首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys(264) interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a approximately 360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala(264) is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in nature.  相似文献   

2.
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).  相似文献   

3.
Two novel P450 heme iron ligand sets were generated by directed mutagenesis of the flavocytochrome P450 BM3 heme domain. The A264H and A264K variants produce Cys-Fe-His and Cys-Fe-Lys axial ligand sets, which were validated structurally and characterized by spectroscopic analysis. EPR and magnetic circular dichroism (MCD) provided fingerprints defining these P450 ligand sets. Near IR MCD spectra identified ferric low spin charge-transfer bands diagnostic of the novel ligands. For the A264K mutant, this is the first report of a Cys-Fe-Lys near-IR MCD band. Crystal structure determination showed that substrate-free A264H and A264K proteins crystallize in distinct conformations, as observed previously in substrate-free and fatty acid-bound wild-type P450 forms, respectively. This, in turn, likely reflects the positioning of the I alpha helix section of the protein that is required for optimal configuration of the ligands to the heme iron. One of the monomers in the asymmetric unit of the A264H crystals was in a novel conformation with a more open substrate access route to the active site. The same species was isolated for the wildtype heme domain and represents a novel conformational state of BM3 (termed SF2). The "locking" of these distinct conformations is evident from the fact that the endogenous ligands cannot be displaced by substrate or exogenous ligands. The consequent reduction of heme domain conformational heterogeneity will be important in attempts to determine atomic structure of the full-length, multidomain flavocytochrome, and thus to understand in atomic detail interactions between its heme and reductase domains.  相似文献   

4.
Cytochrome P450 BM3, of bacterial origin, is one of only five isozymes of the ubiquitous family of over 400 metabolizing heme proteins with a known crystal structure and only one of two with both substrate-free and substrate-bound forms determined. P450 BM3 is of particular interest since it has a similar function and similar substrates as mammalian P450s particularly of the 4A subfamily. Thus, the extent to which the substrate-free form of P450 BM3 undergoes a conformational change upon binding of a typical fatty acid substrate, palmitoleic acid, has been the subject of recent active experimental effort. Surprisingly, direct examination of the substrate-free (pdb2hpd.ent and pdb2bmh.ent) and substrate-bound (pdb1fag.ent) forms do not provide a clear answer to this question. The main reason for this ambiguity is that the two substrate-free monomers reported in the crystal structures themselves have significantly different conformations from each other, one with a more open substrate-access channel than the other. Since there is no way to tell to which substrate-free form the substrate binds, the effect of substrate binding cannot be deduced directly from comparisons of the experimental substrate-bound and substrate-free forms. The computational studies reported here have been designed to more robustly establish the effect of substrate binding on this isozyme. Specifically, molecular dynamics simulations were performed for each of the two substrate-free forms found in the asymmetric unit of the X-ray structure and for the two corresponding substrate-bound forms, constructed by docking palmitloeic acid into each of them. Comparisons of the results showed that palmitoleic acid binding had little effect on the conformation of the more closed substrate-free form of P450 BM3. By contrast, in the more open substrate-free form, this same substrate induced a closing of the entrance to the substrate-binding channel. The MD averaged structure of these two complexes obtained from docking of pamitoleic acid into the two asymmetric units of the substrate-free form were also compared to that obtained starting with the X-ray structure of the substrate-bound form. These results taken together led to the conclusion that, if indeed the substrate induces conformational changes in P450 BM3, the mouth of the substrate-access channel first closes down in response to the presence of the substrate, followed by rotation of the F-G domain to further optimize the P450 BM3-substrate interaction that would occur at a later stage.  相似文献   

5.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

6.
Cytochrome P450 MoxA (P450moxA) from a rare actinomycete Nonomuraea recticatena belongs to the CYP105 family and exhibits remarkably broad substrate specificity. Here, we demonstrate that P450moxA acts on several luciferin derivatives, which were originally identified as substrates of the human microsomal P450s. We also describe the crystal structure of P450moxA in substrate-free form. Structural comparison with various bacterial and human microsomal P450s reveals that the P450moxA structure is most closely related to that of the fungal nitric oxide reductase P450nor (CYP55A1). Final refined model of P450moxA comprises almost all the residues, including the "BC-loop" and "FG-loop" regions pivotal for substrate recognition, and the current structure thus defines a well-ordered substrate-binding pocket. Clear electron density map reveals that the MES molecule is bound to the substrate-binding site, and the sixth coordination position of the heme iron is not occupied by a water molecule, probably due to the presence of MES molecule in the vicinity of the heme. The unexpected binding of the MES molecule might reflect the ability of P450moxA to accommodate a broad range of structurally diverse compounds.  相似文献   

7.
The interaction of nitric oxide with cytochrome P450 BM3 from Bacillus megaterium has been analyzed by spectroscopic techniques and enzyme assays. Nitric oxide ligates tightly to the ferric heme iron, inducing large changes in each of the main visible bands of the heme and inhibiting the fatty acid hydroxylase function of the protein. However, the ferrous adduct is unstable under aerobic conditions, and activity recovers rapidly after addition of NADPH to the flavocytochrome due to reduction of the heme via the reductase domain and displacement of the ligand. The visible spectral properties revert to that of the oxidized resting form. Aerobic reduction of the nitrosyl complex of the BM3 holoenzyme or heme domain by sodium dithionite also displaces the ligand. A single electron reduction destabilizes the ferric-nitrosyl complex such that nitric oxide is released directly, as shown by the trapping of released nitric oxide. Aerobically and in the absence of exogenous reductant, nitric oxide dissociates completely from the P450 over periods of several minutes. However, recovery of the nativelike visible spectrum is accompanied by alterations in the catalytic activity of the enzyme and changes in the resonance Raman spectrum. Specifically, resonance Raman spectroscopy identifies the presence of internally located nitrated tyrosine residue(s) following treatment with nitric oxide. Analysis of a Y51F mutant indicates that this is the major nitration target under these conditions. While wild-type P450 BM3 does not form an aerobically stable ferrous-nitrosyl complex, a site-directed mutant of P450 BM3 (F393H) does form an isolatable ferrous-nitrosyl complex, providing strong evidence for the role of this residue in controlling the electronic properties of the heme iron. We report here the spectroscopic characterization of the ferric- and ferrous-nitrosyl complexes of P450 BM3 and describe the use of resonance Raman spectroscopy to identify nitrated tyrosine residue(s) in the enzyme. Nitration of tyrosine in P450 BM3 may exemplify a typical mechanism by which the ubiquitous messenger molecule nitric oxide exerts a regulatory function over the cytochromes P450.  相似文献   

8.
Identifying key structural features of cytochromes P450 is critical in understanding the catalytic mechanism of these important drug-metabolizing enzymes. Cytochrome P450BM-3 (BM-3), a structural and mechanistic P450 model, catalyzes the regio- and stereoselective hydroxylation of fatty acids. Recent work has demonstrated the importance of water in the mechanism of BM-3, and site-specific mutagenesis has helped to elucidate mechanisms of substrate recognition, binding, and product formation. One of the amino acids identified as playing a key role in the active site of BM-3 is alanine 328, which is located in the loop between the K helix and β 1-4. In the A328V BM-3 mutant, substrate affinity increases 5-10-fold and the turnover number increases 2-8-fold compared to wild-type enzyme. Unlike wild-type enzyme, this mutant is purified from E. coli with endogenous substrate bound due to the higher binding affinity. Close examination of the crystal structures of the substrate-bound native and A328V mutant BMPs indicates that the positioning of the substrate is essentially identical in the two forms of the enzyme, with the two valine methyl groups occupying voids present in the active site of the wild-type substrate-bound structure.  相似文献   

9.
Site-directed mutants of the phylogenetically conserved phenylalanine residue F393 were constructed in flavocytochrome P450 BM3 from Bacillus megaterium. The high degree of conservation of this residue in the P450 superfamily and its proximity to the heme (and its ligand Cys400) infers an essential role in P450 activity. Extensive kinetic and thermodynamic characterization of mutant enzymes F393A, F393H, and F393Y highlighted significant differences from wild-type P450 BM3. All enzymes expressed to high levels and contained their full complement of heme. While the reduction and subsequent treatment of the mutant P450s with carbon monoxide led to the formation of the characteristic P450 spectra in all cases, the absolute position of the Soret absorption varied across the series WT/F393Y (449 nm), F393H (445 nm), and F393A (444 nm). Steady-state turnover rates with both laurate and arachidonate showed the trend WT > F393Y > F393H > F393A. Conversely, the trend in the pre-steady-state flavin-to-heme electron transfer was the reverse of the steady-state scenario, with rates varying F393A > F393H > F393Y approximately wild-type. These data are consistent with the more positive substrate-free [-312 mV (F393A), -332 mV (F393H)] and substrate-bound [-151 mV (F393A), -176 mV (F393H)] reduction potentials of F393A and F393H heme domains, favoring the stabilization of the ferrous-form in the mutant P450s relative to wild-type. Elevation of the heme iron reduction potential in the F393A and F393H mutants facilitates faster electron transfer to the heme. This results in a decrease in the driving force for oxygen reduction by the ferrous heme iron, so explaining lower overall turnover of the mutant P450s. We postulate that the nature of the residue at position 393 is important in controlling the delicate equilibrium observed in P450s, whereby a tradeoff is established between the rate of heme reduction and the rate at which the ferrous heme can bind and, subsequently, reduce molecular oxygen.  相似文献   

10.
The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.  相似文献   

11.
Cytochrome P450s constitute a superfamily of enzymes that catalyze the oxidation of a vast number of structurally and chemically diverse hydrophobic substrates. Herein, we describe the crystal structure of a complex between the bacterial P450BM-3 and the novel substrate N-palmitoylglycine at a resolution of 1.65 A, which reveals previously unrecognizable features of active site reorganization upon substrate binding. N-palmitoylglycine binds with higher affinity than any other known substrate and reacts with a higher turnover number than palmitic acid but with unaltered regiospecificity along the fatty acid moiety. Substrate binding induces conformational changes in distinct regions of the enzyme including part of the I-helix adjacent to the active site. These changes cause the displacement by about 1 A of the pivotal water molecule that ligands the heme iron, resulting in the low-spin to high-spin conversion of the iron. The water molecule is trapped close to the heme group, which allows it to partition between the iron and the new binding site. This partitioning explains the existence of a high-spin-low-spin equilibrium after substrate binding. The close proximity of the water molecule to the heme iron indicates that it may also participate in the proton-transfer cascade that leads to heterolytic bond scission of oxygen in P450BM-3.  相似文献   

12.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

13.
Crystal structure of substrate-free Pseudomonas putida cytochrome P-450   总被引:6,自引:0,他引:6  
T L Poulos  B C Finzel  A J Howard 《Biochemistry》1986,25(18):5314-5322
The crystal structure of Pseudomonas putida cytochrome P-450cam in the substrate-free form has been refined at 2.20-A resolution and compared to the substrate-bound form of the enzyme. In the absence of the substrate camphor, the P-450cam heme iron atom is hexacoordinate with the sulfur atom of Cys-357 providing one axial heme ligand and a water molecule or hydroxide ion providing the other axial ligand. A network of hydrogen-bonded solvent molecules occupies the substrate pocket in addition to the iron-linked aqua ligand. When a camphor molecule binds, the active site waters including the aqua ligand are displaced, resulting in a pentacoordinate high-spin heme iron atom. Analysis of the Fno camphor - F camphor difference Fourier and a quantitative comparison of the two refined structures reveal that no detectable conformational change results from camphor binding other than a small repositioning of a phenylalanine side chain that contacts the camphor molecule. However, large decreases in the mean temperature factors of three separate segments of the protein centered on Tyr-96, Thr-185, and Asp-251 result from camphor binding. This indicates that camphor binding decreases the flexibility in these three regions of the P-450cam molecule without altering the mean position of the atoms involved.  相似文献   

14.
Previous studies on mammalian peroxidases and cytochrome P450 family 4 enzymes have shown that a carboxylic group positioned close to a methyl group of the prosthetic heme is required for the formation of a covalent link between a protein carboxylic acid side chain and the heme. To determine whether there are additional requirements for covalent bond formation in the P450 enzymes, a glutamic acid or an aspartic acid has been introduced into P450(cam) close to the heme 5-methyl group. Spectroscopic and kinetic studies of the resulting G248E and G248D mutants suggest that the carboxylate group coordinates with the heme iron atom, as reported for a comparable P450(BM3) mutant [Girvan, H. M., Marshall, K. R., Lawson, R. J., Leys, D., Joyce, M. G., Clarkson, J., Smith, W. E., Cheesman, M. R., and Munro, A. W. (2004) J. Biol. Chem. 279, 23274-23286]. The two P450(cam) mutants have low catalytic activity, but in contrast to the P450(BM3) mutant, incubation of the G248E (but not G248D) mutant with camphor, putidaredoxin, putidaredoxin reductase, and NADH results in partial covalent binding of the heme to the protein. No covalent attachment is observed in the absence of camphor or any of the other reaction components. Pronase digestion of the G248E P450(cam) mutant after covalent attachment of the heme releases 5-hydroxyheme, establishing that the heme is covalently attached through its 5-methyl group as predicted by in silico modeling. The results establish that a properly positioned carboxyl group is the sole requirement for autocatalytic formation of a heme-protein link in P450 enzymes, but also show that efficient covalent binding requires placement of the carboxyl close to the methyl but in a manner that prevents strong coordination to the iron atom.  相似文献   

15.
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) is the terminal enzyme in heme biosynthesis and catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme IX (heme). Due to the many critical roles of heme, synthesis of heme is required by the vast majority of organisms. Despite significant investigation of both the microbial and eukaryotic enzyme, details of metal chelation remain unidentified. Here we present the first structure of the wild-type human enzyme, a lead-inhibited intermediate of the wild-type enzyme with bound metallated porphyrin macrocycle, the product bound form of the enzyme, and a higher resolution model for the substrate-bound form of the E343K variant. These data paint a picture of an enzyme that undergoes significant changes in secondary structure during the catalytic cycle. The role that these structural alterations play in overall catalysis and potential protein-protein interactions with other proteins, as well as the possible molecular basis for these changes, is discussed. The atomic details and structural rearrangements presented herein significantly advance our understanding of the substrate binding mode of ferrochelatase and reveal new conformational changes in a structurally conserved pi-helix that is predicted to have a central role in product release.  相似文献   

16.
A fundamental aspect of cytochrome P450 function is the role of the strictly conserved axial cysteine ligand, replacement of which by histidine has invariably resulted in mammalian and bacterial preparations devoid of heme. Isolation of the His-436 variant of NH2-truncated P450 2B4 partly as the holoenzyme was achieved in the present study by mutagenesis of the I-helix Ala-298 residue to Glu and subsequent conversion of the axial Cys-436 to His. The expressed A298E/C436H double mutant, cloned with a hexahistidine tag, had a molecular mass equivalent to that of the primary structure of His-tagged truncated 2B4 and the sum of the two mutated residues, and contained a heme group which, when released on HPLC, showed a retention time and spectrum identical to those of iron protoporphyrin IX. The absolute spectra of A298E/C436H indicate a change in heme coordination structure from low- to high-spin, and, as expected for a His-ligated hemeprotein, the Soret maximum of the ferrous CO complex is at 422 nm. The double mutant has no oxygenase activity with representative substrates known to undergo transformation by the oxene [(FeO)3+] or peroxo activated oxygen species, but catalyzes significant H2O2 formation that is NADPH- and time-dependent, and directly proportional to the concentration of A298E/C436H in the presence of saturating reductase. Moreover, the catalytic efficiency of A298E/C436H in the H2O2-supported peroxidation of pyrogallol is more than two orders of magnitude greater than that of wild-type 2B4 or the A298E variant. The results unambiguously demonstrate that the proximal thiolate ligand is essential for substrate oxygenation by P450.  相似文献   

17.
Azole and triazole drugs are cytochrome P450 inhibitors widely used as fungal antibiotics and possessing potent antimycobacterial activity. We present here the crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP121 in complex with the triazole drug fluconazole, revealing a new azole heme ligation mode. In contrast to other structurally characterized cytochrome P450 azole complexes, where the azole nitrogen directly coordinates the heme iron, in CYP121 fluconazole does not displace the aqua sixth heme ligand but occupies a position that allows formation of a direct hydrogen bond to the aqua sixth heme ligand. Direct ligation of fluconazole to the heme iron is observed in a minority of CYP121 molecules, albeit with severe deviations from ideal geometry due to close contacts with active site residues. Analysis of both ligand-on and -off structures reveals the relative position of active site residues derived from the I-helix is a key determinant in the relative ratio of on and off states. Regardless, both ligand-bound states lead to P450 inactivation by active site occlusion. This previously unrecognized means of P450 inactivation is consistent with spectroscopic analyses in both solution and in the crystalline form and raises important questions relating to interaction of azoles with both pathogen and human P450s.  相似文献   

18.
Crystal structure-based mutagenesis studies on cytochrome P-450(BM-3) have confirmed the importance of R47, Y51, and F87 in substrate binding. Replacing F87 has profound effects on regioselectivity. In contrast, changing either R47 or Y51 alone to other residues results in limited impact on substrate binding affinity. Mutating both, however, leads to large changes. Substrate-induced protein conformational changes not only lead to specific substrate binding in the heme domain, but also affect interactions with the FMN domain. Unlike the microsomal P-450 reductase, the FMN semiquinone is the active electron donor to the heme iron in P-450(BM-3). The crystal structure of P-450(BM-3) heme/FMN bidomain provides important insights into why the FMN semiquinone is the preferred electron donor to the heme as well as how substrate-induced structural changes possibly affect the FMN and heme domain-domain interaction.  相似文献   

19.
In the preceding paper in this issue [Ost, T. W. B., Miles, C. S., Munro, A. W., Murdoch, J., Reid, G. A., and Chapman, S. K. (2001) Biochemistry 40, 13421-13429], we have established that the primary role of the phylogenetically conserved phenylalanine in flavocytochrome P450 BM3 (F393) is to control the thermodynamic properties of the heme iron, so as to optimize electron-transfer both to the iron (from the flavin redox partner) and onto molecular oxygen. In this paper, we report a detailed study of the F393H mutant enzyme, designed to probe the structural, spectroscopic, and metabolic profile of the enzyme in an attempt to identify the factors responsible for causing the changes. The heme domain structure of the F393H mutant has been solved to 2.0 A resolution and demonstrates that the histidine replaces the phenylalanine in almost exactly the same conformation. A solvent water molecule is hydrogen bonded to the histidine, but there appears to be little other gross alteration in the environment of the heme. The F393H mutant displays an identical ferric EPR spectrum to wild-type, implying that the degree of splitting of the iron d orbitals is unaffected by the substitution, however, the overall energy of the d-orbitals have changed relative to each other. Magnetic CD studies show that the near-IR transition, diagnostic of heme ligation state, is red-shifted by 40 nm in F393H relative to wild-type P450 BM3, probably reflecting alteration in the strength of the iron-cysteinate bond. Studies of the catalytic turnover of fatty acid (myristate) confirms NADPH oxidation is tightly coupled to fatty acid oxidation in F393H, with a product profile very similar to wild-type. The results indicate that gross conformational changes do not account for the perturbations in the electronic features of the P450 BM3 heme system and that the structural environment on the proximal side of the P450 heme must be conformationally conserved in order to optimize catalytic function.  相似文献   

20.
In nitric-oxide synthase (NOS) the FMN can exist as the fully oxidized (ox), the one-electron reduced semiquinone (sq), or the two-electron fully reduced hydroquinone (hq). In NOS and microsomal cytochrome P450 reductase the sq/hq redox potential is lower than that of the ox/sq couple, and hence it is the hq form of FMN that delivers electrons to the heme. Like NOS, cytochrome P450BM3 has the FAD/FMN reductase fused to the C-terminal end of the heme domain, but in P450BM3 the ox/sq and sq/hq redox couples are reversed, so it is the sq that transfers electrons to the heme. This difference is due to an extra Gly residue found in the FMN binding loop in NOS compared with P450BM3. We have deleted residue Gly-810 from the FMN binding loop in neuronal NOS (nNOS) to give Delta G810 so that the shorter binding loop mimics that in cytochrome P450BM3. As expected, the ox/sq redox potential now is lower than the sq/hq couple. Delta G810 exhibits lower NO synthase activity but normal levels of cytochrome c reductase activity. However, unlike the wild-type enzyme, the cytochrome c reductase activity of Delta G810 is insensitive to calmodulin binding. In addition, calmodulin binding to Delta G810 does not result in a large increase in FMN fluorescence as in wild-type nNOS. These results indicate that the FMN domain in Delta G810 is locked in a unique conformation that is no longer sensitive to calmodulin binding and resembles the "on" output state of the calmodulin-bound wild-type nNOS with respect to the cytochrome c reduction activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号