首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PGE(2) inhibits mature T cell proliferation and protects T cells from activation-induced cell death (AICD). We have previously demonstrated that human follicular dendritic cells (FDC) strongly express PGI synthase. In this study, the hypothesis that FDC have regulatory roles on germinal center T cells by controlling production of PGE(2) and PGI(2) was tested. Confocal microscopic analyses of human tonsil tissues revealed that FDC indeed expressed PGE synthase in addition to PGIS. To confirm these results, we studied the regulation mechanism of PG production in FDC, using an established human FDC-like cell line, HK. Specifically in response to TNF-alpha, TGF-beta, and LPS, protein expression of cyclooxygenase (COX)-2 and downstream PGE synthase was up-regulated with coordinate kinetics, whereas COX-1 and PGIS were constitutively expressed. The increase of these enzymes was reflected in actual production of PGE(2) and PGI(2). Interestingly, IL-4 almost completely abrogated the stimulatory activity of TNF-alpha, TGF-beta, and LPS in PG production. Furthermore, the up-regulation of PGE(2) and PGI(2) production was markedly down-regulated by indomethacin and a selective COX-2 inhibitor. PGI(2) analog and PGE(2) inhibited proliferation and AICD of T cells in dose- and time-dependent manners. Finally, coculture experiments revealed that HK cells indeed inhibit proliferation and AICD of T cells. Put together, these results show an unrecognized pathway of FDC and T cell interactions and differential mechanisms for PGE(2) and PGI(2) production, suggesting an important implication for development and use of anti-inflammatory drugs.  相似文献   

2.
The oviduct is a specialized organ responsible for the storage and the transport of male and female gametes. It also provides an optimal environment for final gamete maturation, fertilization, and early embryo development. Prostaglandin (PG) E2 is involved in many female reproductive functions, including ovulation, fertilization, implantation, and parturition. However, the control of its synthesis in the oviduct is not fully understood. Cyclooxygenases (COXs) are involved in the first step of the transformation of arachidonic acid to PGH2. The prostaglandin E synthases (PGESs) constitute a family of enzymes that catalyze the conversion of PGH2 to PGE2, the terminal step in the formation of this bioactive prostaglandin. Quantitative real-time PCR was used to determine the expression of COX-1, COX-2, microsomal prostaglandin E synthase-1 (mPGES-1), microsomal prostaglandin E synthase-2 (mPGES-2), and cytosolic prostaglandin E synthase (cPGES) mRNA in various sections of the oviduct, both ipsilateral and contralateral (to the ovary on which ovulation occurred) at various stages of the estrous cycle. Furthermore, protein expression and localization of cPGES, mPGES-1, and mPGES-2 were determined by Western blot and immunohistochemistry. All three PGESs were detected at both mRNA and protein levels in the oviduct. These PGESs were mostly concentrated in the oviductal epithelial layer and primarily expressed in the ampulla section of the oviduct and to a lesser extent in the isthmus and the isthmic-ampullary junction. The mPGES-1 protein was highly expressed in the contralateral oviduct, which contrasted with mPGES-2 mostly expressed in the ipsilateral oviduct. This is apparently the first report documenting that the three PGESs involved in PGE2 production were present in the Bos taurus oviduct.  相似文献   

3.
Prostaglandin E2 (PGE2) is shown to be essential for female reproduction. Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis from arachidonic acid and exists in two isoforms: COX-1 and COX-2. Prostaglandin E synthase (PGES) is a terminal prostanoid synthase and can catalyse the isomerization of the COX product PGH2 to PGE2, including microsomal PGES-1 (mPGES-1), cytosolic PGES (cPGES) and mPGES-2. This study examined the protein expression of COX-1, COX-2, mPGES-1, cPGES and mPGES-2 in preimplantation mouse embryos by immunohistochemistry. Embryos at different stages collected from oviducts or uteri were transferred into a flushed oviduct of non-pregnant mice. The oviducts containing embryos were paraffin-embedded and processed for immunostaining. COX-1 immunostaining was at a basal level in zygotes and a low level at the 2-cell stage, reaching a high level from the 4-cell to blastocyst stage. COX-2 immunostaining was at a low level at the zygote stage and was maintained at a high level from the 2-cell to blastocyst stages. A low level of mPGES-1 immunostaining was observed from the zygote to 8-cell stages. The signal for mPGES-1 immunostaining became stronger at the morula stage and was strongly seen at the blastocyst stage. cPGES immunostaining was strongly observed in zygotes, 2-cell and 8-cell embryos. There was a slight decrease in cPGES immunostaining at the 4-cell, morula and blastocyst stages. mPGES-2 immunostaining was at a low level from the zygote to morula stages and at a high level at the blastocyst stage. We found that the COX-1, COX-2, mPGES-1, cPGES and mPGES-2 protein signals were all at a high level at the blastocyst stage. PGE2 produced during the preimplantation development may play roles during embryo transport and implantation.  相似文献   

4.
Coupling between cyclooxygenases and terminal prostanoid synthases   总被引:7,自引:0,他引:7  
Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase A2, cyclooxygenase (COX), and terminal prostanoid synthase. Recent evidence suggests that lineage-specific terminal prostanoid synthases, including prostaglandin (PG) E2, PGD2, PGF2alpha, PGI2, and thromboxane synthases, show distinct functional coupling with upstream COX isozymes, COX-1 and COX-2. This can account, at least in part, for segregated utilization of the two COX isozymes in distinct phases of PG-biosynthetic responses. In terms of their localization and COX preference, terminal prostanoid synthases are classified into three categories: (i) the perinuclear enzymes that prefer COX-2, (ii) the cytosolic enzyme that prefers COX-1, and (iii) the translocating enzyme that utilizes both COXs depending on the stimulus. Additionally, altered supply of arachidonic acid by phospholipase A2s significantly affects the efficiency of COX-terminal prostanoid synthase coupling. In this review, we summarize our recent understanding of the coupling profiles between the two COXs and various terminal prostanoid synthases.  相似文献   

5.
In ruminants, endometrial prostaglandin F(2alpha) (PGF(2alpha)) is responsible for luteolysis and prostaglandin E(2) (PGE(2)) is thought to be involved in maternal recognition of pregnancy. In the present study, healthy uteri were collected from cows at the abattoir, and days of the estrous cycle were determined macroscopically. The uteri were classified into seven groups as Days 1-3, 4-6, 7-9, 10-12, 13-15, 16-18, and 19-21 of the estrous cycle. Endometrial scrapings were collected. The expression of cyclooxygenase (COX)-1 and COX-2 mRNAs and proteins and PGE synthase (PGES) mRNA was analyzed by Northern and Western blot. There was no expression of COX-1, either mRNA or protein, on any day of the estrous cycle. In contrast, COX-2 mRNA and protein were expressed at low and high levels on Days 1-12 and 13-21 of the estrous cycle, respectively. The level of expression of PGES was moderate, low, and high on Days 1-3, 4-12, and 13-21 of the estrous cycle, respectively. There were significant correlations between COX-2 mRNA and protein levels and between COX-2 and PGES mRNA levels. COX-1 mRNA and protein are not expressed on any day of the estrous cycle, whereas COX-2 mRNA and protein and PGES mRNA are differentially expressed and regulated in bovine endometrium during the estrous cycle. COX-2, rather than COX-1, is the primary isoenzyme involved in the endometrial production of prostaglandins, and the COX-2 and PGES pathway is responsible for the endometrial production of PGE(2) in the bovine endometrium during the estrous cycle.  相似文献   

6.
7.
The proinflammatory mediator cyclooxygenase (COX)-2 and its product PGE(2) are induced in the ischemic heart, contributing to inflammatory cell infiltration, fibroblast proliferation, and cardiac hypertrophy. PGE(2) synthesis coupled to COX-2 involves two membrane-localized PGE synthases, mPGES-1 and mPGES-2; however, it is not clear how these synthases are regulated in cardiac myocytes and fibroblasts. To study this, we used primary cultures of neonatal ventricular myocytes (VM) and fibroblasts (VF) treated with IL-1beta for 24 h. To test for involvement of MAPKs in IL-1beta regulation of mPGES-1 and-2, cells were pretreated with the pharmacological inhibitors of p42/44 MAPK, p38 MAPK, and c-Jun kinase (JNK). mRNA was analyzed by RT-PCR. Protein was analyzed by densitometry of Western blots. mPGES-1 was undetectable in untreated VF but induced by IL-1beta; inhibition of either p42/44 MAPK or JNK, but not p38 MAPK, was almost completely inhibitory. In VM, inhibition of the three MAPKs reduced IL-1beta-stimulated mPGES-1 protein by 70-90%. mPGES-2 was constitutively synthesized in both VM and VF and was not regulated by IL-1beta or MAPKs. Confocal microscopy revealed colocalization of both mPGES-1 and mPGES-2 with COX-2 in the perinuclear area of both VF and VM. Finally, PGE(2) production was higher in VM than VF. Our data show that 1) mPGES-1 is induced in both VF and VM, 2) regulation of mPGES-1 by MAPK family members is different in the two cell types, 3) mPGES-2 is constitutively synthesized in both VM and VF and is not regulated, and 4) mPGES-1 and mPGES-2 are colocalized with COX-2 in both cells. Thus differences in activity of mPGES-1 and COX-2 or coupling of COX-2 with mPGES-1 may contribute to differences in PGE(2) production by myocytes and fibroblasts.  相似文献   

8.
Prostaglandin E2 (PGE2) is a key mediator involved in several inflammatory conditions. In this study, we investigated the expression and regulation of the terminal PGE2 synthesizing enzyme prostaglandin E synthases (mPGES-1, mPGES-2 and cPGES) in gingival fibroblasts stimulated with pro-inflammatory cytokines. We used siRNA knockdown of mPGES-1 to elucidate the impact of mPGES-1 inhibition on mPGES-2 and cPGES expression, as well as on PGE2 production. The cytokines TNFalpha and IL-1beta increased protein expression and activity of mPGES-1, accompanied by increased COX-2 expression and PGE2 production. The isoenzymes mPGES-2 and cPGES, constitutively expressed at mRNA and protein levels, were unaffected by the pro-inflammatory cytokines. We show for the first time that treatment with mPGES-1 siRNA down-regulated the cytokine-induced mPGES-1 protein expression and activity. Interestingly, mPGES-1 siRNA did not affect the cytokine-stimulated PGE2 production, whereas PGF(2alpha) levels were enhanced. Neither mPGES-2 nor cPGES expression was affected by siRNA silencing of mPGES-1. Dexamethasone and MK-886 both inhibited the cytokine-induced mPGES-1 expression while mPGES-2 and cPGES expression remained unaffected. In conclusion, mPGES-1 siRNA down-regulates mPGES-1 expression, and neither mPGES-2 nor cPGES substituted for mPGES-1 in a knockdown setting in gingival fibroblasts. Moreover, mPGES-1 siRNA did not affect PGE2 levels, whereas PGF(2alpha) increased, suggesting a compensatory pathway of PGE2 synthesis when mPGES-1 is knocked down.  相似文献   

9.
We investigated the tissue distribution and cellular localization of microsomal PGE synthase-1 (mPGES-1) and cyclooxygenase (COX)-1 and -2 in male monkey reproductive organs. Western blotting revealed that monkey mPGES-1 was expressed most intensely in the seminal vesicles, moderately in the testis, and weakly in the epididymis and vas deferens. The tissue distribution profile was quite different from those profiles for rats, rabbits, and pigs, e.g., rat mPGES-1 was the most abundant in the vas deferens, and the rabbit and pig enzymes, in the testis. Immunohistochemical staining with mouse monoclonal anti-human mPGES-1 antibody revealed that monkey mPGES-1 was localized in spermatogonia, Sertoli cells, and primary spermatocytes of testis and in epithelial cells of the epididymis, vas deferens, and seminal vesicles. In monkeys, COX-1 was localized in epithelial cells of the epididymis and vas deferens, whereas COX-2 was dominantly found in epithelial cells of the seminal vesicles.  相似文献   

10.
We cloned the cDNA for mouse microsomal prostaglandin (PG) E synthase-1 (mPGES-1) and expressed the recombinant enzyme in Escherichia coli. The membrane fraction containing recombinant mPGES-1 catalyzed the isomerization of PGH2 to PGE2 in the presence of GSH with K(m) values of 130 microM for PGH2 and 37 microM for GSH, a turnover number of 600 min(-1), and a k(cat)/K(m) ratio of 4.6 min(-1) microM(-1). Recombinant mPGES-1 was purified and used to generate a polyclonal antibody highly specific for mPGES-1. The antibody showed a single band on Western blotting of microsomal fractions from lipopolysaccharide-treated mouse peritoneal macrophages. Northern and Western blotting analyses revealed that mPGES-1 was induced together with cyclooxygenase-2 in mouse macrophages after treatment of the cells with lipopolysaccharide. Confocal immunofluorescence microscopy revealed that both mPGES-1 and cyclooxygenase-2 were colocalized in the lipopolysaccharide-treated macrophages. Taken together, these results demonstrate that mPGES-1 is an efficient downstream enzyme for the production of PGE2 in the activated macrophages treated by lipopolysaccharide.  相似文献   

11.
Prostaglandins derived from arachidonic acid are involved in a wide variety of physiological and pathological processes. The primary enzymes involved in the production of PGE2 from arachidonic acid are cyclooxygenases and prostaglandin E synthases. These enzymes have been identified in human, but only partially in the monkey where microsomal PGES-1 and cytosolic PGES have not been characterized. The present study was undertaken to clone these enzymes and to study their tissue distribution, along with mPGES-2. The coding sequence of Macaque mPGES-1 is 98% homologous to human mPGES-1 at the nucleic acid level and the deduced amino acid sequence has 98% homology with the human protein. The Macaque cPGES cDNA is more than 99% homologous to the human and the deduced amino acids sequence is identical to that of the human cPGES. By Northern blot analysis, we found that mPGES-2 and cPGES mRNA were expressed in the endometrium, myometrium, ovary and oviduct, albeit at different levels, while mPGES-1 mRNA was detected at a weak level, mainly in the oviduct. Western Blot analysis revealed that mPGES-2, mPGES-1 and cPGES proteins were present in all tissues tested. These results suggest that production of PGE2 in Macaque may involve more than one PGES and that further studies will be needed to fully understand the conditions under which each PGES contributes to PGE2 production.  相似文献   

12.
Prostaglandin E2 synthases (PGES) currently comprise a group of three structurally and biologically distinct molecules. These enzymes are part of an important and complex paracrine signaling system involved in a wide range of biological processes. This review focuses on the normal physiological and pathological roles of these enzymes in the nervous system. Specific topics include the role of PGES(s) in fever and sickness behavior, inflammatory pain, and neural disease. Although the field is in its early stages, ongoing development of selective PGES inhibitors for possible use in people creates a significant need for more fully understanding the biological roles of these important enzymes.  相似文献   

13.
The specific binding protein for prostaglandin (PG) E2 solubilized from porcine brain was sensitive to guanine nucleotides. GTP inhibited the association and enhanced the dissociation of the specific [3H]PGE2 binding. Scatchard analyses showed that GTP (10 microM) decreased the binding affinity more than 3-fold without major change in the number of binding site. Gel filtration separated the binding site from GTP-regulatory component (N). The separated binding protein had a reduced affinity to PGE2 and lost its sensitivity to GTP. The addition of the separated N restored its responsiveness to GTP, and also increased the binding affinity to the original level. These results provide direct evidence for the molecular interaction between the PGE2 binding protein and N in the brain.  相似文献   

14.
Metabolism of prostaglandin E2 in the rat   总被引:2,自引:0,他引:2  
K Gréen 《Biochemistry》1971,10(6):1072-1086
  相似文献   

15.
Rabbit antiserum has been prepared against the prostaglandin endoperoxide-forming cyclooxygenase (EC 1.14.99.1) purified from sheep vesicular glands. Ouchterlony double diffusion and immunoelectrophoretic analyses indicate that the anti-cyclooxygenase serum is monospecific for the enzyme. The anti-cyclooxygenase serum reacts with both active and inactivated forms of the sheep vesicular gland (SVG) cyclooxygenase. Furthermore, the immune serum precipitates solubilized microsomal cyclooxygenases from each of six other tissues examined, including bovine seminal vesicle, rabbit kidney medulla, guinea pig lung, dog spleen, sheep uterus, and human platelets. Anti-SVG cyclooxygenase serum was used in combination with fluorescein isothiocyanate )FITC)-labeled goat anti-rabbit IgG to detect cyclooxygenases in cryostat sections from rat, rabbit and guinea pig kidneys by immunofluorescence. Highly prominent fluorescence was associated only with the epithelial cells lining the collecting ducts in rabbit and guinea pig kidneys, and except for the nucleus, was uniformly distributed within the interior of these cells. In rat kidney, fluorescence was detected not only in collecting tubules but also in the interstitial cells of the renal papilla. Our results are consistent with the emerging hypothesis that PGE2 produced intrarenally plays a physiological role in natriuresis.  相似文献   

16.
Prostaglandin E2 (PGE2) plays an important role in the normal physiology of many organ systems. Increased levels of this lipid mediator are associated with many disease states, and it potently regulates inflammatory responses. Three enzymes capable of in vitro synthesis of PGE2 from the cyclooxygenase metabolite PGH2 have been described. Here, we examine the contribution of one of these enzymes to PGE2 production, mPges-2, which encodes microsomal prostaglandin synthase-2 (mPGES-2), by generating mice homozygous for the null allele of this gene. Loss of mPges-2 expression did not result in a measurable decrease in PGE2 levels in any tissue or cell type examined from healthy mice. Taken together, analysis of the mPGES-2 deficient mouse lines does not substantiate the contention that mPGES-2 is a PGE2 synthase.  相似文献   

17.
German Giant rabbits successfully immunized against prostaglandin (PG) E2 as shown by a rise in antibody titers developed gastric mucosal lesions. Enzymatically dispersed gastric mucosal cells of these animals had a significantly enhanced production of PG E2 and PG I2 as measured by specific radioimmunoassays. This may be explained by an increased supply with endogenous arachidonic acid (as indicated by an enhanced phospholipase A2/LAT ratio) and by a higher activity of the subsequent PG forming enzymes (as indicated by a more effective stimulation of PG production by exogenous arachidonic acid). Gastric mucosal plasma membranes of immunized rabbits had significantly higher PG E2 binding capacity (108 +/- 9 fmol/mg protein) than those of nonimmunized rabbits (72 +/- 5 fmol/mg protein). The ligand affinity was not affected by immunization. Neither histamine-stimulated 14C-amino-pyrine uptake of isolated parietal cells as a marker for acid production nor its inhibition by PG E2 were influenced by receptor up-regulation. The increased eicosanoid release can be regarded as an endogenous defense mechanism against increased mucosal vulnerability caused by PG E2 scavenging. The potential role of PG E2 receptor up-regulation in support of this process remains to be established.  相似文献   

18.
We investigated the effects of endogenous pyrogen and prostaglandin E2 (PGE2) on the preoptic and anterior hypothalamic (POAH) neurons using brain slice preparations from the rat. Partially purified endogenous pyrogen did not change the activities of most of the neurons in the POAH region when applied locally through a micropipette attached to the recording electrode in proximity to the neurons. This indicates that partially purified endogenous pyrogen does not act directly on the neuronal activity in the POAH region. The partially purified endogenous pyrogen, applied into a culture chamber containing a brain slice, facilitated the activities in 24% of the total neurons tested, regardless of the thermal specificity of the neurons. Moreover, PGE2 added to the culture chamber facilitated 48% of the warm-responsive, 33% of the cold-responsive, and 29% of the thermally insensitive neurons. The direction of change in neuronal activity induced by partially purified endogenous pyrogen appears to be almost the same as that induced by PGE2 when these substances were applied by perfusion to the same neuron in the culture chamber. These results suggest that partially purified pyrogen applied to the perfusate of the culture chamber stimulates some constituents of brain tissue to synthesize and release prostaglandin, which in turn affects the neuronal activity of the POAH region.  相似文献   

19.
An isotopic dilution procedure using specific prostaglandin E2 (PGE2) brain receptors was utilized to determine the changes in brain PGE2 levels subsequent to drug exposure. Delta-1-tetrahydrocannabinol (delta 1-THC) stimulated PGE2 synthesis resulting in increased brain concentrations when compared with vehicle treated rats and mice. Indomethacin markedly inhibited the delta 1-THC elevated rise in PGE2 levels presumably by inhibition of prostaglandin synthetase. The delta 1-THC-induced increase in PGE2 brain levels was also suppressed by i.v. administered rabbit PGE2-antiserum. This suggests that one of the sites of delta 1-THC action is extracerebral and from here a portion of the released prostaglandins are transported to the brain. These results add further support to previous data that delta 1-THC given orally results in an increase in brain PGE2 levels.  相似文献   

20.
Urinary prostaglandin E2 in the newborn and infant   总被引:1,自引:0,他引:1  
Prostaglandin E(2) (PGE(2)) belongs to a family of biologically active lipids derived from the 20-carbon essential fatty acids. Renal PGE(2) is involved in the development of the kidney; it also contributes to regulate renal perfusion and glomerular filtration rate, and controls water and electrolyte balance. Furthermore, this mediator protects the kidney against excessive functional changes during the transition from fetal to extrauterine life, when it counteracts the vasoconstrictive effects of high levels of angiotensin II and other mediators. There is evidence that PGE(2) plays an important pathophysiological role in neonatal conditions of renal stress, and in congenital or acquired nephropaties. Thus, measurement of urinary PGE(2) as an index of renal synthesis of this primary prostaglandin may represent a non-invasive and sensitive method of investigating the homeostatic function of the kidney in early life. The aim of this literature review is to examine urinary PGE(2) as a non-invasive marker of renal homeostasis in the newborn and infant under both physiological and pathological conditions, or during treatments with widely used, potentially toxic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号