首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular genotyping has important biomedical and forensic applications. However, limiting amounts of human biological material often yield genomic DNA (gDNA) in insufficient quantity and of poor quality for a reliable analysis. This motivated the development of an efficient whole genome amplification method with quantitatively unbiased representation usable on fresh and degraded gDNA. Amplification of fresh frozen, formalin-fixed paraffin-embedded (FFPE) and DNase-degraded DNA using degenerate oligonucleotide-primed PCR or primer extension amplification using a short primer sequence bioinformatically optimized for coverage of the human genome was compared with amplification using current primers by chromosome-based and BAC-array comparative genomic hybridization (CGH), genotyping at short tandem repeats (STRs) and single base mutation detection. Compared with current primers, genome amplification using the bioinformatically optimized primer was significantly less biased on CGH in self-self hybridizations, and replicated tumour genome copy number aberrations, even from FFPE tissue. STR genotyping could be performed on degraded gDNA amplified using our technique but failed with multiple displacement amplification. Of the 18 different single base mutations 16 (89.5%) were correctly identified by sequencing gDNA amplified from clinical samples using our technique. This simple and efficient isothermal method should be helpful for genetic research and clinical and forensic applications.  相似文献   

2.
Two types (MIR and Alu) of short interspersed repeated DNA sequences (SINEs) were used for analysis of genetic relationships among higher primates, and for detection of polymorphism in human genomic DNA. The DNA regions located between the neighboring copies of these SINEs were amplified in polymerase chain reaction with primers complementary to the MIR and Alu consensus sequences (inter-SINE PCR). Comparison of the sets of amplified DNA fragments for different species or individuals provides evaluation of the relationships among them. Using inter-MIR PCR technique, the relationships among the higher primates of the infraorder Catarrhini reported elsewhere were confirmed, pointing to the efficiency of the method for phylogenetic studies. No human DNA polymorphism was revealed with the help of inter-MIR PCR. This polymorphism was detected by means of inter-Alu PCR, which is probably associated with the continuing amplification of Alu elements in human genome.  相似文献   

3.
Two types (MIR and Alu) of short interspersed repeated DNA sequences (SINEs) were used for analysis of genetic relationships among higher primates, and for detection of polymorphism in human genomic DNA. The DNA regions located between the neighboring copies of these SINEs were amplified in polymerase chain reaction with primers complementary to the MIR and Alu consensus sequences (inter-SINE PCR). Comparison of the sets of amplified DNA fragments for different species or individuals provides evaluation of the relationships among them. Using inter-MIR PCR technique, the relationships among the higher primates of the infraorder Catarrhini reported elsewhere were confirmed, pointing to the efficiency of the method for phylogenetic studies. No human DNA polymorphism was revealed with the help of inter-MIR PCR. This polymorphism was detected by means of inter-Alu PCR, which is probably associated with the continuing amplification of Alu elements in human genome.  相似文献   

4.
AFLP: a new technique for DNA fingerprinting.   总被引:192,自引:1,他引:192       下载免费PDF全文
A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.  相似文献   

5.
We describe a simple procedure for the direct sequencing of single-stranded, PCR-amplified, target regions of human genomic DNA. At variance with previously reported procedures, purification of the desired double-stranded DNA was introduced. This additional step allowed the single-stranded amplification and sequencing of the target gene. This step is required for direct sequencing of some amplified regions of human genomic DNA. However, no individual technique seems suitable to generate and sequence all single-stranded DNA.  相似文献   

6.
Five strains of Xanthomonas albilineans , causal agent of leaf scald disease in sugarcane from various geographical regions, were compared using random amplification of polymorphic DNA (RAPD) to determine whether they could be differentiated at the DNA level. CsC1-purified genomic DNA from these strains were amplified by the polymerase chain reaction (PCR) using arbitrary 10-mer primers according to standard RAPD conditions and the amplification product profiles analysed by conventional agarose gel electrophoresis. Although most RAPD markers were common to all five strains, unique profiles for each strain were discernible using four 10-mer arbitrary primers individually. Reproducible DNA fingerprints indicate that RAPD analysis can be used to identify and differentiate the X. albilineans strains. This technique has the potential for use in monitoring the appearance of foreign strains of X. albilineans in various geographical regions and could be used for the construction of phylogenetic trees.  相似文献   

7.
We have devised an improved method of genome walking, named rolling circle amplification of genomic templates for Inverse PCR (RCA–GIP). The method is based on the generation of circular genomic DNA fragments, followed by rolling circle amplification of the circular genomic DNA using ϕ29 DNA polymerase without need for attachment of anchor sequences. In this way from the circular genomic DNA fragments, after RCA amplification, a large amount of linear concatemers is generated suitable for Inverse PCR template that can be amplified, sequenced or cloned allowing the isolation of the 3′- and 5′- of unknown ends of genomic sequences. To prove the concept of the proposed methodology, we used this procedure to isolate the promoter regions from different species. Herein as an example we present the isolation of four promoter regions from Crocus sativus, a crop cultivated for saffron production.  相似文献   

8.
DNA条形码技术是利用基因组中一段短的标准序列进行物种的鉴定并探索其亲缘进化关系。本研究对采自海南不同地区降香黄檀五个居群24份样品的psbA-trnH,rbcL,核ITS及ITS2序列进行PCR扩增和测序,比较各序列扩增和测序效率。种间和种内变异,采用BLAST1和邻接 (NJ) 法构建系统聚类树方法评价不同序列的鉴定能力。结果表明ITS2在所研究的材料中具有最高的扩增和测序效率,而ITS扩增效率较低。ITS2完整序列在区分黄檀属不同种间差异具有较大优势。因此可利用ITS2从分子水平区分降香黄檀与其他混伪种。  相似文献   

9.
In vitro amplification of genomic DNA and total RNA, as well as recombinant DNA, using one fluorescently labelled and one unlabelled primer during amplification, together with on-line analysis of the products on the EMBL fluorescent DNA sequencer, is described. Further is reported direct sequencing of fluorescently labelled amplified probes by solid-phase chemical degradation, without subcloning and purification steps involved. At present up to 350 bases in 4 hours are determined with this technique. The fluorescent dye and its bond to the oligonucleotide are stable during the amplification cycles, and do not interfere with the enzymatic polymerization. High sensitivity of the detection device, down to 10(-18) moles, corresponding to less than 10(6) molecules makes possible analyses of the non-radioactive amplified probes after only 10 amplification cycles, starting with about 5 x 10(4) copies of recombinant DNA.  相似文献   

10.
PCR and DNA sequencing   总被引:5,自引:0,他引:5  
Specific DNA segments defined by the sequence of two oligonucleotides can be enzymatically amplified up to a millionfold using the polymerase chain reaction (PCR). One of the most significant uses of this technique is for generation of sequencing templates, either from cloned inserts or directly from genomic DNA. To avoid the problem of reassociation of the linear DNA strands in the sequencing reaction, ssDNA templates can be produced directly in the PCR or generated directly from dsDNA by enzymatic treatment, electrophoretic separation or affinity purification. By combining PCR with direct sequencing, both the amplification and the sequencing reaction can be performed in the same vial. Finally, use of fluorescently labeled terminators or sequencing primers will allow the whole procedure to be amenable to complete automation.  相似文献   

11.
Molecular cloning of genomic sequences altered in cancer cells is believed to lead to the identification of new genes involved in the initiation and progression of the malignant phenotype. DNA amplification is a frequent molecular alteration in tumor cells, and is a mode of proto-oncogene activation. The cytologic manifestation of this phenomenon is the appearance of chromosomal homogeneously staining regions (HSRs) or double minute bodies (DMs). The gastric carcinoma cell line KATO III is characterized by a large HSR on chromosome 11. In-gel renaturation analysis confirmed the amplification of DNA sequences in this cell line, yet none of 42 proto-oncogenes that we tested is amplified in KATO III DNA. We employed the phenol-enhanced reassociation technique (PERT) to isolate 21 random DNA fragments from the amplified domain, and used 6 of them to further clone some 150 kb from that genomic region. While in situ hybridization performed with some of these sequences indicated that in KATO III they are indeed amplified within the HSR on chromosome 11, somatic cell hybrid analysis and in situ hybridization to normal lymphocyte chromosomes showed that they are derived from chromosome 10, band q26. The same sequences were found to be amplified in another gastric carcinoma cell line, SNU-16, which contains DMs, but were not amplified in other 70 cell lines representing a wide variety of human neoplasms. One of these sequences was highly expressed in both KATO III and SNU-16. Thus, the cloned sequences supply a starting point for identification of novel genes which might be involved in the pathogenesis of gastric cancers, and are located in a relatively unexplored domain of the human genome.  相似文献   

12.
Multiple Displacement Amplification (MDA) of DNA using φ29 (phi29) DNA polymerase amplifies DNA several billion-fold, which has proved to be potentially very useful for evaluating genome information in a culture-independent manner. Whole genome sequencing using DNA from a single prokaryotic genome copy amplified by MDA has not yet been achieved due to the formation of chimeras and skewed amplification of genomic regions during the MDA step, which then precludes genome assembly. We have hereby addressed the issue by using 10 ng of genomic Vibrio cholerae DNA extracted within an agarose plug to ensure circularity as a starting point for MDA and then sequencing the amplified yield using the SOLiD platform. We successfully managed to assemble the entire genome of V. cholerae strain LMA3984-4 (environmental O1 strain isolated in urban Amazonia) using a hybrid de novo assembly strategy. Using our method, only 178 out of 16,713 (1%) of contigs were not able to be inserted into either chromosome scaffold, and out of these 178, only 3 appeared to be chimeras. The other contigs seem to be the result of template-independent non-specific amplification during MDA, yielding spurious reads. Extraction of genomic DNA within an agarose plug in order to ensure circularity of the extracted genome might be key to minimizing amplification bias by MDA for WGS.  相似文献   

13.
The polymerase chain reaction (PCR) has been used to amplify DNA fragments by using eucaryotic genomic DNA as a template. We show that bacterial genomic DNA can be used as a template for PCR amplification. We demonstrate that DNA fragments at least as large as 4,400 base pairs can be amplified with fidelity and that the amplified DNA can be used as a substrate for most operations involving DNA. We discuss problems inherent in the direct sequencing of the amplified product, one of the important exploitations of this methodology. We have solved the problems by developing an "asymmetric amplification" method in which one of the oligonucleotide primers is used in limiting amounts, thus allowing the accumulation of single-stranded copies of only one of the DNA strands. As an illustration of the use of PCR in bacteria, we have amplified, sequenced, and subcloned several DNA fragments carrying mutations in genes of the histidine permease operon. These mutations are part of a preliminary approach to studying protein-protein interactions in transport, and their nature is discussed.  相似文献   

14.
We report a sensitive, SINE (Short Interspersed DNA Element)-mediated, PCR-based, DNA damage detection assay. Here, the SINE assay is used for detection of UVB-induced DNA damage and repair in cultured mouse cells and in vivo, in mouse skin. The unique feature of the SINE assay is its ability to support simultaneous amplification of multiple, random segments of genomic DNA. This can be accomplished due to the remarkable abundance, dispersion and conservation of SINEs in mammalian genomes. The most abundant SINEs in the mouse genome are the B1 elements, at a copy number of 50,000-80,000. Due to their strong sequence conservation, primers complementary to the B1 consensus sequence anneal to the majority of their targets in the genome. Consequently, long segments of genomic DNA located between pairs of B1 elements are efficiently amplified by PCR. Thus, in conjunction with the fact that many types of DNA adducts form blocks for thermostable polymerase, the B1 element anchored PCR makes a sensitive and versatile tool for assessing the overall integrity of the transcribed regions in mouse genome. We measured UVB-dose (0.1-3 kJ m-2) dependent formation of photoproducts in DNA from cultured cells, and after 20 h observed a substantial removal of damage at doses lower or equal to 0.6 kJ m-2. The sensitivity of detection of UVB-photoproducts formation and repair was compared to that of the conventional, single locus-targeting QPCR. Using the SINE assay we also have shown the distribution of UVB and UVC induced DNA adducts at a single nucleotide resolution within the B1 elements in mouse DNA. Lastly, we demonstrated that the sensitivity of the SINE assay is adequate for measurement of UVB-dose (1-6 kJ m-2) dependent formation and subsequent removal of photoproducts in vivo, in mouse skin.  相似文献   

15.

Background

Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP) that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA) of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods.

Results

A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA) fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA). Fluorescent signal output was measured in real time and as an end point.

Conclusions

Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.  相似文献   

16.
Fine analysis of DNA damage and repair at the subgenomic level has indicated a microheterogeneity of DNA repair in mammalian cells, including human. In addition to the well established Southern hybridization-based approach to investigate gene-specific DNA damage and repair, alternative methods utilizing the sensitivity of PCR have been evaluated. The latter technique has relied on decreased PCR amplification due to damage in template DNA. We have developed a novel quantitative assay combining the selective recovery of DNA damage containing genomic fragments with the PCR amplification. DNA isolated from 7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) treated human skin fibroblasts was immunoprecipitated with polyclonal antibody BP-1. Recovered target sequences were amplified by PCR using primers encompassing a 149 bp target region around codon 12 of the H-ras proto-oncogene. Quantitative DNA damage specific response was observed with nanogram amounts of genomic DNA. This approach allowed analysis of the initial DNA damage at a level less than 1 anti-BPDE adduct per 6.4 kbp ras gene fragment. Repair proficient GM637 cells exposed to 2 microM anti-BPDE showed a faster removal of the adducts from the H-ras gene segment than from the genome overall. Gene-specific repair was not apparent in GM4429 xeroderma pigmentosum (complementation group A) cells. The established technique could be extended to the quantitative measurement of the repair of diverse DNA base lesions in any genomic region of known sequence.  相似文献   

17.
Scoring of the results of RAPD analysis using gel electrophoresis imposes a constraint on throughput. To circumvent this barrier, dot-blot hybridization was substituted for electrophoresis. Arbitrarily amplified fragments from barley and wheat genomic DNA were labelled and used as probes for the identification of identical fragments in subsequent amplification reactions. None of the twelve fragments used as probes exhibited significant levels of croos-hybridization to other fragments amplified by the same arbitrary primer. The strength of the hybridization signal facilitates more accurate and more sensitive detection of diagnostic fragments than gel electrophoresis. In addition, the defined spatial orientation (microtitre dish format) of the ± results provide an excellent format for automated data collection. The use of dot blot hybridization to analyse PCR products well decrease the cost and time requirements of marker-assisted selection. This technique will also facilitate the rapid application of PCR-based maps.  相似文献   

18.
Abstract A 1189 base-pair long DNA fragment, VS1, was isolated from a Campylobacter jejuni CIP 70.2 cosmid library and was found to contain regions specific for this bacterial species. For detection and identification of C. jejuni , two oligonucleotides derived from the VS1 sequence were used as primers in polymerase chain reaction test on genomic DNAs from 38 Campylobacter and from 10 non- Campylobacter strains. A specific, 358 base-pair long DNA fragment was amplified only when C. jejuni DNA was used as a target. The detection limit of the amplification reaction was as low as 1.86 fg DNA, which is the equivalent of one C. jejuni genome.  相似文献   

19.
Amplification of dsDNA by polymerase chain reaction (PCR) has been limited to those instances in which segments of known sequence flank the fragment to be amplified. A strategy for the PCR amplification of cloned or genomic dsDNA that necessitates sequence information from only a single short segment (single site PCR) has been devised. The region of known sequence may be located at any position within or adjacent to the segment to be amplified. The basic procedure for amplification consists of 1) digestion of dsDNA with one or more restriction enzymes, 2) ligation with a universal anchor adaptor and 3) PCR amplification using an anchor primer and the primer for the single site of known sequence. The anchor adaptor is designed in such a way as to facilitate the amplification of only those fragments containing the sequence of interest. We have demonstrated the utility of this technique by specifically amplifying and directly sequencing antibody variable region genes from cloned dsDNA and from genomic DNA.  相似文献   

20.
This study introduces a DNA microarray-based genotyping system for accessing single nucleotide polymorphisms (SNPs) directly from a genomic DNA sample. The described one-step approach combines multiplex amplification and allele-specific solid-phase PCR into an on-chip reaction platform. The multiplex amplification of genomic DNA and the genotyping reaction are both performed directly on the microarray in a single reaction. Oligonucleotides that interrogate single nucleotide positions within multiple genomic regions of interest are covalently tethered to a glass chip, allowing quick analysis of reaction products by fluorescence scanning. Due to a fourfold SNP detection approach employing simultaneous probing of sense and antisense strand information, genotypes can be automatically assigned and validated using a simple computer algorithm. We used the described procedure for parallel genotyping of 10 different polymorphisms in a single reaction and successfully analyzed more than 100 human DNA samples. More than 99% of genotype data were in agreement with data obtained in control experiments with allele-specific oligonucleotide hybridization and capillary sequencing. Our results suggest that this approach might constitute a powerful tool for the analysis of genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号