首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The nucleotide sequence of the entire beta-like globin gene cluster of rabbits has been determined. This sequence of a continuous stretch of 44.5 x 10(3) base-pairs (bp) starts about 6 x 10(3) bp upstream from epsilon (the 5'-most gene) and ends about 12 x 10(3) bp downstream from beta (the 3'-most gene). Analysis of the sequence reveals that: (1) the sequence is relatively A + T rich (about 60%); (2) regions with high G + C content are associated with OcC repeats, a short interspersed repeated DNA in rabbits; (3) the distribution of polypurines, polypyrimidines and alternating purine/pyrimidine tracts is not random within the cluster; (4) most open reading frames are associated with known globin coding regions, OcC repeats or long interspersed repeats (L1 repeats); (5) the most prominent open reading frames are found in the L1 repeats; (6) different strand asymmetries in base composition are associated with embyronic and adult genes as well as the tandem L1 repeats at the 3' end of the cluster; and (7) essentially all the repeats appear to have been inserted by a transposon mechanism. A comparison of the sequence with itself by a dot-plot analysis has revealed nine new members of the OcC family of repeats in addition to the six previously reported. The OcC repeats tend to be clustered, particularly in the epsilon-gamma and gamma-psi delta intergenic regions. Dot-plot comparisons between the rabbit and the human clusters have revealed extensive sequence matches. Homology starts about 6 x 10(3) bp 5' to epsilon or as far upstream as the rabbit sequence is available. It continues throughout the entire cluster and stops about 0.7 x 10(3) bp 3' to beta, at which point several repeats have inserted in both rabbits and humans. Throughout the gene cluster, the homology is interrupted mainly by insertions or deletions in either the rabbit or the human genome. Almost all of the insertions are of known short or long repeated DNAs. The positions of the insertions are different in the two gene clusters, which indicates that both short and long repeats have been transposing throughout the genome for the time since the mammalian radiation. An alignment of rabbit and human sequences allows the calculation of the substitution rate around epsilon. Sequences far removed from the gene are evolving at a rate equivalent to the pseudogene rate, although some short regions show an apparently higher rate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
5.
The beta-globin locus control region (LCR) is a cis regulatory element that is located in the 5' part of the locus and confers high-level erythroid lineage-specific and position-independent expression of the globin genes. The LCR is composed of five DNase I hypersensitive sites (HSs), four of which are formed in erythroid cells. The function of the 5'-most site, HS5, remains unknown. To gain insights into its function, mouse HS5 was cloned and sequenced. Comparison of the HS5 sequences of mouse, human, and galago revealed two extensively conserved regions, designated HS5A and HS5B. DNase I hypersensitivity mapping revealed that two hypersensitive sites are located within the HS5A region (designated HS5A(major) and HS5A(minor)), and two are located within the HS5B region (HS5B(major), HS5B(minor)). The positions of each of these HSs colocalize with either GATA-1 or Ap1/NF-E2 motifs, suggesting that these protein binding sites are implicated in the formation of HS5. Gel retardation assays indicated that the Ap1/NF-E2 motifs identified in murine HS5A and HS5B interact with NF-E2 or similar proteins. Studies of primary murine cells showed that HS5 is formed in all hemopoietic tissues tested (fetal liver, adult thymus, and spleen), indicating that this HS is not erythroid lineage specific. HS5 was detected in murine brain but not in murine kidney or adult liver, suggesting that this site is not ubiquitous. The presence of GATA-1 and NF-E2 motifs (which are common features of the DNase I hypersensitive sites of the LCR) suggests that the HS5 is organized in a manner similar to that of the other HSs. Taken together, our results suggest that HS5 is an inherent component of the beta-globin locus control region.  相似文献   

6.
The locus control region is required for high-level, position-independent expression of mammalian beta-globin genes. It is marked by five major DNase hypersensitive sites (HSs) in a 16 kb region of chromatin, and the protein-DNA complexes that form these HSs may interact in a holocomplex that carries out the full function of the locus control region. Previous studies showed that a large rabbit DNA fragment containing both HS2 and HS3 in their native sequence context and spacing produced a much larger increase in expression of a linked reporter gene than the sum of the largest effects observed with DNA fragments containing HS2 or HS3 individually. To test whether this reflected a synergistic interaction between the 200-400 bp cores of the HSs or if this effect required additional sequences outside the cores, combinations of different restriction fragments containing HS2 or HS3 were tested for their ability to increase the expression of a hybrid epsilon-globin-luciferase reporter gene in transfected K562 cells. The results show that the human HS2 and HS3 cores do not interact either additively or synergistically with the reporter gene when juxtaposed, and separation by spacer DNA has little effect on their function. Fragments of human DNA containing cores plus flanking sequences for HS3 or HS2 show an additive effect in combination, whereas homologous fragments of rabbit DNA containing HS3 and HS2 interact synergistically. At least part of this difference localizes to the rabbit DNA fragment containing HS3, which can interact synergistically with the human DNA fragment containing HS2. The region 5' to the HS3 core plays a role both in the cooperative interaction observed with the rabbit DNA fragment and the domain-opening observed with the human DNA. A minor DNase HS maps to this region, and the pattern of sequence conservation is consistent with some difference in function between species.  相似文献   

7.
The human growth hormone (hGH) cluster contains five genes. The hGH-N gene is predominantly expressed in pituitary somatotropes, whereas the remaining four genes, the chorionic somatomammotropin genes (hCS-L, hCS-A, and hCS-B) and hGH-V, are expressed selectively in the placenta. In contrast, the mouse genome contains a single pituitary-specific GH gene and lacks any GH-related CS genes. Activation of the hGH transgene in the mouse is dependent on its linkage to a previously described locus control region (LCR) located -15 to -32 kilobases upstream of the hGH cluster. The sporadic, nonreproducible expression of hCS transgenes lacking the LCR suggests that they may be dependent on hGH LCR activity as well. To determine whether the hCS genes could be expressed with appropriate placental specificity, a series of five transgenic mouse lines carrying an 87-kilobase human genomic insert encompassing the majority of the hGH gene cluster and the entire contiguous LCR was established. All of the hGH cluster genes were appropriately expressed in each of these lines. High level expression of hGH was restricted to the pituitary and hCS to the labyrinthine layer of the placenta. The expression of the GH cluster genes in their respective tissues paralleled transgene copy numbers irrespective of the transgene insertion site in the host mouse genome. These studies have extended the utility of the transgenic mouse model for the analysis of the full spectrum of hGH gene cluster activation. Further, they support a role for the hGH LCR in placental hCS, as well as pituitary hGH gene activation, and expression.  相似文献   

8.
Molete JM  Petrykowska H  Sigg M  Miller W  Hardison R 《Gene》2002,283(1-2):185-197
The distal locus control region (LCR) is required for high-level expression of the complex of genes (HBBC) encoding the beta-like globins of mammals in erythroid cells. Several major DNase hypersensitive sites (HSs 1-5) mark the LCR. Sequence conservation and direct experimental evidence have implicated sequences within and between the HS cores in function of the LCR. In this report we confirm the mapping of a minor HS between HS3 and HS4, called HS3.2, and show that sequences including it increase the number of random integration sites at which a drug resistance gene is expressed. We also show that nuclear proteins including GATA1 and Oct1 bind specifically to sequences within HS3.2. However, the protein Pbx1, whose binding site is the best match to one highly conserved sequence, does not bind strongly. GATA1 and Oct1 also bind in the HS cores of the LCR and to promoters in HBBC. Their binding to this minor HS suggests that they may be used in assembly of a large complex containing multiple regulatory sequences.  相似文献   

9.
Expression regulation of the beta-globin gene cluster is a result of synergistic interactions between cis-elements and trans-acting factors. Previous studies usually concentrated on the core sequence of each hypersensitive site in the locus control region of the beta-globin gene cluster. But more and more evidence illustrates that the flanking regions are indispensable also. Using electrophoretic mobility shift assay and solid-phase DNase I footprinting methods, we identified a small nuclear protein from K562 cells that binds specifically to the first AT-rich region flanking the hypersensitive site 2 core sequence of the human beta-globin gene locus control region. N-terminal sequencing of the enriched protein proved that it is a member of the high-mobility group protein 2 family. This indicates that the AT-rich region in human hypersensitive site 2 may take part in the regulation of the beta-globin gene cluster by facilitating DNA bending, which is a prerequisite for the looping mechanism in this region.  相似文献   

10.
Using ligation-mediated PCR and in vivo footprinting methods to study the status of DNA-protein interaction at hypersensitive site 2 of locus control region and beta(maj) promoter of erythroid cells of fetal liver and adult bone marrow, we found that during different developmental periods, the status of DNA-protein interaction at both hypersensitive site 2 and beta(maj) promoter changed significantly, and indicated that locus control region might function through a looping mechanism to regulate the expression of downstream genes, and that distal regulatory elements (locus control region, hypersensitive sites) as well as proximal regulatory elements (promoter, enhancer) of beta-globin gene cluster participate in the regulation of developmental specificity.  相似文献   

11.
Genomic sequences located at the 3' flanking region of the human CD2 gene confer high level tissue-specific, position-independent expression of the gene when introduced in the germ line of mice. In order to further characterize these sequences a range of deletions, from the 3' end were produced and transgenic mice were generated with the human CD2 (hCD2) gene linked to these deleted fragments. This allowed us to establish the minimum sequences necessary for the copy-dependent transgene expression. 2.1 kb or 1.5 kb of 3' flanking sequences linked to a hCD2 mini-gene is sufficient to allow T-cell specific, copy-dependent, integration-independent expression in transgenic mice. 1.1 kb of 3' sequences results in the gene being expressed in a T-cell specific manner, but copy-dependent, integration-independent expression was not observed in a small number of transgenic animals. 0.2 or 0.5 kb of 3' flanking sequences were insufficient to allow expression above the level previously found with a human CD2 gene which lacked 3' flanking sequences. We conclude that the Locus Control Region (LCR) effect is caused by 1.5 kb of flanking sequences immediately 3' to the polyadenylation signal of the gene.  相似文献   

12.
13.
14.
Elements with insulator/border activity have been characterized most extensively in Drosophila melanogaster. In vertebrates, the first example of such an element was provided by a hypersensitive site of the chicken beta-globin locus, cHS4. It has been proposed that the homologous site in humans, HS5, functions as a border of the human beta-globin locus. Here, we have characterized HS5 of the human beta-globin locus control region. We have examined its tissue-specificity and assessed its insulating properties in transgenic mice using a lacZ reporter assay. Most importantly, we have tested its enhancer blocking activity in the context of the full beta-globin locus. Our results show that HS5 is erythroid-specific rather than ubiquitous in human tissues. Furthermore, HS5 does not fulfil the criteria of a general in vivo insulator in the transgene protection assay. Finally, a HS5 conditional deletion from the complete locus demonstrates that HS5 has no discernable activity in adult erythroid cells. Surprisingly, HS5 functions as an enhancer blocker in embryonic erythroid cells. We conclude that HS5 is a developmental stage-specific border in erythroid cells.  相似文献   

15.
Integration position-independent expression of human globin transgenes in transgenic mice requires the presence of regulatory elements from the beta-globin locus control region (LCR) in the transgene construct. However, several recent studies have suggested that, while clearly necessary, such elements are not by themselves sufficient to realize this effect. In the case of the human fetal gamma-globin genes, previous results have indicated that additional regulatory information required for sheltering of gamma-globin transgene expression from position effects may reside downstream from the A gamma gene. To investigate this possibility, we established 17 lines of transgenic mice carrying constructs comprising a micro-LCR (microLCR) element, an A gamma-globin gene fragment, and a variable length of 3' sequence information beyond the A gamma 3' HindIII site. gamma-Globin expression during development was studied in 170 individual F2 progeny from these lines. We find that gamma-globin expression becomes sheltered from position effects when the normally position-sensitive microLCR-A gamma construct is extended by 600 bp beyond the 3' HindIII site to include a previously identified regulatory sequence (the A gamma-globin enhancer), the functional significance of which in vivo had heretofore been unclear. The results suggest that the mechanism whereby an upstream LCR achieves sheltering of globin gene expression from position effects involves cooperation with a gene-proximal regulatory element distinct from the promoter region.  相似文献   

16.
17.
Cytochrome P450 enzymes (CYP450s) represent a superfamily of haem-thiolate proteins. CYP450s are most abundant in the liver, a major site of drug metabolism, and play key roles in the metabolism of a variety of substrates, including drugs and environmental contaminants. Interaction of two or more different drugs with the same enzyme can account for adverse effects and failure of therapy. Human CYP3A4 metabolizes about 50% of all known drugs, but little is known about the orthologous CYP450s in horses. We report here the genomic organization of the equine CYP3A gene cluster as well as a comparative analysis with the human CYP3A gene cluster. The equine CYP450 genes of the 3A family are located on ECA 13 between 6.97-7.53 Mb, in a region syntenic to HSA 7 99.05-99.35 Mb. Seven potential, closely linked equine CYP3A genes were found, in contrast to only four genes in the human genome. RNA was isolated from an equine liver sample, and the approximately 1.5-kb coding sequence of six CYP3A genes could be amplified by RT-PCR. Sequencing of the RT-PCR products revealed numerous hitherto unknown single nucleotide polymorphisms (SNPs) in these six CYP3A genes, and one 6-bp deletion compared to the reference sequence (EquCab2.0). The presence of the variants was confirmed in a sample of genomic DNA from the same horse. In conclusion, orthologous genes for the CYP3A family exist in horses, but their number differs from those of the human CYP3A gene family. CYP450 genes of the same family show high homology within and between mammalian species, but can be highly polymorphic.  相似文献   

18.
A locus control region at -12 kb of the tyrosinase gene.   总被引:5,自引:1,他引:4       下载免费PDF全文
L Montoliu  T Umland    G Schütz 《The EMBO journal》1996,15(22):6026-6034
We have shown previously that the tyrosinase gene encompassed in a 250 kb yeast artificial chromosome (YAC) is expressed faithfully in transgenic mice. To define the sequences important for this qualitatively and quantitatively correct expression pattern, we have generated transgenic mice with YACs carrying several deletions in the mouse tyrosinase locus. In particular, we wanted to address the in vivo relevance of a regulatory element indicated by a cell-specific DNase I hypersensitive site (HS) located -12 kb upstream of the gene. Wild-type level expression was observed only when the YACs transferred contained this HS. Constructs in which the HS was deleted gave rise to much weaker expression and variable patterns of expression. In conclusion, this HS region appears to harbour the essential regulatory element for the correct expression of the tyrosinase gene. Moreover, it behaves as a locus control region in that it commands the functional status of this expression domain, protecting it from position effects.  相似文献   

19.
20.
Methods for increasing the transient level of expression of transfected DNA in cultured Drosophila cells have been examined. Here we show that cells exposed to the steroid hormone 20-hydroxyecdysone for 48h prior to transfection show an 4 to 5 fold increase in the levels of expression of transfected DNA. By analysis, in situ, this increase appears to be due to an increase in the number of cells expressing the transfected DNA. The stimulation in levels of expression is not correlated to any specific DNA sequence, nor does it occur if cells are exposed to hormone post-transfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号