首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies indicate that the corpus luteum (CL) may be a source of prostaglandin F2alpha (PGF2alpha) for regression. We investigated expression of mRNA and protein for prostaglandin G/H synthase (PGHS) in the CL of immature superovulated rats following administration of PGF2alpha. We observed an increase in mRNA for PGHS-2, the induced isoform, at 1 h and protein at 8 and 24 h after treatment. One hour after PGF2alpha, there was also a progressive decrease in plasma progesterone concentration. There were no changes, however, in expression of PGHS-1, the constitutive isoform, over the 24 h sampling period. These results indicate that PGHS-2 increases following PGF2alpha treatment and that expression of this enzyme in the rat CL may contribute to the luteolytic mechanism.  相似文献   

2.
This study examines differences in intracellular responses to cloprostenol, a prostaglandin (PG)F(2alpha) analog, in porcine corpora lutea (CL) before (Day 9 of estrous cycle) and after (Day 17 of pseudopregnancy) acquisition of luteolytic capacity. Pigs on Day 9 or Day 17 were treated with saline or 500 microgram cloprostenol, and CL were collected 10 h (experiment I) or 0.5 h (experiment III) after treatment. Some CL were cut into small pieces and cultured to measure progesterone and PGF(2alpha) secretion. In experiment I, progesterone remained high and PGF(2alpha) low in luteal incubations from either Day 9 or Day 17 saline-treated pigs. Cloprostenol increased PGF(2alpha) production 465% and decreased progesterone production 87% only from Day 17 luteal tissue. Cloprostenol induced prostaglandin G/H synthase (PGHS)-2 mRNA (0.5 h) and protein (10 h) in both groups. In cell culture, cloprostenol or phorbol 12, 13-didecanoate (PDD) (protein kinase C activator), induced PGHS-2 mRNA in luteal cells from both groups. However, acute cloprostenol treatment (10 min) decreased progesterone production and increased PGF(2alpha) production only from Day 17 luteal cells. Thus, PGF(2alpha) production is induced by cloprostenol in porcine CL with luteolytic capacity (Day 17) but not in CL without luteolytic capacity (Day 9). However, this change in PGF(2alpha) production is not explained by a difference in induction of PGHS-2 mRNA or protein.  相似文献   

3.
4.
With interest in steroidogenic acute regulatory protein (StAR) involvement in the luteolytic process, we studied changes in serum progesterone levels and the concomitant expression of StAR mRNA and protein (37-, 32-, and 30-kDa forms) in postovulatory Day 7 corpora lutea (CL) isolated from rats 1 h after injection with prostaglandin F(2alpha) (PGF(2alpha), n = 6) or saline (n = 6). Serum progesterone levels were determined by RIA, StAR and beta-actin mRNA expression by Northern analysis, and StAR and beta-actin protein expression by Western analysis. Adrenal, brain, and spleen from control animals were used as positive and negative controls for StAR expression. Scanning optical densitometry measurements were standardized by dividing the signal strength from each StAR autoradiogram lane by that from the corresponding beta-actin autoradiogram lane. ANOVA was used for significance testing, with alpha set at 0.05. The 37-, 32-, and 30-kDa forms of StAR protein were expressed in all adrenal samples, whereas only the 37- and 30-kDa forms were found in CL. Serum progesterone levels and expression of the 30-kDa and 37-kDa forms of the StAR protein in CL were all found to be significantly lower in the PGF(2alpha)-treated than the saline-treated group. StAR mRNA expression was not significantly different in the saline- and PGF(2alpha)-treated rats. The rapid decline in StAR protein expression that accompanies PGF(2alpha) induced luteolysis, therefore, does not result from significant decline in mRNA expression.  相似文献   

5.
Luteal regression is initiated by prostaglandin F(2 alpha) (PGF(2 alpha)). In domestic species and primates, demise of the corpus luteum (CL) enables development of a new preovulatory follicle. However, during early stages of the cycle, which are characterized by massive neovascularization, the CL is refractory to PGF(2 alpha). Our previous studies showed that endothelin-1 (ET-1), which is produced by the endothelial cells lining these blood vessels, plays a crucial role during PGF(2 alpha)-induced luteolysis. Therefore, in this study, we compared the effects of PGF(2 alpha) administered at the early and mid luteal phases on ET-1 and its type A receptors (ETA-R) along with plasma ET-1 and progesterone concentrations, and the mRNA levels of PGF(2 alpha) receptors (PGF(2 alpha)-R) and steroidogenic genes. As expected, ET-1 and ETA-R mRNA levels were markedly induced in midcycle CL exposed to luteolytic dose of PGF(2 alpha) analogue (Cloprostenol). In contrast, neither ET-1 mRNA nor its receptors were elevated when the same dose of PGF(2 alpha) analogue was administered on Day 4 of the cycle. In accordance with ET-1 expression within the CL, plasma ET-1 concentrations were significantly elevated 24 h after PGF(2 alpha) injection only on Day 10 of the cycle. The steroidogenic capacity of the CL (plasma progesterone as well as the mRNA levels of steroidogenic acute regulatory protein and cytochrome P450(scc)) was only affected when PGF(2 alpha) was administered during midcycle. Nevertheless, PGF(2 alpha) elicited certain responses in the early CL: progesterone and oxytocin secretion were elevated, and PGF(2 alpha)-R was transiently affected. Such effects probably result from PGF(2 alpha) acting on luteal steroidogenic cells. These findings may suggest, however, that the cell type mediating the luteolytic actions of PGF(2 alpha), possibly the endothelium, could yet be nonresponsive during the early luteal phase.  相似文献   

6.
The outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)were similar from the day 22 guinea-pig placenta and sub-placenta in culture, except for PGE2 output from the sub-placenta which was lower. Between days 22 and 29 of pregnancy, the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)during the initial 2 h culture period increased 6.9-, 1.1- and 3.2-fold, respectively, from the placenta, and 2.1-, 1.4- and 2.2-fold, respectively, from the sub-placenta. Therefore, there was a relatively specific increase in PGF(2 alpha)production by the guinea-pig placenta between days 22 and 29 of pregnancy. The output of PGFM from the cultured placenta also increased between days 22 and 29, indicating that the increase in PGF(2 alpha)output was due to increased synthesis rather than to decreased metabolism. By comparing the amounts of prostaglandins produced by tissue homogenates during a 1 h incubation period, it appears that there is approximately a 2-fold increase in the amount of prostaglandin H synthase (PGHS) present in the guinea-pig placenta between days 22 and 29. NS-398 (a specific inhibitor of PGHS-2) and indomethacin (an inhibitor of both PGHS-1 and PGHS-2) both inhibited prostaglandin production by homogenates of day 22 and day 29 placenta. Indomethacin was more effective than NS-398, except for their actions on PGF(2 alpha)production by the day 29 placenta where indomethacin and NS-398 were equiactive. Indomethacin and NS-398 were both very effective at inhibiting the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)from the day 22 and day 29 placenta and sub-placenta in culture, indicating that prostaglandin production by the guinea-pig placenta and sub-placenta in culture is largely dependent upon the activity of PGHS-2. The high production of PGF(2 alpha)by the day 29 placenta is not dependent on the continual synthesis of fresh protein(s), as inhibitors of protein synthesis did not reduce PGF(2 alpha)output from the day 29 guinea-pig placenta in culture.  相似文献   

7.
The present study was conducted to evaluate whether the corpus luteum (CL) of the water buffalo (Bubalus bubalis) cow undergoes luteal regression by the process of apoptosis and to examine the involvement of mitogen-activated protein (MAP) kinases during prostaglandin (PG) F(2alpha)-induced luteolysis. Sections of CL from late in the estrous cycle, i.e., during spontaneous luteolysis, stained for 4',6'-diamidino-2-phenylindole revealed increased numbers of condensed nuclei, indicating cell death by apoptosis, which was confirmed further by the occurrence of pronounced oligonucleosome formation. For morphological and biochemical characterization during PGF(2alpha)-induced apoptosis, CL were collected at 0, 4, 12, and 18 h after injection of 750 micro g of Tiaprost, a synthetic analogue of PGF(2alpha), to midestrous buffalo cows. Serum progesterone concentrations fell within 4 h and decreased (P < 0.05) maximally by 18 h. Concomitant decreases (P < 0.05) in the levels of steroidogenic acute regulatory mRNA and protein were observed in CL during 12-18 h, with the more profound effect on mRNA levels. Quantitative analysis of the genomic DNA showed a >5-fold increase (P < 0.05) in the low molecular weight DNA fragments by 18 h postinjection. Immunoblot analysis of CL tissue lysates showed increased (P < 0.05) levels of phospho-Jun N-terminal kinase (JNK) 1 (4- to 14-fold during 4-18 h) and phospho-p38 (2- to 4-fold at 18 h). Immunohistochemical evaluation of CL sections revealed an increased nuclear localization of phospho-JNK after treatment. These findings demonstrate that the CL of the buffalo cow undergoes cell death by the process of apoptosis both during spontaneous and PGF(2alpha)-induced luteolysis and that MAP kinases are involved during PGF(2alpha)-mediated apoptosis in the CL.  相似文献   

8.
The effect of an in vivo prostaglandin F2 alpha (PGF2 alpha) challenge in pregnant and cyclic sows was compared to determine whether PGF2 alpha-induced release of relaxin (RLX) from the corpus luteum (CL) in late pregnancy is also effective during the cycle. Ovarian venous RLX and progesterone were monitored by radioimmunoassay and RLX localized in the CL by immunohistochemistry. In Day 108 pregnant sows, infusion of PGF2 alpha (100 micrograms) into the ovarian artery resulted in an immediate and sustained rise in ovarian venous RLX with an initial decline in progesterone levels by 30 min which then returned to pretreatment levels. In Day 13 or 15 cyclic sows with functional corpora lutea (i.e., elevated progesterone), RLX was undetectable in ovarian venous blood after 100 micrograms of PGF2 alpha. Administration of PGF2 alpha via either the jugular vein or intramuscular route was also ineffective in releasing RLX from the CL of the cycle. The intensity of RLX immunostaining of the CL was similar in saline and PGF2 alpha-treated sows. These studies indicate that the control of RLX release from the sow CL differs in the estrous cycle and pregnancy.  相似文献   

9.
Insulin-like growth factor-I (IGF-I) is produced within the porcine corpus luteum (CL) and is thought to play an autocrine/paracrine role in CL development/function during the early luteal phase. This study examines the hypotheses that the luteolytic actions of prostaglandin F(2alpha) (PGF(2alpha)) during the early luteal phase may involve either a decrease in IGF-I or IGF receptor (IGF-IR), or an increase in IGF binding protein (IGFBP)-3, expression, any of which could interfere with the luteotropic actions of IGF-I in this tissue. Cycling gilts were treated twice daily with PGF(2alpha) (or saline) on Days 5-9 of the cycle to induce premature luteolysis. CL were collected on Days 6-9, and RNA, protein, or progesterone was extracted. By slot blot analysis, steady-state levels of IGF-I and IGFBP-3 mRNA were not different in PGF(2alpha)-treated vs. control animals; however, IGF-IR mRNA was increased in treated animals on Day 9. No changes in IGF-I content (ng/CL measured by RIA) were observed with respect to treatment. According to ligand blot analysis, the levels of IGFBP-3 increased on Day 6 and decreased on Days 8-9, while IGFBP-2 was higher on Days 6-7 and decreased on Day 9 in treated animals. IGF-IR levels, determined from Western blots, were higher on Day 7 (P < 0.05) and lower on Day 9 in PGF(2alpha)-treated animals vs. control animals (P < 0.05). In conclusion, PGF(2alpha)-induced premature luteolysis was associated with an increase in steady-state levels of IGF-IR mRNA, but it did not appear to be linked to changes in mRNA levels for IGF-I or IGFBP-3. However, since IGFBP-2 and -3 protein levels increased early in the treatment period (Days 6-7), it is possible that they may mediate the luteolytic actions of PGF(2alpha) by sequestering IGF-I and preventing its interaction with the IGF-IR.  相似文献   

10.
Using radioimmunoassay procedures, the levels of plasma, uterine and ovarian prostaglandin (PG) F2alpha, and those of plasma estradiol and progesterone were measured in intact, hysterectomized or ovariectomized immature female rats pretreated with PMS and subsequent HCG. Occurrence of ovulation was confirmed at 8 hours after the HCG administration not only in the intact rats but also in the hysterectomzied rats. The levels of plasma estradiol and progesterone, and of uterine and ovarian PGF2alpha rose with the PMS injection alone, but they did not reach the peaks before the HCG administration. Both plasma estradiol and uterine PGF2alpha showed a peak at 2 hours after the HCG injection. These peaks were antecedent 2 or 6 hours before the peaks of ovarian and plasma PGF2alpha, respectively. However, such increase of uterine PGF2alpha does not seem to be indispensable for ovulation, because ovulation could occur in the hysterectomized rats. The levels of ovarian PGF2alpha showed a high plateau from 4 to 8 hours after the HCG injection, and then rapidly decreased after ovulation. The levels of plasma PGF2alpha peaked not only in the intact rats but also in the hysterectomized rats at 8 hours after the HCG treatment. But in the ovariectomized rats, this plasma PGF2alpha peak at 8 hours disappeared and there was no statistical change of plasma PGF2alpha throughout the PMS-HCG treatment. Plasma progesterone gradually increased and reached the maximum at 10 hours after the HCG injection. These results conclude that the main source of increased plasma PGF2alpha during the ovulatory process induced with the PMS-HCG treatment is the ovary, and it is strongly suggested that a rapid increase of PGF2alpha in the ovary may play some important role(s) in the ovulatory process.  相似文献   

11.
We investigated the expression and cell localization of NOTCH1, NOTCH4, and the delta-like ligand DLL4 in corpus luteum (CL) from pregnant rats during prostaglandin F2alpha (PGF2alpha)-induced luteolysis. We also examined serum progesterone (P(4)) and CL proteins related to apoptosis after local administration of the notch inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT). Specific staining for NOTCH1 and NOTCH4 receptors was detected predominantly in large and small luteal cells. Furthermore, in line with the fact that the notch intracellular domain is translocated to the nucleus, where it regulates gene expression, staining was evident in the nuclei of luteal cells. In addition, we detected diffuse cytoplasmic immunostaining for DLL4 in small and large luteal cells, in accordance with the fact that DLL4 undergoes proteolytic degradation after receptor binding. The mRNA expression of Notch1, Notch4, and Dll4 in CL isolated on Day 19 of pregnancy decreased significantly after administration of PGF2alpha. Consistent with the mRNA results, administration of PGF2alpha to pregnant rats on Day 19 of pregnancy decreased the protein fragment corresponding to the cleaved forms of NOTCH1/4 CL receptors. In contrast, no significant changes were detected in protein levels for the ligand DLL4. The local intrabursal administration of DAPT decreased serum P(4) levels and increased luteal levels of active caspase 3 and the BAX:BCL2 ratio 24 h after the treatment. These results support a luteotropic role for notch signaling to promote luteal cell viability and steroidogenesis, and they suggest that the luteolytic hormone PGF2alpha may act in part by reducing the expression of some notch system members.  相似文献   

12.
13.
Secretion of prostaglandins (PGs) by the regressing corpus luteum (CL) was investigated in the cow. Six cows were implanted with microcapillary dialysis membranes of a microdialysis system (MDS) into the CL during Days 8-9 (Day 0 = estrus), and a prostaglandin (PG) F2alpha analogue (Estrumate) was injected intramuscularly (i.m.) to induce luteolysis. Acute increases in intraluteal release of PGF2alpha and PGE2 were observed during the first 4 h, followed by decreases over the next 8 h. Intraluteal release of both PGs gradually increased again during the period 48-72 h. Concentrations of PGF2alpha in ovarian venous plasma (OVP) were 4-13 times higher than those of jugular venous plasma (JVP) (P < 0.001) during the period of the experiment, and increased from 24 h after treatment with Estrumate (P < 0.05). Cyclooxygenase (COX)-2 mRNA expression increased (P < 0.05) at 2 and 24 h after treatment with Estrumate. The results indicated that local release of PGF2alpha and PGE2, and COX-2 mRNA expression were increased by Estrumate in the regressing CL at the later stages of luteolysis. Thus, luteal secretion of PGs may be involved in the local mechanism for structural rather than functional luteolysis.  相似文献   

14.
D J Bolt 《Prostaglandins》1979,18(3):387-396
The ability of human chorionic gonadotropin (HCG) to reduce the luteolytic effect of prostaglandin (PGF2 alpha) was demonstrated in cycling ewes. As expected, treatment with 10 mg of PGF2 alpha alone on Day 10 of the estrous cycle exerted a potent negative effect on the function and structure of corpus luteum (CL) as indicated by reduced plasma progesterone, CL progesterone, and CL weight. However, the identical PGF2 alpha treatment failed to significantly reduce either luteal function or luteal weight when administered to ewes that were also treated with HCG on Days 9 and 10 of the estrous cycle. Treatment with HCG alone had a positive effect on CL as indicated by increased plasma progesterone, CL progesterone, and CL weight. Treatment with HCG did not render the CL totally insensitive to the negative effects of PGF2 alpha because plasma progesterone was reduced when the dose of PGF2 alpha was doubled. Whether CL regressed or continued to function after treatment with both HCG and PGF2 alpha appeared to depend upon a balance between the positive and negative effects of the two hormones.  相似文献   

15.
16.
A diversified series of experiments was conducted to determine the potential role of endothelin-1 (ET-1) in ovine luteal function. Endothelin-1 inhibited basal and LH-stimulated progesterone production by dispersed ovine luteal cells during a 2-h incubation. This inhibition was removed when cells were preincubated with cyclo-D-Asp-Pro-D-Val-Leu-D-Trp (BQ123), a highly specific endothelin ET(A) receptor antagonist. Administration of a luteolytic dose of prostaglandin F(2alpha) (PGF(2alpha)) rapidly stimulated gene expression for ET-1 in ovine corpora lutea (CL) collected at midcycle. Intraluteal administration of a single dose of BQ123 to ewes on Day 8 or 9 of the estrous cycle mitigated the luteolytic effect of PGF(2alpha). Intramuscular administration of 100 microg ET-1 to ewes at midcycle reduced plasma progesterone concentrations for the remainder of the estrous cycle. Following pretreatment with a subluteolytic dose of PGF(2alpha), i.m. administration of 100 microg ET-1 caused a rapid decline in plasma progesterone and shortened the length of the estrous cycle. These data complement and extend previously published reports in the bovine CL and are the strongest evidence presented to date in support of a role for ET-1 in PGF(2alpha)-mediated luteal function in domestic ruminants.  相似文献   

17.
The hypothesis that, in the ewe, prostaglandin (PG) F2alpha administration on day 3 after ovulation is followed by luteolysis and ovulation was tested using 24 animals. The ewes were treated with a dose of a PGF2alpha analogue (delprostenate, 160 microg) on days 1 (n=8), 3 (n=8) or 5 (n=8) after ovulation, was established by transrectal ultrasonography. Daily scanning and blood sampling were performed to determine ovarian changes and progesterone serum concentrations by radioinmunoassay. The treatment induced a sharp decrease of progesterone concentrations followed by oestrus and ovulation in all ewes treated on days 3 and 5 and in one ewe treated on day 1 (8/8, 8/8, 1/8; P<0.05). Seven ewes treated on day 1 did not respond to PGF2alpha treatment and had an inter-ovulatory cycle of normal length (17.4 +/- 0.5 days). However, the profile of progesterone concentrations during the cycle of these ewes was delayed 1 day (P<0.05) compared with a control cycle. The overall interval between PGF2alpha and oestrus for the 17 responding ewes was 42.4 +/- 2.3 h. In 15 of these ewes the ovulatory follicle was originated from the first follicular wave and the ovulation occurred at 60.8 +/- 1.8 h after PGF2alpha treatment. The other two responding ewes ovulated an ovulatory follicle originated from the second follicular wave between 72 and 96 h after treatment. These results support the hypothesis and suggest that refractoriness to PGF2alpha of the recently formed corpus luteum (CL) may be restricted to the first 1-2 days post-ovulation.  相似文献   

18.
The effect of prostaglandin F2 alpha (PGF2 alpha) on luteinizing hormone (LH) receptors, weight and progesterone content of corpora lutea (CL), and serum progesterone concentrations was studied in gilts. Fifteen gilts were hysterectomized between Days 9 to 11 of the estrous cycle. Twelve gilts were injected i.m. with 10 mg of PGF2 alpha and 3 with saline on Day 20. Ovaries were surgically removed from each of 3 gilts at 4, 8, 12 and 24 h following PGF2 alpha treatment and from the 3 control gilts 12 h following saline injection. Jugular blood samples for progesterone analysis were collected from all gilts at 0, 2 and 4 h following treatment and at 8, 12 and 24 h for gilts from which ovaries were removed at 8, 12 and 24 h, respectively. Mean serum progesterone and CL progesterone concentrations decreased within 4 h after PGF2 alpha treatment (P less than 0.05) and remained low through 24 h after treatment. The number of unoccupied LH receptors decreased by 4 h (P less than 0.05) and this trend continued through 24 h. There were no differences in luteal weight or affinity of unoccupied LH receptors of luteal tissue at 4, 8 12 and 24 h after PGF2 alpha when compared to luteal tissue from controls. These data indicate that during PGF2 alpha-induced luteolysis in the pig, luteal progesterone, serum progesterone concentrations and the number of LH receptors decrease simultaneously.  相似文献   

19.
Nonlactating Holstein and Jersey cows (n = 24) were superovulated and ovarian follicular development was monitored by transrectal ultrasound during the period after embryo recovery. Luteolysis was induced by two injections of prostaglandin F(2)alpha (PGF; 25 mg Lutalyse; 12-h interval) at specific times after superovulatory induced estrus (Treatment 1, Day 9; Treatment 2, Day 12; Treatment 3, Day 17; Treatment 4, Day 25; superovulatory estrus = Day 0 of Cycle 1). Follicular development was monitored during Cycle 1 before and after PGF injection and continued through the ensuing estrous cycle (Cycle 2). Superovulation led to more than one embryo collected in 14 cows (mean = 8.71 embryos: positive superovulatory response [PSR] cows), while 10 cows were not successfully superovulated (mean = 0.1 embryo; negative superovulatory response [NSR] cows). These cows differed in terms of number of unovulated follicles detected at embryo collection (4.21 vs 17.2, PSR vs NSR) and plasma progesterone during the superovulatory estrous cycle (32.3 ng/ml PSR vs 8.6 ng/ml NSR). Follicular development during Cycle 1 started sooner in NSR than in PSR cows (day by class by response P<0.03) and was initiated on Days 11 to 12 in NSR cows and on Days 19 to 20 in PSR cows. Interval to estrus after PGF averaged 6.3 d. Cows having short intervals to estrus had follicles at the time of PGF injection. Treatment influenced the length of Cycle 1, but it did not affect the interval to estrus after PGF, the length of Cycle 2, or follicular development during Cycle 2. The results indicate that 1) the timing of PGF injection after embryo collection does not influence subsequent follicular populations, 2) elongated estrous cycles and intervals to estrus after PGF in superovulated cattle are a function of decreased follicular activity, and 3) the presence of numerous corpora lutea and not the superovulatory treatment, per se, seem to attenuate follicular growth.  相似文献   

20.
The present study was designed to investigate the relationship between the nitric oxide (NO) system and endothelin 1 (ET-1) in the mechanism of corpus luteum (CL) development and consequently regression in rats. We first evaluated basal ET-1 levels in ovarian tissue from rats with different stages of CL development. An increased ovarian ET-1 content was found during CL regression. In a dose-department response, ET-1 decreased progesterone (P4) and increased prostaglandin (PG) PGF2alpha production. By means of a competitive nitric oxide synthase (NOS) inhibitor: L-nitro arginine methyl ester (L-NAME) and a slow NO releasing: diethyl-aminetriamine (DETA-NONOate), we demonstrated that NO system could be the intermediary in the ET-1 diminishing P4 production. The Western blot analysis revealed an increase on iNOS while eNOS protein expression was diminished. We also found a diminution of total NOS activity after ET-1 treatment. These data suggest the existence of a functional relationship between ET-1 and NOS isoforms leading the regulation of CL functionally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号