首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism and process of production of active oxygen radicals in the respiratory burst of polymorphonuclear leukocytes (PMN) stimulated with PMA (phorbol myristate acetate) was studied in this paper. The experimental results indicate that when the PMA was dilute enough or at the beginning of stimulation even when the PMA concentration was high, the spectrum of hydroxyl radical spin adducts, DMPO-OH, was dominant in the ESR spectra. However, at the maximum level of the respiratory burst, the spectrum of superoxide anion spin adducts, DMPO-OOH, was dominant.  相似文献   

2.
Hydroxyl radical production by stimulated neutrophils reappraised   总被引:4,自引:0,他引:4  
Release of active oxygen species during the human neutrophil respiratory burst is thought to be mandatory for effective defense against bacterial infections and may play an important role in damage to host tissues. Part of the critical bacterial and host tissue damage has been attributed to hydroxyl radicals produced from superoxide and hydrogen peroxide. Because of the short life time of the very reactive hydroxyl radical, direct study of hydroxyl radical production is not possible; therefore, indirect detection methods such as electron spin resonance (ESR) coupled with appropriate spin-trapping agents such as 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) have been used. Superoxide production during the oxidative burst has been unambiguously demonstrated. Recent reports claim that hydroxyl radicals are not made during neutrophil stimulation and offer as an explanation the presence of granular components that interfere with hydroxyl radical production. When using the spin-trap agent DMPO, absence of the relatively long-lived adducts DMPO-OH and DMPO-CH3 has been assumed to be prima facie evidence for lack of hydroxyl radical participation. We show that high superoxide flux produced during stimulation of human neutrophils rapidly destroys both DMPO-OH and DMPO-CH3. In accord with previous implications, our results provide an alternative explanation for the absence of .OH adduct in spin-trapping studies and corroborate results obtained using other methods that implicate hydroxyl radical production during neutrophil stimulation.  相似文献   

3.
Human neutrophils activated with either particulate or soluble stimuli generate oxygen-centered free radicals which are detected by spin trapping in conjunction with electron spin resonance (ESR) spectroscopy. We investigated the effect of temperature on ESR spectra resulting from stimulation of human neutrophils with phorbol myristate acetate (PMA) or opsonized zymosan in the presence of the spin trap, 5,5-dimethyl-1-pyrroline 1-oxide (DMPO). At 20 degrees C with either stimuli, neutrophil superoxide production was manifested predominantly as the superoxide spin-trapped adduct, 5,5-dimethyl-5-hydroperoxy-1-pyrrolidinyloxy (DMPO-OOH). In contrast, at 37 degrees C, the hydroxyl spin-trapped adduct, 2,2-dimethyl-5-hydroxy-1-pyrrolidinyloxy (DMPO-OH) was dominant. No evidence of hydroxyl radical (defined as the methyl spin-trapped adduct, 2,2,5-trimethyl-1-pyrrolidinyloxy, DMPO-CH3) was observed, suggesting that elevated temperatures increased the rate of DMPO-OOH conversion to DMPO-OH. In addition, the elevated temperature activated a neutrophil reductase which accelerated the rate of DMPO-OH reduction to its corresponding hydroxylamine, 2,2-dimethyl-5-hydroxy-1-hydroxypyrrolidine. This bioreduction was dependent upon the presence of both superoxide and a phagocyte-derived factor (possibly a thiol) released into the surrounding media.  相似文献   

4.
Free radical production from the reaction of hydrazine and 1-acetyl-2-phenylhydrazine (AcPhHZ) with oxyhaemoglobin and with human red blood cells, has been observed by the electron spin resonance technique of spin trapping. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the free radical intermediates detected depended on the hydrazine derivative, oxyhaemoglobin and the oxyhaem/hydrazine derivative concentration ratio.

The reaction of hydrazine with oxyhaemoglobin in the presence of DMPO gave a nitroxide which was identified as a reduced dimer of DMPO. Whereas hydrazine-treated red blood cells, in the presence of DMPO, gave a nitroxide spin adduct which was identified as the hydroxyl radical spin adduct of DMPO, 5,5-dimethyl-1-pyrrolidino-1-oxyl (DMPO-OH).

The reaction of AcPhHZ with oxyhaemoglobin, in the presence of DMPO, gave DMPO-OH, the phenyl radical spin adduct of DMPO, 5,5-dimethyl-2-phenylpyrrolidino-1-oxyl (DMPO-Ph) and an oxidised derivative of DMPO, 5,5-dimethyl-2-pyrrolidone-1-oxyl (DMPOX). The amounts of DMPO-Ph, DMPO-OH and DMPOX observed depended on the 1-acetyl-2-phenyl-hydrazine/oxyhaemoglobin concentration ratio; DMPOX replaced DMPO-OH as the concentration of AcPhHZ was decreased. DMPOX production has been previously associated with the production of highly oxidised haem iron-oxygen intermediates. AcPhHZ treated red blood cells gave DMPO-Ph and DMPO-OH spin adducts in the presence of DMPO.

DMPO had little to no effect on the rate of oxygen consumption by oxyhaemoglobin with hydrazine and AcPhHZ. Moreover, the rate of oxyhaemoglobin oxidation induced by hydrazine, was not decreased by DMPO whereas the rate of oxyhaemoglobin oxidation induced by AcPhHZ was decreased approx. 40% by DMPO. DMPO (10 mM) gave a small decrease in haemolysis and lipid peroxidation induced by 1 mM hydrazine and AcPhHZ in a 1% suspension of red blood cells.  相似文献   


5.
By employing EPR spectrometry with the aid of a spin-trapping agent, 5,5-dimethyl-1-pyrroline-1-oxide (DMPO), the generation of superoxide anion and hydroxyl radical was reevaluated during the respiratory burst of porcine and human neutrophils. Properly prepared resting neutrophils did not generate any spin-trapped radical, and, when the cells were stimulated with phorbol myristate acetate, only DMPO-OOH, the spin-trapped adduct of superoxide anion, was detected. No formation of DMPO-OH, the spin-trapped adduct of the hydroxyl radical, was observed. DMPO-OOH was also detected principally when the neutrophils were stimulated with opsonized zymosan, a particulate stimulus. In the latter case, however, the formation of DMPO-OOH ceased shortly after the addition of zymosan and subsequent production of DMPO-OH was observed. The production of DMPO-OH was found to be associated with cell injury. DMPO at the concentration usually used for the experiment (0.045-0.09 M) injured phagocytizing neutrophils, causing lysis of the cells. On the other hand, an addition of cell homogenate or glutathione-glutathione peroxidase system to the suspension of intact cells which were producing DMPO-OOH resulted in the formation of DMPO-OH. Thus, DMPO-OH was probably derived from DMPO-OOH by the action of enzymes and/or factor(s) which were released from the lysed cells.  相似文献   

6.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   

7.
The oxidase reaction of lipoamide dehydrogenase with NADH generates superoxide radicals and hydrogen peroxide under aerobic conditions. ESR spin trapping using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was applied to characterize the oxygen radical species generated by lipoamide dehydrogenase and the mechanism of their generation. During the oxidase reaction of lipoamide dehydrogenase, DMPO-OOH and DMPO-OH signals were observed. The DMPO-OOH signal disappeared on addition of superoxide dismutase. These results demonstrate that the DMPO-OOH adduct was produced from the superoxide radical generated by lipoamide dehydrogenase. In the presence of dimethyl sulfoxide, a DMPO-CH3 signal appeared at the expense of the DMPO-OH signal, indicating that the DMPO-OH adduct was produced directly from the hydroxyl radical rather than by decomposition of the DMPO-OOH adduct. The DMPO-OH signal decreased on addition of superoxide dismutase, catalase, or diethylenetriaminepentaacetic acid, indicating that the hydroxyl radical was generated via the metal-catalyzed Haber-Weiss reaction from the superoxide radical and hydrogen peroxide. Addition of ferritin to the NADH-lipoamide dehydrogenase system resulted in a decrease of the DMPO-OOH signal, indicating that the superoxide radical interacted with ferritin iron.  相似文献   

8.
Experiments were conducted to determine which free radicals are generated during the metabolism of adriamycin (ADM) by canine tracheal epithelial (CTE) cells, guinea pig enterocytes, and rat hepatocytes. The technique employed in this study was spin trapping; the spin trap utilized was 5,5-dimethyl-1-pyrroline-1-oxide (DMPO). The spin adduct 2-hydroxy-5,5-dimethyl-1-pyrrolidinyloxyl (DMPO-OH) was observed during the metabolism of ADM by CTE cells. However, the addition of dimethyl sulfoxide to the in vitro system suggested that superoxide is initially spin trapped by the nitrone, and that the adduct 2-hydroperoxy-5,5-dimethyl-1-pyrrolidinyloxyl (DMPO-OOH) is rapidly bioreduced to afford DMPO-OH. The addition of superoxide dismutase to the system indicated that superoxide generation was primarily intracellular. The adriamycin semiquinone free radical (ADM-SQ) was produced during the metabolism by enterocytes and hepatocytes. The rate of the production of ADM-SQ was enhanced under anaerobic conditions, suggesting that molecular oxygen was responsible for the degradation of this carbon-centered free radical. However, spin trapping of oxygen radicals was not observed; this observation suggests that these reactive intermediates are not produced at concentrations sufficient for detection by spin-trapping experiments.  相似文献   

9.
《Free radical research》2013,47(1-2):37-45
Vanadyl reacts with hydrogen peroxide forming hydroxyl radicals in a Fenton-like reaction. The hydroxyl radicals were spin trapped and identified using 5.5-dimethyl-I-pyrroline-N-oxide (DMPO). The quantity of hydroxyl radicals spin trapped during the reaction between vanadyl and hydrogen peroxide are equal to half of the hydroxyl radicals spin trapped during the reaction between ferrous ions and hydrogen peroxide. Experiments in the presence of formate show that this hydroxyl radical scavenger effectively competes with DMPO preventing the formation of the DMPO-OH adduct. However. in experiments using ethanol as the hydroxyl radical scavenger it was not possible to completely prevent the formation of DMPO-OH. The formation of this additional DMPO-OH in the presence of ethanol does not depend on the concentration of dissolved oxygen, but does depend on the concentration of hydrogen peroxide added to the vanadyl solution. The results suggest that the additional DMPO-OH formed in the presence of ethanol originates from a vanadium (V) intermediate. This intermediate may oxidize DMPO leading to the formation of DMPO-0; which rapidly decomposes forming DMPO-OH.  相似文献   

10.
Vanadyl reacts with hydrogen peroxide forming hydroxyl radicals in a Fenton-like reaction. The hydroxyl radicals were spin trapped and identified using 5.5-dimethyl-I-pyrroline-N-oxide (DMPO). The quantity of hydroxyl radicals spin trapped during the reaction between vanadyl and hydrogen peroxide are equal to half of the hydroxyl radicals spin trapped during the reaction between ferrous ions and hydrogen peroxide. Experiments in the presence of formate show that this hydroxyl radical scavenger effectively competes with DMPO preventing the formation of the DMPO-OH adduct. However. in experiments using ethanol as the hydroxyl radical scavenger it was not possible to completely prevent the formation of DMPO-OH. The formation of this additional DMPO-OH in the presence of ethanol does not depend on the concentration of dissolved oxygen, but does depend on the concentration of hydrogen peroxide added to the vanadyl solution. The results suggest that the additional DMPO-OH formed in the presence of ethanol originates from a vanadium (V) intermediate. This intermediate may oxidize DMPO leading to the formation of DMPO-0; which rapidly decomposes forming DMPO-OH.  相似文献   

11.
Electron spin resonance (ESR) studies on spin trapping of superoxide and hydroxyl radicals by 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) were performed in NADPH-cytochrome P-450 reductase-paraquat systems at pH 7.4. Spin adduct concentrations were determined by comparing ESR spectra of the adducts with the ESR spectrum of a stable radical solution. Kinetic analysis in the presence of 100 microM desferrioxamine B (deferoxamine) showed that: 1) the oxidation of 1 mol of NADPH produces 2 mol of superoxide ions, all of which can be trapped by DMPO when extrapolated to infinite concentration; 2) the rate constant for the reaction of superoxide with DMPO was 1.2 M-1 s-1; 3) the superoxide spin adduct of DMPO (DMPO-OOH) decays with a half-life of 66 s and the maximum level of DMPO-OOH formed can be calculated by a simple steady state equation; and 4) 2.8% or less of the DMPO-OOH decay occurs through a reaction producing hydroxyl radicals. In the presence of 100 microM EDTA, 5 microM Fe(III) ions nearly completely inhibited the formation of the hydroxyl radical adduct of DMPO (DMPO-OH) as well as the formation of DMPO-OOH and, when 100 microM hydrogen peroxide was present, produced DMPO-OH exclusively. Fe(III)-EDTA is reduced by superoxide and the competition of superoxide and hydrogen peroxide in the reaction with Fe(II)-EDTA seems to be reflected in the amounts of DMPO-OOH and DMPO-OH detected. These effects of EDTA can be explained from known kinetic data including a rate constant of 6 x 10(4) M-1 s-1 for reduction of DMPO-OOH by Fe(II)-EDTA. The effect of diethylenetriamine pentaacetic acid (DETAPAC) on the formation of DMPO-OOH and DMPO-OH was between deferoxamine and EDTA, and about the same as that of endogenous chelator (phosphate).  相似文献   

12.
Phosphorylation of a 47 kDa protein in human neutrophils is induced by phorbol 12-myristate 13-acetate (PMA), opsonized latex beads, fMet-Leu-Phe, calcium ionophore A23187 and fluoride. All of these stimuli activate the specialized microbicidal respiratory burst of neutrophils, and in each case the kinetics of activation correspond with the kinetics of phosphorylation of the 47 kDa protein. Trifluoperazine (50 microM) and chlorpromazine (100 microM), inhibitors of calmodulin and protein kinase C, abolish the increase in oxygen consumption and selectively prevent phosphorylation of the 47 kDa protein after PMA stimulation. Treatment of neutrophils with pertussis toxin totally inhibits both superoxide production and phosphorylation of this protein in response to fMet-Leu-Phe, but not in response to PMA, indicating that a GTP-binding protein modulates the fMet-Leu-Phe receptor signal. Phosphorylation of the 47 kDa protein, a phenomenon absent from the neutrophils of subjects with autosomal recessive chronic granulomatous disease, which lack the respiratory burst, appears to be the common trigger for activation of the burst in normal neutrophils.  相似文献   

13.
The unicellular marine phytoplankton Chattonella marina is known to have toxic effects against various living marine organisms, especially fishes. However, details of the mechanism of the toxicity of this plankton remain obscure. Here we demonstrate the generation of superoxide and hydroxyl radicals from a red tide unicellular organism, C. marina, by using ESR spectroscopy with the spin traps 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and N-t-butyl-alpha-phenylnitrone (PBN), and by using the luminol-enhanced chemiluminescence response. The spin-trapping assay revealed productions of spin adduct of superoxide anion (O2-) (DMPO-OOH) and that of hydroxyl radical (.OH) (DMPO-OH) in the algal suspension, which was not observed in the ultrasonic-ruptured suspension. The addition of superoxide dismutase (500 U/ml) almost completely inhibited the formation of both DMPO-OOH and DMPO-OH, and carbon-centered radicals were generated with the disappearance of DMPO-OH after addition of 5% dimethyl sulfoxide (Me2SO) and 5% ethanol. Furthermore, the generation of methyl and methoxyl radicals, which are thought to be produced by the reaction of hydroxyl radical and Me2SO under aerobic condition, was identified using spin trapping with a combination of PBN and Me2SO. Luminol-enhanced chemiluminescence assay also supported the above observations. These results clearly indicate that C. marina generates and releases the superoxide radical followed by the production of hydroxyl radical to the surrounding environment. The velocity of superoxide generation by C. marina was about 100 times faster than that by mammalian phagocytes per cell basis. The generation of oxygen radical is suggested to be a pathogenic principle in the toxication of red tide to susceptible aquaculture fishes and may be directly correlated with the coastal pollution by red tide.  相似文献   

14.
Using the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and an excess of dimethyl sulfoxide, we previously reported that in the absence of an exogenous iron catalyst, human neutrophils will not generate hydroxyl radical, manifested as the catalse-inhibitable methyl radical spin-trapped adduct, 2,2,5-trimethyl-1-pyrrolidinyloxy (DMPO-CH3) (Britigan, B. E., Rosen, G. M., Chai, Y., and Cohen, M. S. (1986) J. Biol. Chem. 261, 4426-4431). However, superoxide destroys the preformed hydroxyl radical spin-trapped adduct, 2,2-dimethyl-5-hydroxy-1-pyrrolidinyloxy (DMPO-OH), and DMPO-CH3. The present study was undertaken to better resolve the limits of sensitivity of the spin-trapping method. Photolytically generated DMPO-CH3 and DMPO-OH slowly decomposed in the presence of a low flux (1 microM/min) of enzymatically (xanthine/xanthine oxidase)-generated superoxide, but more rapid decomposition of these adducts occurred with higher superoxide flux (5 microM/min). Inclusion of cysteine markedly increased the rate of DMPO-OH and DMPO-CH3 decomposition, masking the effect of superoxide alone. The addition of varying concentrations of superoxide dismutase did not lead to increased formation of DMPO-OH or DMPO-CH3, as should have occurred if these adducts were being destroyed by superoxide. As a positive control, we employed an iron-supplemented system with phorbol 12-myristate 13-acetate-stimulated neutrophils or xanthine/xanthine oxidase to generate DMPO-CH3. Addition of superoxide dismutase increased the magnitude of DMPO-CH3, primarily by increasing the rate of hydrogen peroxide formation, and to a lesser extent by prolonging the half-life of DMPO-CH3. Although spin-trapped adducts can be destroyed by a high concentration of superoxide, or by lower concentrations of superoxide in the presence of thiol-containing compounds, our results demonstrate that such decomposition does not interfere with the ability of the spin-trapping method to detect hydroxyl radical generated by human neutrophils. These data do not support the capacity of neutrophils to generate hydroxyl radical in the absence of an exogenous Haber-Weiss catalyst.  相似文献   

15.
Activation of human neutrophils leads to secretion of myeloperoxidase (MPO) with resulting generation of several oxidant species including OCl-. Spin trapping techniques employing 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) are being applied increasingly to the investigation of free radical production by in vitro and in vivo experimental systems which contain neutrophils. Because such knowledge is critical to the interpretation of these data, we examined the impact of MPO and MPO-derived oxidants on DMPO spin adduct formation and stability. Addition of increasing concentrations of OCl- to DMPO yielded a number of EPR-detectable products including DMPO-OH. However, the concentration of OCl- required was in excess of that expected under physiologic conditions. Addition of purified human MPO and H2O2 to DMPO yielded EPR spectra consisting of small DMPO-OH peaks. The addition of MPO and H2O2 to preformed DMPO-OH and DMPO-CH3 resulted in rapid destruction of these spin adducts. Thus MPO/H2O2 appeared to both generate and destroy DMPO spin adducts. Neutrophils stimulated with phorbol myristate acetate or opsonized zymosan generated large DMPO-OOH and DMPO-OH peaks as well as small DMPO-CH3 peaks. Addition of the MPO inhibitor azide to the reaction mixture had no effecting on resulting DMPO-OH or DMPO-CH3 peak amplitudes but increased that of DMPO-OOH. These data suggest that MPO-derived oxidants likely have little impact on the nature of EPR spectra resulting from DMPO spin trapping of free radical species following neutrophil stimulation. Because MPO oxidants did appear to react with DMPO the ability of DMPO to protect a biologic target from in vitro MPO injury was examined. DMPO (greater than 10 mM) significantly decreased MPO/H2O2/Cl- -mediated erythrocyte hemolysis as assessed by 51Cr release. The experimental and/or pharmacologic implications of this observation require further study.  相似文献   

16.
The aim of this work was to study the proliferation pathological perturbations of cultured chondrocytes in response to menadione, an oxygen free radicals producing drug. Rabbit articular chondrocytes in monolayer culture were treated with 10-5, 1.5.M-5 and 2.10-5M of menadione during three days. A dose dependent decrease of the proliferative capacity was observed. Flow cytometry analysis revealed a perturbation of the cell cycle progression consisting in an accumulation of cells in the S and G2 + M phases. This growth perturbation was due to oxygen radicals production since a treatment with catalase suppressed these toxic effects. Furthermore, to identify oxygen derived radicals in the cellular suspension of cultures treated with menadione, we used a technique of spin-trapping coupled with electron spin resonance (ESR). The ESR signal corresponding to the DMPO hydroxyl radical adduct (DMPO-OH) has been detected. The spectra observation indicated the actual production of hydroxyl radical. However, superoxide anions have not been identified; this fact can be explained by the low reactivity of these anions with DMPO and by the decomposition of signal DMPO-OOH to DMPO-OH.  相似文献   

17.
Nitrone/nitroso spin traps are often used for detection of unstable hydroxyl radical giving stable nitroxide radicals with characteristic electron spin resonance (ESR) signals. This technique may be useful only when the nitroxide radicals are kept stable in the reaction system. The aim of the present study is to clarify whether the nitroxide radicals are kept stable in the presence of the hydroxyl radical scavengers. Effect of hydroxyl radical scavengers on the ESR signals of nitroxide radicals, 2,2,6,6-tetramethyI-piperi-dine-N-oxyl (TEMPO) and the spin adduct (DMPO-OH) of 5,5-dimethyl-l-pyrroline N-oxide (DMPO) and hydroxyl radical, was examined. Although the ESR signals of TEMPO and the DMPO-OH spin adduct were unchanged on treatment with ethanol and dimethyl sulfoxide, their intensities were effectively decreased on treatment with 6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox), cysteine, glutathione, 2-mercaptoethanol and metallothionein. Hence, the results of the detection of hydroxyl radical in the presence of phenolic and thiol antioxidants by the ESR technique using nitrone/nitroso spin traps may be unreliable.  相似文献   

18.
The activity of nitric oxide synthase (NOS) during the respiratory burst in phorbol-1,2-myristate-1,3-acetate (PMA) stimulated macrophages has been the topic of much debate in the literature. To help clarify the role of NOS, we have examined the chemiluminescence arising from peroxynitrite production, nitrite/nitrate and nitric oxide production, and oxygen consumption during the respiratory burst in PMA-stimulated macrophages. The Griess reaction was used to measure nitrite/nitrate, spin trapping with N-methyl D-glucamine dithiocarbamate (MGD)2-Fe2+ was used to quantify nitric oxide, and the spin probe 2,2,6,6-tetramethylpiperidine-N-oxyl-4-ol (TEMPOL) was used to measure oxygen consumption. Oxygen free radical production (hydroxyl and superoxide free radicals) was also investigated using the spin trap 5,5-dimethyl-1-pyroline-1-oxide (DMPO). The chemiluminescence emitted by the PMA-stimulated macrophages and nitrite/nitrate in the culture system were both found to increase. However, the rate of nitric oxide release remained constant, indicating that the activity of NOS is not enhanced during the respiratory burst in PMA stimulated macrophages.  相似文献   

19.
A J Carmichael 《FEBS letters》1990,261(1):165-170
Vanadyl (VO2+) complexed to RNA reacts with hydrogen peroxide in a Fenton-like manner producing hydroxyl radicals (.OH). The hydroxyl radicals can be spin trapped with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) forming the DMPO-OH spin adduct. In addition, in the presence of ethanol the formation of the hydroxyethyl radical adduct of DMPO (DMPO-ETOH) confirms the production of hydroxyl radicals by the RNA/VO2+ complex. When the reaction between the RNA/VO2+ complex and H2O2 is carried out in the presence of the spin trap 2-methyl-2-nitrosopropane (MNP), radicals produced in the reaction of .OH with RNA are trapped. Base hydrolysis of the MNP-RNA adducts (pH 12) followed by a reduction in the pH to pH 7 after hydrolysis is complete, yields an MNP adduct with a well-resolved ESR spectrum identical to the ESR spectrum obtained from analogous experiments with poly U. The ESR spectrum consists of a triplet of sextets (aN = 1.48 mT, a beta N = 0.25 mT and a beta H = 0.14 mT), indicating that the unpaired nitroxide electron interacts with the nuclei of a beta-nitrogen and beta-hydrogen. The results suggest that the .OH generated in the RNA/VO2+ reaction with H2O2 add to the C(5) carbon of uracil forming a C(6) carbon centered radical. This radical is subsequently spin trapped by MNP.  相似文献   

20.
Incubation of MC-1010 cells with the spin-trapping agent 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) followed by brief treatment with the solid oxidant lead dioxide (PbO2) yielded, after filtration, a cell-free solution that contained two nitroxyl adducts. The first was the hydroxyl radical adduct, 5,5-dimethyl-2-hydroxypyrrolidine-1-oxyl (DMPO-OH), which formed immediately upon PbO2 oxidation. The second had a 6-line EPR spectrum typical of a carbon-centered radical (AN=15.9 G; AH=22.4 G) and formed more slowly. No radical signals were detected in the absence of either cells or PbO2 treatment. The 6-line spectrum could be duplicated in model systems that contained ascorbate, DMPO and DMPO-OH, where the latter was formed from hydroxyl radicals generated by sonolysis or the cleavage of hydrogen peroxide with Fe2+ (Fenton reaction). In addition, enrichment of MC-1010 cells with ascorbate prior to spin trapping yielded the 6-line EPR spectrum as the principal adduct following PbO2 oxidation and filtration. These results suggest that ascorbate reacted with DMPO-OH to form a carbon-centered ascorbyl radical that was subsequently trapped by DMPO. The requirement for mild oxidation to detect the hydroxyl radical adduct suggests that DMPO-OH formed in the cells was reduced to an EPR-silent form (i.e., the hydroxylamine derivative). Alternatively, the hydroxylamine derivative was the species initially formed. The evidence for endogenous hydroxyl radical formation in unstimulated leukocytes may be relevant to the leukemic nature of the MC-1010 cell line. The spin trapping of the ascorbyl radical is the first report of formation of the carbon-centered ascorbyl radical by means other than pulse radiolysis. Unless it is spin trapped, the carbon-centered ascorbyl radical immediately rearranges to the more stable oxygen-centered species that is passive to spin trapping and characterized by the well-known EPR doublet of AH4=1.8 G.Abbreviation EPR Electron Paramagnetic Resonance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号