首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
MOTIVATION: beta-turn is an important element of protein structure. In the past three decades, numerous beta-turn prediction methods have been developed based on various strategies. For a detailed discussion about the importance of beta-turns and a systematic introduction of the existing prediction algorithms for beta-turns and their types, please see a recent review (Chou, Analytical Biochemistry, 286, 1-16, 2000). However at present, it is still difficult to say which method is better than the other. This is because of the fact that these methods were developed on different sets of data. Thus, it is important to evaluate the performance of beta-turn prediction methods. RESULTS: We have evaluated the performance of six methods of beta-turn prediction. All the methods have been tested on a set of 426 non-homologous protein chains. It has been observed that the performance of the neural network based method, BTPRED, is significantly better than the statistical methods. One of the reasons for its better performance is that it utilizes the predicted secondary structure information. We have also trained, tested and evaluated the performance of all methods except BTPRED and GORBTURN, on new data set using a 7-fold cross-validation technique. There is a significant improvement in performance of all the methods when secondary structure information is incorporated. Moreover, after incorporating secondary structure information, the Sequence Coupled Model has yielded better results in predicting beta-turns as compared with other methods. In this study, both threshold dependent and independent (ROC) measures have been used for evaluation.  相似文献   

2.
3.
4.
XtalPred: a web server for prediction of protein crystallizability   总被引:1,自引:0,他引:1  
XtalPred is a web server for prediction of protein crystallizability. The prediction is made by comparing several features of the protein with distributions of these features in TargetDB and combining the results into an overall probability of crystallization. XtalPred provides: (1) a detailed comparison of the protein's features to the corresponding distribution from TargetDB; (2) a summary of protein features and predictions that indicate problems that are likely to be encountered during protein crystallization; (3) prediction of ligands; and (4) (optional) lists of close homologs from complete microbial genomes that are more likely to crystallize. AVAILABILITY: The XtalPred web server is freely available for academic users on http://ffas.burnham.org/XtalPred  相似文献   

5.

Background  

The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP) to the endoplasmic reticulum (ER), where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online.  相似文献   

6.
7.

Background

A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure.

Results

We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data.

Conclusion

We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods.  相似文献   

8.
A number of complementary methods have been developed for predicting protein-protein interaction sites. We sought to increase prediction robustness and accuracy by combining results from different predictors, and report here a meta web server, meta-PPISP, that is built on three individual web servers: cons-PPISP (http://pipe.scs.fsu.edu/ppisp.html), Promate (http://bioportal.weizmann.ac.il/promate), and PINUP (http://sparks.informatics.iupui.edu/PINUP/). A linear regression method, using the raw scores of the three servers as input, was trained on a set of 35 nonhomologous proteins. Cross validation showed that meta-PPISP outperforms all the three individual servers. At coverages identical to those of the individual methods, the accuracy of meta-PPISP is higher by 4.8 to 18.2 percentage points. Similar improvements in accuracy are also seen on CAPRI and other targets. AVAILABILITY: meta-PPISP can be accessed at http://pipe.scs.fsu.edu/meta-ppisp.html  相似文献   

9.
Chao Fang  Yi Shang  Dong Xu 《Proteins》2020,88(1):143-151
Beta-turn prediction is useful in protein function studies and experimental design. Although recent approaches using machine-learning techniques such as support vector machine (SVM), neural networks, and K nearest neighbor have achieved good results for beta-turn prediction, there is still significant room for improvement. As previous predictors utilized features in a sliding window of 4-20 residues to capture interactions among sequentially neighboring residues, such feature engineering may result in incomplete or biased features and neglect interactions among long-range residues. Deep neural networks provide a new opportunity to address these issues. Here, we proposed a deep dense inception network (DeepDIN) for beta-turn prediction, which takes advantage of the state-of-the-art deep neural network design of dense networks and inception networks. A test on a recent BT6376 benchmark data set shows that DeepDIN outperformed the previous best tool BetaTPred3 significantly in both the overall prediction accuracy and the nine-type beta-turn classification accuracy. A tool, called MUFold-BetaTurn, was developed, which is the first beta-turn prediction tool utilizing deep neural networks. The tool can be downloaded at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldBetaTurn/download.html .  相似文献   

10.
Bacterial lipoproteins have many important functions owing to their essential nature and roles in pathogenesis and represent a class of possible vaccine candidates. The prediction of bacterial lipoproteins from sequence is thus an important task for computational vaccinology. A Support Vector Machines (SVM) based module for predicting bacterial lipoproteins, LIPOPREDICT, has been developed. The best performing sequence model were generated using selected dipeptide composition, which gave 97% accuracy of prediction. The results obtained were compared very well with those of previously developed methods.  相似文献   

11.

Background  

The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort.  相似文献   

12.
SUMMARY: Porter is a new system for protein secondary structure prediction in three classes. Porter relies on bidirectional recurrent neural networks with shortcut connections, accurate coding of input profiles obtained from multiple sequence alignments, second stage filtering by recurrent neural networks, incorporation of long range information and large-scale ensembles of predictors. Porter's accuracy, tested by rigorous 5-fold cross-validation on a large set of proteins, exceeds 79%, significantly above a copy of the state-of-the-art SSpro server, better than any system published to date. AVAILABILITY: Porter is available as a public web server at http://distill.ucd.ie/porter/ CONTACT: gianluca.pollastri@ucd.ie.  相似文献   

13.
Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.  相似文献   

14.
15.
Accurate T-cell epitope prediction is a principal objective of computational vaccinology. As a service to the immunology and vaccinology communities at large, we have implemented, as a server on the World Wide Web, a partial least squares-based multivariate statistical approach to the quantitative prediction of peptide binding to major histocom- patibility complexes (MHC), the key checkpoint on the antigen presentation pathway within adaptive cellular immunity. MHCPred implements robust statistical models for both Class I alleles (HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3301, HLA-A*6801, HLA-A*6802 and HLA-B*3501) and Class II alleles (HLA-DRB*0401, HLA-DRB*0401 and HLA-DRB*0701). MHCPred is available from the URL: http://www.jenner.ac.uk/MHCPred.  相似文献   

16.
SUMMARY: The Structure Prediction Meta Server offers a convenient way for biologists to utilize various high quality structure prediction servers available worldwide. The meta server translates the results obtained from remote services into uniform format, which are consequently used to request a jury prediction from a remote consensus server Pcons. AVAILABILITY: The structure prediction meta server is freely available at http://BioInfo.PL/meta/, some remote servers have however restrictions for non-academic users, which are respected by the meta server. SUPPLEMENTARY INFORMATION: Results of several sessions of the CAFASP and LiveBench programs for assessment of performance of fold-recognition servers carried out via the meta server are available at http://BioInfo.PL/services.html.  相似文献   

17.
VADAR (Volume Area Dihedral Angle Reporter) is a comprehensive web server for quantitative protein structure evaluation. It accepts Protein Data Bank (PDB) formatted files or PDB accession numbers as input and calculates, identifies, graphs, reports and/or evaluates a large number (>30) of key structural parameters both for individual residues and for the entire protein. These include excluded volume, accessible surface area, backbone and side chain dihedral angles, secondary structure, hydrogen bonding partners, hydrogen bond energies, steric quality, solvation free energy as well as local and overall fold quality. These derived parameters can be used to rapidly identify both general and residue-specific problems within newly determined protein structures. The VADAR web server is freely accessible at http://redpoll.pharmacy.ualberta.ca/vadar.  相似文献   

18.
microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filtering systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at http://mirna.jnu.ac.in/cidmirna/.  相似文献   

19.
This article describes DP-Bind, a web server for predicting DNA-binding sites in a DNA-binding protein from its amino acid sequence. The web server implements three machine learning methods: support vector machine, kernel logistic regression and penalized logistic regression. Prediction can be performed using either the input sequence alone or an automatically generated profile of evolutionary conservation of the input sequence in the form of PSI-BLAST position-specific scoring matrix (PSSM). PSSM-based kernel logistic regression achieves the accuracy of 77.2%, sensitivity of 76.4% and specificity of 76.6%. The outputs of all three individual methods are combined into a consensus prediction to help identify positions predicted with high level of confidence. AVAILABILITY: Freely available at http://lcg.rit.albany.edu/dp-bind. SUPPLEMENTARY INFORMATION: http://lcg.rit.albany.edu/dp-bind/dpbind_supplement.html.  相似文献   

20.
The support vector machines (SVMs) method is proposed because it can reflect the sequence-coupling effect for a tetrapeptide in not only a beta-turn or non-beta-turn, but also in different types of beta-turn. The results of the model for 6022 tetrapeptides indicate that the rates of self-consistency for beta-turn types I, I', II, II', VI and VIII and non-beta-turns are 99.92%, 96.8%, 98.02%, 97.75%, 100%, 97.19% and 100%, respectively. Using these training data, the rate of correct prediction by the SVMs for a given protein: rubredoxin (54 residues. 51 tetrapeptides) which includes 12 beta-turn type I tetrapeptides, 1 beta-turn type II tetrapeptide and 38 non-beta-turns reached 82.4%. The high quality of prediction of the SVMs implies that the formation of different beta-turn types or non-beta-turns is considerably correlated with the sequence of a tetrapeptide. The SVMs can save CPU time and avoid the overfitting problem compared with the neural network method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号