首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu J  Lu Z  Reinach P  Zhang J  Dai W  Lu L  Xu M 《Experimental cell research》2006,312(18):3631-3640
The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-beta2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-beta2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-beta2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-beta2 and FGF-2 oppositely affect BCE cell proliferation and TGF-beta2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-beta2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-beta2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-beta2-induced suppression of the PI3-kinase/AKT signaling pathway.  相似文献   

2.
The fibroblast growth factor (FGF)-2 isoform of 210 amino acids (HMW FGF-2) contains a nuclear localization sequence (NLS) and is targeted to the nucleus. This FGF-2 isoform allows cells to grow in low serum concentrations through still unknown mechanisms called intracrine regulations. Different peptide hormones and cytokines have been found to be nuclearized through NLS and to induce cell proliferation. The existence of molecules acting as negative regulators of the intracrine-induced cell growth has not been explored. Pancreatic cells AR4-2J were stably transfected to express selectively the HMW FGF-2. We demonstrated that activation of the somatostatin receptor subtype SST2 by the somatostatin analogue RC-160 in serum-deprived medium inhibits the mitogenic effect of the HMW FGF-2, without affecting growth of control cells. The signaling pathway implicates Galphai/JAK2/SHP-1. The Galphai inhibitor pertussis toxin and the JAK2 inhibitor AG490 abrogate the inhibitory effect of RC-160 on HMW FGF-2-induced cell growth. Co-immunoprecipitation studies demonstrate the constitutive association of JAK2 and SHP-1, and RC-160 induces a rapid activation of both proteins followed by the dissociation of the complex. AG490 prevents the RC-160 induced SHP-1 activation indicating the implication of JAK2 in this process. JAK2 and SHP-1 are immunoprecipitated with SST2 in basal conditions indicating the existence of a functional signaling complex at the receptor level. In summary, these data provide the following evidence: 1) the intracrine-induced proliferation can be reversed by extracellular acting polypeptides; 2) SST2 inhibitory signaling may involve the JAK2/SHP-1 pathway.  相似文献   

3.
The NBT-II rat carcinoma cell line exhibits two mutually exclusive responses to FGF-1 and EGF, entering mitosis at cell confluency while undergoing an epithelium-to-mesenchyme transition (EMT) when cultured at subconfluency. EMT is characterized by acquisition of cell motility, modifications of cell morphology, and cell dissociation correlating with the loss of desmosomes from cellular cortex. The pleiotropic effects of EGF and FGF-1 on NBT-II cells suggest that multiple signaling pathways may be activated. We demonstrate here that growth factor activation is linked to at least two intracellular signaling pathways. One pathway leading to EMT involves an early and sustained stimulation of pp60c-src kinase activity, which is not observed during the growth factor-induced entry into the cell cycle. Overexpression of normal c-src causes a subpopulation of cells to undergo spontaneous EMT and sensitizes the rest of the population to the scattering activity of EGF and FGF-1 without affecting their mitogenic responsiveness. Addition of cholera toxin, a cAMP-elevating agent, severely perturbs growth factor induction of EMT without altering pp60c-src activation, therefore demonstrating that cAMP blockade takes place downstream or independently of pp60c-src. On the other hand, overexpression of a mutated, constitutively activated form of pp60c-src does not block cell dispersion while strongly inhibiting growth factor-induced entry into cell division. Moreover, stable transfection of a dominant negative mutant of c-src inhibits the scattering response without affecting mitogenesis induced by the growth factors. Altogether, these results suggest a role for pp60c-src in epithelial cell scattering and indicate that pp60c-src might contribute unequally to the two separate biological activities engendered by a single signal.  相似文献   

4.
Using the cytoplasmic domain of fibroblast growth factor receptor 1 (FGFR1) as bait in a yeast two-hybrid screen, Grb14 was identified as a FGFR1 binding partner. A kinase-inactive mutant of FGFR1 failed to interact with Grb14, indicating that activation of FGFR1 is necessary for binding. Deletion of the C-tail or mutation of both C-tail tyrosine residues of FGFR1 to phenylalanine abolished binding, and deletion of the juxtamembrane domain of the receptor reduced binding, suggesting that Grb14 binds to FGFR1 at multiple sites. Co-immunoprecipitation and in vitro binding assays demonstrated that binding of Grb14 to FGFR1 in mammalian cells was dependent on receptor activation by fibroblast growth factor-2 (FGF-2). Deletion of the Src homology 2 (SH2) domain of Grb14 reduced but did not block binding to FGFR1 and eliminated dependence on receptor activation. The SH2 domain alone bound both FGFR1 and platelet-derived growth factor receptor, whereas full-length Grb14 bound only FGFR1, suggesting that regions upstream of the SH2 domain confer specificity for FGFR1. Grb14 was phosphorylated on serine and threonine residues in unstimulated cells, and treatment with FGF-2 enhanced this phosphorylation. Expression of exogenous Grb14 inhibited FGF-2-induced cell proliferation, whereas a point-mutated form of Grb14 incapable of binding to FGFR1 enhanced FGF-2-induced mitogenesis. These data demonstrate an interaction between activated FGFR1 and Grb14 and suggest a role for Grb14 in FGF signaling.  相似文献   

5.
FGF-2 exerts its pleiotropic effects on cell growth and differentiation by interacting with specific cell surface receptors. In addition, exogenously added FGF-2 is translocated from outside the cell to the nucleus during G1-S transition. In this study, we show that a single point mutation in FGF-2 (substitution of residue serine 117 by alanine) is sufficient to drastically reduce its mitogenic activity without affecting its differentiation properties. The FGF-2(S117A) mutant binds to and activates tyrosine kinase receptors and induces MAPK and p70S6K activation as strongly as the wild-type FGF-2. We demonstrate that this mutant enters NIH3T3 cells, is translocated to the nucleus, and is phosphorylated similar to the wild-type growth factor. This suggests that FGF-2 mitogenic activity may require, in addition to signaling through cell surface receptors and nuclear translocation, activation of nuclear targets. We have previously shown that, in vitro, FGF-2 directly stimulates the activity of the casein kinase 2 (CK2), a ubiquitous serine/threonine kinase involved in the control of cell proliferation. We report that, in vivo, FGF-2(WT) transiently interacts with CK2 and stimulates its activity in the nucleus during G1-S transition in NIH3T3 cells. In contrast, the FGF-2(S117A) mutant fails to interact with CK2. Thus, our results show that FGF-2 mitogenic and differentiation activities can be dissociated by a single point mutation and that CK2 may be a new nuclear effector involved in FGF-2 mitogenic activity.-Bailly, K., Soulet, F., Leroy, D., Amalric, F., Bouche, G. Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor (FGF-2).  相似文献   

6.
It is now well-recognized that the mitogen-activated protein (MAP) kinase cascade facilitates signaling from an activated tyrosine kinase receptor to the nucleus. In fact, an increasing number of extracellular effectors have been reported to activate the MAP kinase cascade, with a significant number of cellular responses attributed to this activation. We set out to explore how two extracellular effectors, basic fibroblast growth factor (bFGF) and insulin-like growth factor 1 (IGF-1), which have both been reported to activate MAP kinase, generate quite distinct cellular responses in C2C12 myoblasts. We demonstrate here that bFGF, which is both a potent mitogen and inhibitor of myogenic differentiation, is a strong MAP kinase agonist. By contrast, IGF-1, which is equally mitogenic for C2C12 cells but ultimately enhances the differentiated phenotype, is a weak activator of the MAP kinase cascade. We further demonstrate that IGF-1 is a potent activator of both insulin receptor substrate IRS-1 tyrosyl phosphorylation and association of IRS-1 with activated phosphatidylinositol 3-kinase (PI 3-kinase). Finally, use of the specific MAP kinase kinase inhibitor, PD098059, and wortmannin, a PI 3-kinase inhibitor, suggests the existence of an IGF-1-induced, MAP kinase-independent signaling event which contributes to the mitogenic response of this factor, whereas bFGF-induced mitogenesis appears to strongly correlate with activation of the MAP kinase cascade.  相似文献   

7.
Fibroblast growth factor 1 (FGF-1) induces neurite outgrowth in PC12 cells. Recently, we have shown that the FGF receptor 1 (FGFR-1) is much more potent than FGFR-3 in induction of neurite outgrowth. To identify the cytoplasmic regions of FGFR-1 that are responsible for the induction of neurite outgrowth in PC12 cells, we took advantage of this difference and prepared receptor chimeras containing different regions of the FGFR-1 introduced into the FGFR-3 protein. The chimeric receptors were introduced into FGF-nonresponsive variant PC12 cells (fnr-PC12 cells), and their ability to mediate FGF-stimulated neurite outgrowth of the cells was assessed. The juxtamembrane (JM) and carboxy-terminal (COOH) regions of FGFR-1 were identified as conferring robust and moderate abilities, respectively, for induction of neurite outgrowth to FGFR-3. Analysis of FGF-stimulated activation of signal transduction revealed that the JM region of FGFR-1 conferred strong and sustained tyrosine phosphorylation of several cellular proteins and activation of MAP kinase. The SNT/FRS2 protein was demonstrated to be one of the cellular substrates preferentially phosphorylated by chimeras containing the JM domain of FGFR-1. SNT/FRS2 links FGF signaling to the MAP kinase pathway. Thus, the ability of FGFR-1 JM domain chimeras to induce strong sustained phosphorylation of this protein would explain the ability of these chimeras to activate MAP kinase and hence neurite outgrowth. The role of the COOH region of FGFR-1 in induction of neurite outgrowth involved the tyrosine residue at amino acid position 764, a site required for phospholipase C gamma binding and activation, whereas the JM region functioned primarily through a non-phosphotyrosine-dependent mechanism. In contrast, assessment of the chimeras in the pre-B lymphoid cell line BaF3 for FGF-1-induced mitogenesis revealed that the JM region did not play a role in this cell type. These data indicate that FGFR signaling can be regulated at the level of intracellular interactions and that signaling pathways for neurite outgrowth and mitogenesis use different regions of the FGFR.  相似文献   

8.
ATP, acting via P2Y, G protein-coupled receptors (GPCRs), is a mitogenic signal and also synergistically enhances fibroblast growth factor-2 (FGF-2)-induced proliferation in astrocytes. Here, we have examined the effects of ATP and FGF-2 cotreatment on the main components of the extracellular-signal regulated protein kinase (ERK) cascade, cRaf-1, MAPK/ERK kinase (MEK) and ERK, key regulators of cellular proliferation. Surprisingly, ATP inhibited activation of cRaf-1 by FGF-2 in primary cultures of rat cortical astrocytes. The inhibitory effect did not diminish MEK and ERK activation; indeed, cotreatment resulted in a greater initial activation of ERK. ATP inhibition of cRaf-1 activation was not mediated by an increase in cyclic AMP levels or by protein kinase C activation. ATP also inhibited the activation of cRaf-1 by other growth factors, epidermal growth factor and platelet-derived growth factor, as well as other MEK1 activators stimulated by FGF-2, MEK kinase 1 (MEKK1) and MEKK2. Serotonin, an agonist of another GPCR coupled to ERK, did not inhibit FGF-2-induced cRaf-1 activation, thereby indicating specificity in the ATP-induced inhibitory cross-talk. These findings suggest that ATP stimulates an inhibitory activity that lays upstream of MEK activators and inhibits growth factor-induced activation of cRaf-1 and MEKKS: Such a mechanism might serve to integrate the actions of receptor tyrosine kinases and P2Y-GPCRS:  相似文献   

9.
Fibroblast growth factor 1 (FGF-1) shows strong angiogenic, osteogenic and tissue-injury repair properties that might be relevant to medical applications. Since FGF-1 is partially unfolded at physiological temperature we decided to increase significantly its conformational stability and test how such an improvement will affect its biological function. Using an homology approach and rational strategy we designed two new single FGF-1 mutations: Q40P and S47I that appeared to be the most strongly stabilizing substitutions among those reported so far, increasing the denaturation temperature by 7.8 deg. C and 9.0 deg. C, respectively. As our goal was to produce highly stable variants of the growth factor, we combined these two mutations with five previously described stabilizing substitutions. The multiple mutants showed denaturation temperatures up to 27 deg. C higher than the wild-type and exhibited full additivity of the mutational effects. All those mutants were biologically competent in several cell culture assays, maintaining typical FGF-1 activities, such as binding to specific cell surface receptors and activation of downstream signaling pathways. Thus, we demonstrate that the low denaturation temperature of wild-type FGF-1 is not related to its fundamental cellular functions, and that FGF-1 action is not affected by its stability. A more detailed analysis of the biological behavior of stable FGF-1 mutants revealed that, compared with the wild-type, their mitogenic properties, as probed by the DNA synthesis assay, were significantly increased in the absence of heparin, and that their half-lives were extensively prolonged. We found that the biological action of the mutants was dictated by their susceptibility to proteases, which strongly correlated with the stability. Mutants which were much more resistant to proteolytic degradation always displayed a significant improvement in the half-life and mitogenesis. Our results show that engineered stable growth factor variants exhibit enhanced and prolonged activity, which can be advantageous in terms of the potential therapeutic applications of FGF-1.  相似文献   

10.
Keratinocyte growth factor (KGF)/fibroblast growth factor-7 (FGF-7) is a paracrine- and epithelium-specific growth factor produced by cells of mesenchymal origin. It acts exclusively through FGF-7 receptor (FGFR2/IIIb), which is expressed predominantly by epithelial cells, but not by fibroblasts, suggesting that it might function as a paracrine mediator of mesenchymal-epithelial interactions. KGF/FGF-7 plays an essential role in the growth of epithelial cells and is frequently overexpressed in cancers of epithelial origin such as pancreatic cancer, switching paracrine stimulation of KGF/FGF-7 to an autocrine loop. Less is known, however, about the signaling pathways by which KGF/FGF-7 regulates the response of epithelial cells. To delineate the signaling pathways activated by KGF/FGF-7 and examine cellular response to KGF/FGF-7 stimulation, we performed functional analysis of KGF/FGF-7 action. In this report, we show that KGF/FGF-7 activated nuclear factor kappaB (NF-kappaB), which in turn induced expression of VEGF, MMP-9, and urokinase-type plasminogen activator and increased migration and invasion of KGF/FGF-7-stimulated human pancreatic ductal epithelial cells. Expression of phosphorylation-defective IkappaBalpha (IkappaBalphaS32A,S36A), which blocked NF-kappaB activation, inhibited KGF/FGF-7-induced gene expression and cell migration and invasion. Our results demonstrate for the first time that KGF/FGF-7 induces NF-kappaB activation and that NF-kappaB plays an essential role in regulation of KGF/FGF-7-inducible gene expression and KGF/FGF-7-initiated cellular responses. Thus, these findings identify one signaling pathway for KGF/FGF-7-regulated cell migration and invasion and suggest that paracrine sources of KGF/FGF-7 are one of the malignancy-contributing factors from tumor stroma.  相似文献   

11.
Prostaglandin E(2) (PGE(2)) behaves as a mitogen in epithelial tumor cells as well as in many other cell types. We investigated the actions of PGE(2) on microvascular endothelial cells (capillary venular endothelial cells) with the purpose of delineating the signaling pathway leading to the acquisition of the angiogenic phenotype and to new vessel formation. PGE(2) (100 nM) produced activation of the fibroblast growth factor receptor 1 (FGFR-1), as measured by its phosphorylation, but not of vascular endothelial growth factor receptor 2. PGE(2) stimulated the EP3 subtype receptor, as deduced by abrogation of EP3 Galpha(i) subunit activity through pertussis toxin. Consistent with this result, in human umbilical venular endothelial cells missing the EP3 receptor, PGE(2) did not phosphorylate FGFR-1. Upon binding to its receptor, PGE(2) initiated an autocrine/paracrine signaling cascade involving the intracellular activation of c-Src, activation of matrix metalloproteinase (predominantly MMP2), which in turn caused the mobilization of membrane-anchored fibroblast growth factor-2 (FGF-2). In fact, in cells unable to release FGF-2 the transfection with both FGFR-1 and EP3 did not result in FGFR-1 phosphorylation in response to PGE(2). Relevance for the FGF2-FGFR-1 system was highlighted by confocal analysis, showing receptor internalization after cell exposure to the prostanoid. ERK1/2 appeared to be the distal signal involved, its phosphorylation being sensitive to either cSrc inhibitor or FGFR-1 blocker. Finally, PGE(2) stimulated cell migration and capillary formation in aortic rings, which were severely reduced by inhibitors of signaling molecules or by receptor antagonist. In conclusion, this study provides evidence for the involvement of FGFR-1 through FGF2 in eliciting PGE(2) angiogenic responses. This signaling pattern is similar to the autocrine-paracrine mechanism which operates in endothelial cells to support neovascular growth.  相似文献   

12.
The epidermal growth factor receptor (EGFR) is a key driver in the process of squamous cell carcinoma (SCC) cell mitogenesis. Phospholipase C-γ1 (PLC-γ1) is a downstream target of EGFR signaling, but the role and necessity of PLC-γ1 in EGFR-induced cell mitogenesis remain unclear. In the present study, we report an elevated expression of PLC-γ1 in human SCC biopsies relative to adjacent normal epidermis, and in human SCC cell lines compared to normal human keratinocytes. EGFR-induced SCC cell mitogenesis was blocked by small interfering RNA knockdown of PLC-γ1. However, inhibition of the catalytic activity of phospholipase C had no effect on EGFR-induced SCC cell mitogenesis. In response to the EGFR ligand epidermal growth factor (EGF), PLC-γ1 was translocated not only to the plasma membrane but also to the nucleus. These data suggest that PLC-γ1 is required for EGFR-induced SCC cell mitogenesis and the mitogenic function of PLC-γ1 is independent of its lipase activity.  相似文献   

13.
14.
Similarly to many protein toxins, the growth factors fibroblast growth factor 1 (FGF-1) and FGF-2 translocate from endosomes into the cytosol. It was recently found that certain toxins are dependent on cytosolic Hsp90 for efficient translocation across the endosomal membrane. We therefore investigated the requirement for Hsp90 in FGF translocation. We found that low concentrations of the specific Hsp90 inhibitors, geldanamycin and radicicol, completely blocked the translocation of FGF-1 and FGF-2 to the cytosol and the nucleus. The drugs did not interfere with the initial binding of FGF-1 to the growth factor receptors at the cell-surface or with the subsequent internalization of the growth factors into endosomes. The activation of known signaling cascades downstream of the growth factor receptors was also not affected by the drugs. The data indicate that the drugs block translocation from endosomes to the cytosol implying that Hsp90 is required for translocation of FGF-1 and FGF-2 across the endosomal membrane.  相似文献   

15.
Extracellular ATP enhances the mitogenic activity of fibroblast growth factor-2 (FGF2) in astrocytes, but the molecular mechanism underlying this synergistic interaction is not known. To determine whether the potentiating effect of extracellular ATP involves cell cycle control mechanisms, we have measured the expression of cyclins that are induced in different phases of the cell cycle in primary cultures of rat cortical astrocytes. We found that ATP potentiated the ability of FGF2 to stimulate expression of cyclin D1, a regulator of cell cycle entry, as well as cyclin A, a regulator of DNA replication. Because FGF2 and P2 purinergic receptors are coupled to extracellular signal regulated protein kinase (ERK), a key member of a signaling cascade that regulates proliferation, we also investigated the role of ERK in regulating cyclin expression induced by FGF2 and ATP. We found that the potentiating effect of ATP on cyclin expression was significantly reduced by U0126, an inhibitor of MEK, the upstream activator of ERK. P2 receptor agonist studies revealed that UTP enhanced FGF2-induced cyclin expression and mitogenesis whereas 2-methylthioADP was ineffective. By contrast, 2′,3′-O-(4-benzoyl)-benzoyl-ATP markedly inhibited FGF2-induced mitogenesis. Consistent with opposing effects of P2Y and P2X receptors on mitogenesis, UTP stimulated a transient activation of ERK whereas BzATP stimulated a more sustained ERK signal. These findings suggest that signaling by P2Y receptors, most likely of the purine/pyrimidine subtype, enhance the ability of FGF2 to stimulate entry into a new cell cycle, as well as DNA replication, by an ERK-dependent mechanism, whereas signaling by P2X receptors, possibly the P2X7 subtype, inhibits FGF2-induced mitogenesis in astrocytes. Interactions between P2Y, P2X and polypeptide growth factor signaling pathways may have important implications for CNS development as well as injury and repair.  相似文献   

16.
Phospholipase C-γ1 (PLC-γ1) is a multiple-domain protein and plays an important role in epidermal growth factor (EGF)-induced cell mitogenesis, but the underlying mechanism is unclear. We have previously demonstrated that PLC-γ1 is required for EGF-induced mitogenesis of squamous cell carcinoma (SCC) cells, but the mitogenic function of PLC-γ1 is independent of its lipase activity. Earlier studies suggest that the Src homology 3 (SH3) domain of PLC-γ1 possesses mitogenic activity. In the present study, we sought to determine the role of the SH3 domain of PLC-γ1 in EGF-induced SCC cell mitogenesis. We examined the effect of overexpression of PLC-γ1, a catalytically active PLC-γ1 mutant lacking the SH3 domain or a catalytically inactive PLC-γ1 mutant lacking the X domain on EGF-induced SCC4 (tongue squamous cell carcinoma) cell mitogenesis. We found that overexpression of PLC-γ1 enhanced EGF-induced SCC4 cell mitogenesis. This enhancement was abolished by deletion of the SH3 domain but not by deletion of the X catalytic domain. These data suggest that the SH3 domain, but not the catalytic domain, is required for PLC-γ1 to mediate EGF-induced SCC4 cell mitogenesis.  相似文献   

17.
Recently we found that an intracellular event related to phosphatidylinositol 4,5-bisphosphate (PIP2) is crucial for platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblastic cells (Matuoka, K., et al.: Science 239:640-643, 1988). In the present study we examined the mitogenic effects of PIP2 and its hydrolysis products introduced into the cytoplasm of BALB 3T3 cells by micro-injection to confirm the role of PIP2 hydrolysis in PDGF stimulation of cell proliferation. Injection of 1,2-dioleylglycerol (diolein) into serum-deprived quiescent cells induced DNA synthesis with the same time course as that induced by exposure of the cells to PDGF and, in the presence of PDGF, caused no additional increase in the cell population entering S phase. The injection of PIP2, inositol 1,4,5-trisphosphate, or 1,2-dioleylphosphatidic acid into the cells did not induce mitogenesis. Consistent results were obtained in experiments in which the cells were exposed to 1-oleyl-2-acetylglycerol (OAG) and ionomycin; namely, OAG stimulated proliferation of BALB 3T3 cells, but ionomycin did not induce any mitogenesis. Desensitization of the protein kinase C pathway by prolonged exposure of the cells to phorbol ester abolished the induction of cell proliferation by subsequent injection of diolein or exposure to phorbol ester or OAG as well as by PDGF challenge. These findings strongly suggest that activation of the protein kinase C system following formation of diacylglycerol by PIP2 hydrolysis is mainly responsible for the mitogenic action of PDGF on BALB 3T3 cells.  相似文献   

18.
The p38 mitogen-activated protein kinase (p38) is activated in response to environmental stress and inflammatory cytokines. Although several growth factors, including fibroblast growth factor (FGF)-2, mediate activation of p38, the consequences for growth factor-dependent cellular functions have not been well defined. We investigated the role of p38 activation in FGF-2-induced angiogenesis. In collagen gel cultures, bovine capillary endothelial cells formed tubular growth-arrested structures in response to FGF-2. In these collagen gel cultures, p38 activation was induced more potently by FGF-2 treatment compared with that in proliferating cultures. Treatment with the p38 inhibitor SB202190 enhanced FGF-2-induced tubular morphogenesis by decreasing apoptosis, increasing DNA synthesis and cell proliferation, and enhancing the kinetics of cell differentiation including increased expression of the Notch ligand Jagged1. Overexpression of dominant negative mutants of the p38-activating kinases MKK3 and MKK6 also supported FGF-2-induced tubular morphogenesis. Sustained activation of p38 by FGF-2 was identified in vascular endothelial cells in vivo in the chick chorioallantoic membrane (CAM). SB202190 treatment enhanced FGF-2-induced neovascularization in the CAM, but the vessels displayed abnormal features indicative of hyperplasia of endothelial cells. These results implicate p38 in organization of new vessels and suggest that p38 is an essential regulator of FGF-2-driven angiogenesis.  相似文献   

19.
The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specific outcomes. Sustained activation of ERK1/2 by nerve growth factor (NGF) is associated with translocation of ERKs to the nucleus of PC12 cells and precedes their differentiation into sympathetic-like neurons whereas transient activation by epidermal growth factor (EGF) leads to cell proliferation. It was demonstrated that different growth factors initiating the same cellular signaling pathways may lead to the different cell destiny, either to proliferation or to the inhibition of mitogenesis and apoptosis. Thus, further investigation on kinetic differences in activation of certain signal cascades in different cell types by biologically different agents are necessary for understanding the mechanisms as to how cells make a choice between proliferation and differentiation.It was reported that chitinase 3-like 1 (CHI3L1) protein promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts similarly to insulin-like growth factor 1 (IGF1). Both are involved in mediating the mitogenic response through the signal-regulated kinases ERK1/2. In addition, CHI3L1 which is highly expressed in different tumors including glioblastomas possesses oncogenic properties. As we found earlier, chitinase 3-like 2 (CHI3L2) most closely related to human CHI3L1 also showed increased expression in glial tumors at both the RNA and protein levels and stimulated the activation of the MAPK pathway through phosphorylation of ERK1/2 in 293 and U87 MG cells. The work described here demonstrates the influence of CHI3L2 and CHI3L1 on the duration of MAPK cellular signaling and phosphorylated ERK1/2 translocation to the nucleus. In contrast to the activation of ERK1/2 phosphorylation by CHI3L1 that leads to a proliferative signal (similar to the EGF effect in PC12 cells), activation of ERK1/2 phosphorylation by CHI3L2 (similar to NGF) inhibits cell mitogenesis and proliferation.  相似文献   

20.
Basic fibroblast growth factor (FGF-2) and its respective tyrosine kinase receptors, form an autocrine loop that affects human melanoma growth and metastasis. The aim of the present study was to examine the possible participation of various glycosaminoglycans, i.e. chondroitin sulfate, dermatan sulfate and heparin on basal and FGF-2-induced growth of WM9 and M5 human metastatic melanoma cells. Exogenous glycosaminoglycans mildly inhibited WM9 cell's proliferation, which was abolished by FGF-2. Treatment with the specific inhibitor of the glycosaminoglycan sulfation, sodium chlorate, demonstrated that endogenous glycosaminoglycan/proteoglycan production is required for both basal and stimulated by FGF-2 proliferation of these cells. Heparin capably restored their growth, and unexpectedly exogenous chondroitin sulfate to WM9 and both chondroitin sulfate and dermatan sulfate to M5 cells allowed FGF-2 mitogenic stimulation. Furthermore, in WM9 cells the degradation of membrane-bound chondroitin/dermatan sulfate stimulates basal growth and even enhances FGF-2 stimulation. The specific tyrosine kinase inhibitor, genistein completely blocked the effects of FGF-2 and glycosaminoglycans on melanoma proliferation whereas the use of the neutralizing antibody for FGF-2 showed that the mitogenic effect of chondroitin sulfate involves the interaction of FGF-2 with its receptors. Both the amounts of chondroitin/dermatan/heparan sulfate and their sulfation levels differed between the cell lines and were distinctly modulated by FGF-2. In this study, we show that chondroitin/dermatan sulfate-containing proteoglycans, likely in cooperation with heparan sulfate, participate in metastatic melanoma cell FGF-2-induced mitogenic response, which represents a novel finding and establishes the central role of sulfated glycosaminoglycans on melanoma growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号