proteins localized in the cell wall and the plasma membrane.  相似文献   

13.
The role of calcium in the mechanical strength of isolated cell walls of soybean (Glycine max (L.) Merr. cv. Wayne) hypocotyls has been investigated, using the Instron technique to measure the plastic extensibility (PEx) of methanol-boiled, bisected hypocotyl sections and epidermal strips, and atomic absorption spectroscopy to measure wall calcium. Plastic extensibility was closely correlated with the growth rate of intact soybean hypocotyls. Removal of calcium from isolated cell walls by ethylene glycol-bis(2-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) or low pH increased PEx, while addition of calcium decreased PEx; both effects were reversible. The amount of calcium removed and the increase in PEx at pH 4.5 were strongly dependent upon the chelating ability of the buffer anion. There was a direct correlation between the amount of calcium removed from the wall by EGTA or acid and the increase in PEx. Removal of up to 60% of the calcium increased PEx of half-section up to two fold, but further loss of calcium caused a much greater increase in PEx. With epidermal strips, PEx increased only when calcium was reduced below a threshold. At pH 3.5, there was an additional increase in PEx after a lag of about 2 h; this additional increase may be the result of acid-induced cleavage of a different set of load-bearing bonds. We conclude that calcium bridges are part of the load-bearing bonds in soybean hypocotyl cell walls, and that breakage of these crosslinks by apoplastic acid participates in wall loosening. Acid-induced solubilization of wall calcium may be one mechanism involved in wall loosening of dicotyledonous stems.Abbreviations EGTA ethylene glycol-bis(2-aminoethyl ether)-N,N,N,N-tetraacetic acid - PEx Instron plastic extensibility  相似文献   

14.
Growing plant cell walls characteristically exhibit a property known as ''acid growth'', by which we mean they are more extensible at low pH (< 5) 1. The plant hormone auxin rapidly stimulates cell elongation in young stems and similar tissues at least in part by an acid-growth mechanism 2, 3. Auxin activates a H+ pump in the plasma membrane, causing acidification of the cell wall solution. Wall acidification activates expansins, which are endogenous cell wall-loosening proteins 4, causing the cell wall to yield to the wall tensions created by cell turgor pressure. As a result, the cell begins to enlarge rapidly. This ''acid growth'' phenomenon is readily measured in isolated (nonliving) cell wall specimens. The ability of cell walls to undergo acid-induced extension is not simply the result of the structural arrangement of the cell wall polysaccharides (e.g. pectins), but depends on the activity of expansins 5. Expansins do not have any known enzymatic activity and the only way to assay for expansin activity is to measure their induction of cell wall extension. This video report details the sources and preparation techniques for obtaining suitable wall materials for expansin assays and goes on to show acid-induced extension and expansin-induced extension of wall samples prepared from growing cucumber hypocotyls.To obtain suitable cell wall samples, cucumber seedlings are grown in the dark, the hypocotyls are cut and frozen at -80 °C. Frozen hypocotyls are abraded, flattened, and then clamped at constant tension in a special cuvette for extensometer measurements. To measure acid-induced extension, the walls are initially buffered at neutral pH, resulting in low activity of expansins that are components of the native cell walls. Upon buffer exchange to acidic pH, expansins are activated and the cell walls extend rapidly. We also demonstrate expansin activity in a reconstitution assay. For this part, we use a brief heat treatment to denature the native expansins in the cell wall samples. These inactivated cell walls do not extend even in acidic buffer, but addition of expansins to the cell walls rapidly restores their ability to extend.Open in a separate windowClick here to view.(58M, flv)  相似文献   

15.
The underlying mechanism of photoinhibition of stem elongation by blue (BL) and red light (RL) was studied in etiolated seedlings of pea (Pisum sativum L. cv Alaska). Brief BL irradiations resulted in fast transient inhibition of elongation, while a delayed (lag approximately 60 minutes) but prolonged inhibition was observed after brief RL. Possible changes in the hydraulic and wall properties of the growing cells during photoinhibition were examined. Cell sap osmotic pressure was unaffected by BL and RL, but both irradiations increased turgor pressure by approximately 0.05 megapascal (pressure-probe technique). Cell wall yielding was analyzed by in vivo stress relaxation (pressure-block technique). BL and RL reduced the initial rate of relaxation by 38 and 54%, while the final amount of relaxation was decreased by 48 and 10%, respectively. These results indicate that RL inhibits elongation mainly by lowering the wall yield coefficient, while most of the inhibitory effect of BL was due to an increase of the yield threshold. Mechanical extensibility of cell walls (Instron technique) was decreased by BL and RL, mainly due to a reduction in the plastic component of extensibility. Thus, photoinhibitions of elongation by both BL and RL are achieved through changes in cell wall properties, and are not due to effects on the hydraulic properties of the cell.  相似文献   

16.
We examined the acid-facilitated yielding properties of cell walls of soybean hypocotyls and the effects of Ca(2+) upon the properties by stress-strain analyses using glycerinated hollow cylinders (GHCs) from the elongating regions of the hypocotyls. Stress-extension rate curves of native GHCs showed characteristic changes with pH, all indicating the existence of yield threshold tension (y) as well as wall extensibility (phi), i.e. a downward shift of y and an increase in phi with wall acidification. The acid-induced downward shift of y was inhibited by boiling of GHCs. In contrast, a considerable increase in phi with acidification remained even after boiling. This indicates that phi consists of two components, i.e. heat-sensitive and heat-resistant, both being pH sensitive. A Ca(2+) chelator (Quin 2) dramatically increased phi at a neutral pH. Subsequent addition of Ca(2+) or ruthenium red suppressed the chelator-induced increase in phi. These findings suggest that wall Ca(2+) plays an important role in the regulation of wall extensibility during the acid-induced wall extension by reacting with carboxyl groups of wall pectin.  相似文献   

17.
It has been proposed that spacing between cellulose microfibrils within plant cell walls may be an important determinant of their mechanical properties. A consequence of this hypothesis is that the water content of cell walls may alter their extensibility and that low water potentials may directly reduce growth rates by reducing cell wall spacing. This paper describes a number of experiments in which the water potential of frozen and thawed growing hypocotyls of sunflower (Helianthus annuus L.) were altered using solutions of high molecular weight polyethylene glycol (PEG) or Dextran while their extension under constant stress was monitored using a creep extensiometer (frozen and thawed tissue was used to avoid confounding effects of turgor or active responses to the treatments). Clear reductions in extensibility were observed using both PEG and Dextran, with effects observed in hypocotyl segments treated with PEG 35 000 solutions with osmotic pressures of > or =0.21 MPa suggesting that the relatively mild stresses required to reduce water potentials of plants in vivo by 0.21 MPa may be sufficient to reduce growth rates via a direct effect on wall extensibility. It is noted, therefore, that the water binding capacity of plant cell walls may be of ecophysiological importance. Measurements of cell walls of sunflower hypocotyls using scanning electron microscopy confirmed that treatment of hypocotyls with PEG solutions reduced wall thickness, supporting the hypothesis that the spatial constraint of movement of cellulose microfibrils affects the mechanical properties of the cell wall.  相似文献   

18.
The role of cellulose microfibril orientation in determining cell wall mechanical anisotropy and in the control of the wall plastic versus elastic properties was studied in the adaxial epidermis of onion bulb scales using the constant-load (creep) test. The mean or net cellulose orientation in the outer periclinal wall of the epidermis was parallel to the long axis of the cells. In vitro cell wall extensibility was 30-90% higher in the direction perpendicular to the net microfibril orientation than parallel to it. This was the case for the size of the initial deformation occurring just after the load application and for the rate of time-dependent creep. Loading/unloading experiments confirmed the presence of a real irreversible component in cell wall extension. The plastic component of the time-dependent deformation was higher perpendicular to the net cellulose orientation than parallel to it. An acid buffer (pH 4.5) increased the creep rate by 25-30% but this response was not related to cellulose orientation. The present data provide direct evidence that the net orientation of cellulose microfibrils confers mechanical anisotropy to the walls of seed plants, a characteristic that may be relevant to understanding anisotropic cell growth.  相似文献   

19.
The wall-yielding properties of cell walls were examined using frozen-thawed and pressed segments (FTPs) obtained from the elongation zones of cucumber hypocotyls with a newly developed programmable creep meter. The rate of wall extension characteristically changed depending on both tension and pH. By treatment of the FTPs with acid, the yield tension (y) was shifted downward and the extensibility (phi) was increased. However, the downward shift of y was greatly suppressed and the increase in phi was partly inhibited in boiled FTPs. The boiled FTPs reconstituted with expansin fully recovered the acid-induced downward y shift as well as the increase in phi. Even under the tension below y, wall extension took place pH dependently. Such extension was markedly slower (low-rate extension) than that under the tension above y (high-rate extension). At a higher concentration (8 M), urea markedly inhibited the creep ascribable to the inhibition of the acid-induced downward y shift and increase in phi. Moderate concentrations (2 M) of urea promoted wall creep pH dependently. The promotion was equivalent to a 0.5 decrease in pH. The promotion of creep by 2 M urea was observed in boiled FTPs reconstituted with expansin but not in boiled FTPs. These findings indicated that the acid-facilitated creep was controlled by y as well as in cucumber cell walls. However, y and phi might be inseparable and mutually related parameters because the curve of the stress extension rate (SER) showed a gradual change from the low-rate extension to the high-rate extension. Expansin played a role in pH-dependent regulation of both y and phi. The physiological meaning of the pH-dependent regulation of wall creep under different creep tensions is also discussed with reference to a performance chart obtained from the SER curves.  相似文献   

20.
Xyloglucan endotransglucosylase activity loosens a plant cell wall   总被引:6,自引:0,他引:6  
BACKGROUND AND AIMS: Plant cells undergo cell expansion when a temporary imbalance between the hydraulic pressure of the vacuole and the extensibility of the cell wall makes the cell volume increase dramatically. The primary cell walls of most seed plants consist of cellulose microfibrils tethered mainly by xyloglucans and embedded in a highly hydrated pectin matrix. During cell expansion the wall stress is decreased by the highly controlled rearrangement of the load-bearing tethers in the wall so that the microfibrils can move relative to each other. Here the effect was studied of a purified recombinant xyloglucan endotransglucosylase/hydrolase (XTH) on the extension of isolated cell walls. METHODS: The epidermis of growing onion (Allium cepa) bulb scales is a one-cell-thick model tissue that is structurally and mechanically highly anisotropic. In constant load experiments, the effect of purified recombinant XTH proteins of Selaginella kraussiana on the extension of isolated onion epidermis was recorded. KEY RESULTS: Fluorescent xyloglucan endotransglucosylase (XET) assays demonstrate that exogeneous XTH can act on isolated onion epidermis cell walls. Furthermore, cell wall extension was significantly increased upon addition of XTH to the isolated epidermis, but only transverse to the net orientation of cellulose microfibrils. CONCLUSIONS: The results provide evidence that XTHs can act as cell wall-loosening enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号