首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic, reproductive and morphological variation were studied in 193 global strains of the marine diatom species Pseudo-nitzschia pungens (Grunow ex Cleve) Hasle to assess potential intraspecific variation and biogeographic distribution patterns. Genetic differentiation between allo- and sympatric strains was investigated using the ITS1–5.8S–ITS2 rDNA region. Three ITS clades were found. Clones of opposite mating type were sexually compatible within clades I or II, and viable F1 hybrid offspring were produced in crosses between them. The molecular differences between these clades were correlated with slight but consistent morphological differences. At present, nothing can be said about morphology and mating behavior for clade III clones because only ITS data were available. The three ITS clades showed different geographic distributions. Clade II was restricted to the NE Pacific, whereas clones belonging to clade III originated from geographically widely separated areas (Vietnam, China and Mexico). ITS clade I was recovered in all locations studied: the North Sea (Belgium, The Netherlands, France), the eastern and western N Atlantic (Spain, Canada), the NW and S Pacific (Japan, New Zealand) and the NE Pacific (Washington State). Clade I thus appears to be globally distributed in temperate coastal areas and provides the first strong evidence to date for the global distribution of a biologically, genetically and morphologically defined diatom species.  相似文献   

2.
Chthamalus malayensis is a common intertidal acorn barnacle widely distributed in the Indo-West Pacific. Analysis of sequences of mitochondrial cytochrome c oxidase subunit I reveals four genetically differentiated clades with almost allopatric distribution in this region. The four clades exhibit morphological differences in arthropodal characters, including the number of conical spines and number of setules of the basal guard setae on the cirri. These characters are, however, highly variable within each clade; such that the absolute range of the number of conical spines and setules overlaps between clades, and therefore, these are not diagnostic characters for taxonomic identification. The geographic distribution of the four clades displays a strong relationship between surface temperatures of the sea and ocean-current realms. The Indo-Malay (IM) clade is widespread in the tropical, equatorial region, including the Indian Ocean, Malay Peninsula, and North Borneo. The South China (SC) and Taiwan (TW) clades are found in tropical to subtropical regions, with the former distributed along the coasts of southern China, Vietnam, Thailand, and the western Philippines under the influence of the South China Warm Current. The TW clade is endemic to Taiwan, while the Christmas Island (CI) clade is confined to CI. There was weak or no population subdivision observed within these clades, suggesting high gene flow within the range of the clades. The clades demonstrate clear signatures of recent demographic expansion that predated the Last Glacial Maximum (LGM), but they have maintained a relatively stable effective population in the past 100,000 years. The persistence of intertidal fauna through the LGM may, therefore, be a common biogeographic pattern. The lack of genetic subdivision in the IM clade across the Indian and Pacific Oceans may be attributed to recent expansion of ranges and the fact that a mutation-drift equilibrium has not been reached, or the relaxed habitat requirements of C. malayensis that facilitates high concurrent gene flow. Further studies are needed to determine between these alternative hypotheses.  相似文献   

3.
Abstract. The alcyonacean soft coral genera Sarcophyton and Lobophytum are conspicuous, ecologically important members of shallow reef communities throughout the Indo-West Pacific. Study of their ecology is, however, hindered by incomplete knowledge of their taxonomy: most species cannot be identified in the field and the two genera cannot always be distinguished reliably. We used a 735-bp fragment of the octocoral-specific mitochondrial protein-coding gene msh1 to construct a phylogeny for 92 specimens identified to 19 species of Lobophytum and 16 species of Sarcophyton . All phylogenetic methods used recovered a tree with three strongly supported clades. One clade included only morphologically typical Sarcophyton species with a stalk distinct from the polypary, poorly formed club-shaped sclerites in the colony surface, and large spindles in the interior of the stalk. A second clade included only morphologically typical Lobophytum colonies with lobes and ridges on the colony surface, poorly formed clubs in the colony surface, and interior sclerites consisting of oval forms with regular girdles of ornamental warts. The third distinct clade included a mix of Sarcophyton and Lobophytum nominal species with intermediate morphologies. Most of the species in this mixed clade had a polypary that was not distinct from the stalk, and the sclerites in the colony surface were clubs with well-defined heads. Within the Sarcophyton clade, specimens identified as Sarcophyton glaucum belonged to six very distinct genetic sub-clades, suggesting that this morphologically heterogeneous species is actually a cryptic species complex. Our results highlight the need for a complete taxonomic revision of these genera, using molecular data to help confirm species boundaries as well as to guide higher taxonomic decisions.  相似文献   

4.
? Premise of the study: The recognition of monophyletic genera for groups that have high levels of homoplastic morphological characters and/or conflicting results obtained by different studies can be difficult. Such is the case in the grammitid ferns, a clade within the Polypodiaceae. In this study, we aim to resolve relationships among four clades of grammitid ferns, which have been previously recovered either as a polytomy or with conflicting topologies, with the goal of circumscribing monophyletic genera. ? Methods: The sampling included 89 specimens representing 61 species, and sequences were obtained for two genes (atpB and rbcL) and four intergenic spacers (atpB-rbcL, rps4-trnS, trnG-trnR, and trnL-trnF), resulting in a matrix of 5091 characters. The combined data set was analyzed using parsimony, likelihood, and Bayesian methods. Ninety-six morphological characters were optimized onto the generated trees, using the parsimony method. ? Key results: Lellingeria is composed of two main clades, the L. myosuroides and the Lellingeria s.s. clades, which together are sister to Melpomene. Sister to all three of these is a clade with two species of the polyphyletic genus Terpsichore. In the L. myosuroides clade, several dispersal events occurred between the neotropics, Africa, and the Pacific Islands, whereas Lellingeria s.s. is restricted to the neotropics, with about 60% of its diversity in the Andes. ? Conclusions: Overall, our results suggest that Lellingeria is monophyletic, with two clades that are easily characterized morphologically and biogeographically. Morphological characters describing the indument are the most important to define the clades within the ingroup. A small clade, previously considered in Terpsichore, should be recognized as a new genus.  相似文献   

5.
The phylogenetic relationships among populations of seaperch, Helicolenus spp., in the south-west Pacific were examined with mtDNA markers. Parts of the cytochrome b gene [459 base pair (bp)] and the control region (448 bp) were sequenced in 58 specimens from the south-west Pacific and four specimens of Helicolenus lengerichi from Chile. Only one clade was recognized in New Zealand coastal waters, despite a wide range of colour morphs. This clade also occurred in the mid Tasman Sea on the Norfolk Ridge and around Tasmania and Victoria. A second sympatric clade was identified around Tasmania and Victoria and to the west of New Zealand. A third allopatric clade was identified to the north of New Zealand and in deep water on the Chatham Rise and a fourth clade on the Foundation Seamounts and the Louisville Ridge. Helicolenus lengerichi from Chile formed a fifth clade. Assuming a molecular clock, the clades were estimated to have diverged c. 0·7–2·6 million years ago. Only two clades, around Tasmania and Victoria, were separated using morphology, colour (in live) and dorsal-fin soft ray counts and were confirmed as Helicolenus percoides and Helicolenus barathri . Two characters, orbit diameter and colour variation, previously used to identify two species in New Zealand waters were unreliable characters for species discrimination. Principle component analyses of 11 morphological measures from 67 individuals did not delineate the clades. A canonical discriminant analysis was able to separate four of the five clades, but mean discriminate probabilities were low (77·6%), except for the five Chilean specimens of H. lengerichi (100%).  相似文献   

6.
Peanut worm (Sipunculus nudus) is a cosmopolitan species mainly distributed in tropical and subtropical coastal waters. Analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene sequences among S. nudus from GenBank revealed high genetic variation (p‐distance, 0.115–0.235; k2p, 0.128–0.297) and paraphyletic relationships. These indicated misidentification and/or cryptic diversity may be present in the genus Sipunculus. To understand the genetic diversity and to manage the recourse of S. nudus, we collected specimens from coastal waters of southern China and Taiwan. In the phylogenetic topology, specimens can be separated into four distinct clades; three of these clades (clade A, B and C) were only represented from this region (southern China and Taiwan), but the clade D grouped with individuals from Central America (Atlantic coast). Furthermore, individuals of clades A and D were collected at the same location, which does not support the hypothesis that this genetic break reflects contemporary geographical isolation. The four distinct clades observed among coastal waters of southern China and Taiwan indicated underestimated diversity. It is noteworthy that the cryptic diversity is vulnerable under high pressure of human activity.  相似文献   

7.
8.
Trans-Arctic dispersals and population and range expansions during the Pleistocene enhanced opportunities for evolutionary diversification and contributed to the process of speciation within the capelin, a northern marine-fish complex exhibiting a circumpolar distribution. Capelin is composed of four highly divergent and geographically discrete mitochondrial DNA (mtDNA) clades (609 bp; cytochrome b). Two clades occur in the North Atlantic, one associated with Canadian Atlantic waters, including Hudson Bay, and the second distributed from West Greenland to the Barents Sea. Two additional clades occur in the Arctic and northeast Pacific Oceans, representing the most recent divergence within the capelin phylogenetic tree. Judged from mtDNA diversity, capelin populations comprising all clades experienced at least one demographic and spatial reduction-expansion episode during recent Pleistocene glaciations that imprinted their molecular architecture. The large contemporary populations in the northeast Pacific and Arctic Oceans exhibited significant genetic structure whereas no such structure was detected in the equally extensive North Atlantic clades. All clades are characterized by one or two prevalent mtDNA haplotypes distributed over the entire range of the clade. Assuming a Pacific ancestor for capelin, we infer that capelin dispersed on two separate occasions to the North Atlantic. A more recent event resulted in the isolation of eastern Pacific and Arctic clades, with the Arctic clade positioned for a potential third Atlantic invasion, as revealed by the presence of this clade in the Labrador Sea. The Labrador Sea is a potential contact zone for three of the four capelin clades.  相似文献   

9.
The largest genus of salamanders, Bolitoglossa (Plethodontidae), is widespread in tropical America, where it occurs in diverse habitats and elevations, from high elevation grasslands to lowland rain forest . It has the most extensive geographical range of any salamander genus. While most species occur in Middle America, it ranges throughout most of tropical South America as well. Phylogenetic analysis of 1196 bp of two mitochondrial genes (cytochrome b , 16S RNA) from 55 species offers strong support for the monophyly of the genus and sorts the species into a number of clades. Taking into account morphology, distribution, general ecology, and prior systematic and taxonomic studies, we recognize seven subgenera, four of them new: Bolitoglossa Duméril, Bibron et Duméril, 1854, Eladinea Miranda Ribeiro, 1937, Magnadigita Taylor, 1944, Mayamandra , Nanotriton , Oaxakia and Pachymandra . All South American and some lower Middle American species are included in a single well -supported clade, Eladinea . At the species level our analyses uncover the existence of large genetic diversity within morphologically homogeneous taxa. We propose the new combination: B. (Eladinea) paraensis (Unterstein, 1930) stat. nov. , for Brazilian salamanders previously included under B. altamazonica . We evaluate evidence for the multiple colonization of the tropical lowlands by morphologically derived species groups. South America was invaded by members of one clade, Eladinea , which we infer to have dispersed to South America prior to closure of the Panamanian Portal. Despite the relatively long history of salamanders in South America, that continent now accounts for a relatively small proportion of the lineages and species of neotropical salamanders.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 325–346.  相似文献   

10.
The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380 000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions.  相似文献   

11.
Data mining for proteins characteristic of clades   总被引:2,自引:0,他引:2  
A synapomorphy is a phylogenetic character that provides evidence of shared descent. Ideally a synapomorphy is ubiquitous within the clade of related organisms and nonexistent outside the clade, implying that it arose after divergence from other extant species and before the last common ancestor of the clade. With the recent proliferation of genetic sequence data, molecular synapomorphies have assumed great importance, yet there is no convenient means to search for them over entire genomes. We have developed a new program called Conserv, which can rapidly assemble orthologous sequences and rank them by various metrics, such as degree of conservation or divergence from out-group orthologs. We have used Conserv to conduct a largescale search for molecular synapomorphies for bacterial clades. The search discovered sequences unique to clades, such as Actinobacteria, Firmicutes and γ-Proteobacteria, and shed light on several open questions, such as whether Symbiobacterium thermophilum belongs with Actinobacteria or Firmicutes. We conclude that Conserv can quickly marshall evidence relevant to evolutionary questions that would be much harder to assemble with other tools.  相似文献   

12.
The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.  相似文献   

13.

Background and Aims

Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional ‘athyrioid’ ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology.

Methods

Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete.

Key Results

The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species.

Conclusions

The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae – a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation.  相似文献   

14.
Relatively little is known about the relationship between Bufo gargarizans populations from Zhoushan Archipelago and nearby continental regions on the Pacific coast of eastern China.In this paper,155 new specimens of B.gargarizans from Zhoushan Archipelago and adjacent continents and 71 published specimens of B.gargarizans from mainland China were studied.Phylogeographical and dating analyses of B.gargarizans were performed using mitochondrial DNA sequencing with a length of 1436 bp.A mt DNA tree that indicated seven major clades was obtained.The earliest split in the mt DNA tree corresponding to the divergence of populations from the western highland region occurred approximately 4.0 million years ago(mya).A subsequent clade occurred about 3.4 mya,with cladogenesis continuing toward the end of the Pleistocene.The continental clades were distributed in the western,central and northeastern regions of China.Zhoushan Archipelago clades consisted of two largely geographically overlapping subclades with the mt DNA divergence time of 0.73 mya.These results indicated there was extensive dispersal after vicariance.The B.gargarizans populations on Zhoushan Archipelago most probably originated from populations in nearby eastern continental regions of China.It was concluded that geological uplifting during the Pliocene and several sea-level changes in Pleistocene might have influenced the divergence and population demographical history of this species.  相似文献   

15.
Bonito G  Trappe JM  Rawlinson P  Vilgalys R 《Mycologia》2010,102(5):1042-1057
Tuber gibbosum Harkn., described from northern California, originally was thought to be a single, variable species that fruited from autumn through winter to spring. It has become popular as a culinary truffle in northwestern USA, where it is commercially harvested. Morphological studies suggested it might be a complex that includes at least two species. We conducted morphological and phylogenetic studies of the complex to determine how many species it might contain and how they differed morphologically, geographically and seasonally. We also provide the first LSU phylogeny for the genus Tuber. Phylogenetic analyses resolve nine major clades in the genus with high bootstrap support and distinguish the Gibbosum clade from the Aestivum, Excavatum, Macrosporum, Magnatum, Melanosporum, Puberulum, Rufum and Spinoreticulatum clades. Further analyses of ITS and LSU regions revealed four distinct species in the Gibbosum complex. Although morphologically similar the four species differ in spore size and shape and in peridial anatomy. These species share the synapomorphy of having suprapellis hyphae with distinctive, irregular wall swellings at maturity; we have not seen this hyphal type in any other Tuber spp. worldwide. The three new species are named and described as T. bellisporum Bonito & Trappe, T. castellanoi Bonito & Trappe and T. oregonense Trappe, Bonito & Rawlinson.  相似文献   

16.
A phylogenetic analysis of Euphorbiaceae sensu stricto is presented using sequences from rbcL, atpB, matK and 18S rDNA from 85 species and 83 genera. The combined analysis of four molecular markers resulted in only one most parsimonious tree and also generated new supported clades, which include Euphorbioideae + Acalyphoideae s.s., subclades A2 + A3, subclades A5 + A6 and a clade uniting subclades A2–A8 within Acalyphoideae s.s. A palisadal exotegmen is a possible synapomorphy for all the Euphorbiaceae, except for the subfamily Peroideae. The presence of vascular bundles in the inner integument and a thick inner integument were shown to be synapomorphies for the clade of inaperturate and articulated crotonoids and for the large clade of Euphorbioideae, Acalyphoideae s.s., inaperturate and articulated crotonoids, respectively. Characters of the aril and vascular bundles in the outer integument are discussed. The selected embryological characters were seen to be highly correlated with the molecular phylogeny. When the results of molecular phylogenetic analysis of a previous study and this study were adjusted along with the selected embryological characters, all clades within Euphorbiaceae were supported except for a clade comprising Euphorbioideae + Acalyphoideae s.s. + inaperturate crotonoids + articulated crotonoids + Adenoclineae s.l. and a clade uniting subclades A4–A8 within Acalyphoideae s.s. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Senna (Leguminosae) is a large, widespread genus that includes species with enantiostylous, asymmetric flowers and species with extrafloral nectaries. Clarification of phylogenetic relationships within Senna based on parsimony analyses of three chloroplast regions (rpS16, rpL16, and matK) provides new insights on the evolution of floral symmetry and extrafloral nectaries. Our results support the monophyly of only one (Psilorhegma) of the six currently recognized sections, while Chamaefistula, Peiranisia, and Senna are paraphyletic, and monotypic Astroites and Paradictyon are nested within two of the seven major clades identified by our molecular phylogeny. Two clades (I, VII) include only species with monosymmetric flowers, while the remaining clades (II-VI) contain species with asymmetric, enantiostylous flowers, in which either the gynoecium alone or, in addition, corolla and androecium variously contribute to the asymmetry. Our results further suggest that flowers were ancestrally monosymmetric with seven fertile stamens and three adaxial staminodes, switched to asymmetry later, and reverted to monosymmetry in clade VII. Fertility of all 10 stamens is a derived state, characterizing the Psilorhegma subclade. Extrafloral nectaries evolved once and constitute a synapomorphy for clades IV-VII ("EFN clade"). These nectaries may represent a key innovation in plant defense strategies that enabled Senna to undergo large-scale diversification.  相似文献   

18.
The Pacific iguanas of the Fijian and Tongan archipelagos are a biogeographic enigma in that their closest relatives are found only in the New World. They currently comprise two genera and four species of extinct and extant taxa. The two extant species, Brachylophus fasciatus from Fiji, Tonga, and Vanuatu and Brachylophus vitiensis from western Fiji, are of considerable conservation concern with B. vitiensis listed as critically endangered. A recent molecular study has shown that Brachylophus comprised three evolutionarily significant units. To test these conclusions and to reevaluate the phylogenetic and biogeographic relationships within Brachylophus, we generated an mtDNA dataset consisting of 1462 base pairs for 61 individuals from 13 islands, representing both Brachylophus species. Unweighted parsimony analyses and Bayesian analyses produced a well-resolved phylogenetic hypothesis supported by high bootstrap values and posterior probabilities within Brachylophus. Our data reject the monophyly of specimens previously believed to comprise B. fasciatus. Instead, our data demonstrate that living Brachylophus comprise three robust and well-supported clades that do not correspond to current taxonomy. One of these clades comprises B. fasciatus from the Lau group of Fiji and Tonga (type locality for B. fasciatus), while a second comprises putative B. fasciatus from the central regions of Fiji, which we refer to here as B. n. sp. Animals in this clade form the sister group to B. vitiensis rather than other B. fasciatus. We herein describe this clade as a new species of Brachylophus based on molecular and morphological data. With only one exception, every island is home to one or more unique haplotypes. We discuss alternative biogeographic hypotheses to explain their distribution in the Pacific and the difficulties of distinguishing these. Together, our molecular and taxonomic results have important implications for future conservation initiatives for the Pacific iguanas.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号