首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of 1 alpha-OH-vitamin D3 (1 alpha-OH-D3) and 1,25-(OH)2-vitamin D3 (1,25-(OH)2-dihydroxycholecalciferol)(1,25-(OH)2-D3) on the levels of NADPH-dependent cytosolic 3,5,3'-triiodo-L-thyronine (T3)-binding protein (CTBP) was studied in rats and cultured dRLh cells. Deprivation of rats from vitamin D decreased the activity of cytosolic NADPH-dependent T3 binding in rat kidney and liver. The decrease was restored by administration of 1 alpha-OH-D3(0.2 micrograms/kg). The activity of cytosolic NADPH-dependent T3 binding was increased in the dRLh cells by addition of 1,25-(OH)2-D3 to the culture medium. The maximal binding capacity (MBC) was increased by 1,25-(OH)2-D3 without changes in the affinity constant. These results suggested that active vitamin D3 plays an important role in the regulation of cellular T3 translocation through increasing the binding capacity of NADPH-dependent cytosolic T3-binding protein.  相似文献   

2.
The NADPH-dependent cytosolic 3,5,3'-triiodo-L-thyronine(T3)-binding protein(CTBP) was purified from rat kidney using Mono Q-Sepharose, Red sepharose and T3 affinity chromatography. CTBP which was partially purified by Red Sepharose column chromatography was adsorbed to T3 affinity column in the presence of 50 uM NADPH. The CTBP was eluted from the gel with the buffer which did not contain NADPH. One molecule of the purified CTBP(58 kDa) bound one molecule of T3 with 2.44 x 10(9) M-1 of affinity constant. The purified CTBP was activated not only by NADPH but also by NADP in the presence of dithiothreitol. The NADPH-activated form did not transfer T3 to nuclei, whereas NADP transformed the NADPH-activated CTBP to active form which was able to transfer T3 to nuclei. These results suggested that CTBP-dependent transport of T3 to nucleus is controlled by NADPH and NADP.  相似文献   

3.
Multiple cytosolic thyroid-hormone-binding proteins (CTBPs) with varying characteristics, depending on the species and tissue, have been reported. We first purified a 59-kDa CTBP from Xenopus liver (xCTBP), and found that it is responsible for major [125I]T(3)-binding activity in Xenopus liver cytosol. Amino acid sequencing of internal peptide fragments derived from xCTBP demonstrated high identity to the corresponding sequence of mammalian aldehyde dehydrogenases 1 (ALDH1). To confirm whether or not xCTBP is identical to xALDH1, we isolated cDNAs encoding xALDH1 from an adult Xenopus hepatic cDNA library. The amino acid sequences deduced from the two isolated xALDH1 cDNAs were very similar to those of mammalian ALDH1 enzymes. The recombinant xALDH1 protein exhibited both T(3)-binding activity and ALDH activity converting retinal to retinoic acid (RA), which were similar to those of xCTBP purified from liver cytosol. The T(3)-binding activity was inhibited by NAD, while the ALDH activity was inhibited by thyroid hormones. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular concentration of free T(3). Communications between thyroid hormone and retinoid pathways are discussed.  相似文献   

4.
The NADPH-dependent cytosolic 3,5,3'-triiodo-L-thyronine(T3)-binding protein (CTBP) has been purified over 30,000-fold from rat kidney by using charcoal extraction, Mono Q-Sepharose, Blue Sepharose CL-6B, and Sephacryl S-200 column chromatography. Purified CTBP had a sedimentation coefficient of 4.7 S, Stokes radius of 32.5A, and calculated molecular weight of 58,000. The apparently homogeneous protein consisted of a single polypeptide chain with Mr of 58,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Scatchard analysis of T3 binding showed that NADPH increases maximal binding capacity without changes in the affinity constant (Ka = 2.43 X 10(9) M-1). Double reciprocal analysis of NADPH and binding capacity gave maximal binding capacity of 16,400 pmol/mg of CTBP, Mr = 58,000. The order of affinity of iodothyronine analogues to purified CTBP was as follows: L-T3 = D-T3 greater than triiodothyroacetic acid greater than L-thyroxine. [125I]T3 bound to purified CTBP spontaneously dissociated from CTBP at 20 degrees C (t 1/2 = 22 min) in the absence of NADPH, whereas the dissociation was not observed in the presence of NADPH. The optimal pH for T3 binding was 7.2-7.5 Na+, K+, Ca2+, and Mg2+ (0-200 mM) did not influence T3 binding to CTBP. The purified CTBP did not bind to DNA and was not adsorbed to concanavalin A-Sepharose.  相似文献   

5.
Cytosolic NADPH-dependent 3,5,3'-triiodo-L-thyronine (T3)-binding protein (CTBP) purified from rat kidney was further characterized in its T3 binding and its interaction with nuclei. Pretreatment of the CTBP with NADP induced dithiothreitol (DTT)-dependent T3 binding. The DTT-dependent T3 binding was increased by NADP in a concentration-dependent manner, and the maximal binding was obtained by 0.1 microM NADP. Higher concentrations of NADP (more than 0.1 microM), however, reduced T3 binding. NAD also induced DTT-dependent T3 binding, but was very low compared to that induced by NADP. NADPH and NADH did not produce DTT-dependent T3 binding. This NADP-activated, DTT-dependent T3 binding was characterized as follows: Ka for T3 binding was 1.8 x 10(9) M-1, and the maximal binding capacity was 15,000 pmol/mg of protein in the CTBP activated by 0.1 microM NADP. The molecular weight of the CTBP was 58,000 (4.7 S). A complex of [125I]T3 and CTBP (NADP.DTT.CTBP.[125I]T3), which was made from the CTBP pretreated with NADP and DTT, did not bind to DNA. However, the complex bound to the nuclei prepared from rat kidney. Treatment of the nuclei with 0.38 M KCl and with DNase I did not lead to loss of the binding activity for the complex. Treatment of nuclei with 0.5 M NaCl led to the loss of the activity for binding the complex. A complex of [125I]T3 and NADPH-activated CTBP did not bind these nuclear preparations. These results suggested that the active form of CTBP is present in two different forms: one is NADPH-activated, which plays a role as a reservoir for cytoplasmic T3, and the other is NADP-activated, which plays a role as a T3 carrier protein that transfers T3 from cytoplasm to nucleus.  相似文献   

6.
Four cytosolic 3,5,3'-triiodo-L-thyronine-binding proteins (CTBP) were isolated from hemoglobin-free human erythrocyte on DEAE-cellulose column by linear gradient of NaCl (0-0.4 M). CTBP I, II, and IV underwent rapid loss of their activities at low temperatures, whereas CTBP III was cold-insensitive. Reactivation of cold-inactivated CTBPs by warming was obtained at 20 and 37 degrees C. CTBP I, II, and IV were not inhibited by thiol-blocking agents, whereas CTBP III was blocked. Scatchard analysis of L-3,5,3'-triodo-thyronine binding showed a high affinity site with Kd on the order of 10(-10) M for CTBP II and Kd values of about 10(-9) M for CTBP I and IV and of about 10(-8) M for CTBP III. The order of affinity of iodothyronine analogues to CTBPs was similar in CTBP I, II, and IV but different in CTBP III. Chromatography on Sephacryl S-200 HR showed the elution of a single peak for each CTBP. The apparent molecular weights were about 200,000, 200,000, 25,000, and 60,000 for CTBP I, II, III, and IV, respectively. The physiological relevance of these CTBPs is discussed.  相似文献   

7.
A rat brain cytosolic 3,5,3'-triiodo-L-thyronine-(T3)-binding protein (CTBP) was purified using, successively, carboxymethyl-Sephadex, DEAE-Spherodex, T3-Sepharose-4B affinity chromatography and Sephacryl S-200. The molecular mass determined by SDS/PAGE wa 58 kDa. The binding characteristics determined by Scatchard analysis revealed a single class of binding sites with a Ka of 1.56 nM-1 and a maximal binding capacity of 7500 nmol T3/g protein. The relative binding affinities of iodothyronine analogues were D-T3 > L-T3 > L-T4 > 3,3'-5-triiodothyroacetic acid > reverse T3. The optimum pH for binding was 7.5. Purified brain CTBP was reversibly inactivated by charcoal. NADPH, NADP and thioredoxin restored binding activity to a level higher than that of the control; this effect was concentration dependent. Maximal activation was observed at 25 nM NADPH. NADP was effective only in the presence of 1 mM dithiothreitol; maximal activity was obtained at 10 nM NADP. At concentrations higher than 50 nM NADP, the binding gradually decreased. Thioredoxin in the presence of 1 mM dithiothreitol activated CTBP; maximal binding was obtained with 4 microM thioredoxin. In the presence of NADPH, NADP or thioredoxin the maximal binding capacity increased 2-4 times and the Ka was 2.6 nM-1. These results show that the activity of purified cytosolic brain T3-binding protein may be modulated by NADPH, NADP or thioredoxin.  相似文献   

8.
Multiple cytosolic thyroid-hormone-binding proteins (CTBPs) with varying characteristics, depending on the species and tissue, have been reported. We first purified a 59-kDa CTBP from Xenopus liver (xCTBP), and found that it is responsible for major [125I]T3-binding activity in Xenopus liver cytosol. Amino acid sequencing of internal peptide fragments derived from xCTBP demonstrated high identity to the corresponding sequence of mammalian aldehyde dehydrogenases 1 (ALDH1). To confirm whether or not xCTBP is identical to xALDH1, we isolated cDNAs encoding xALDH1 from an adult Xenopus hepatic cDNA library. The amino acid sequences deduced from the two isolated xALDH1 cDNAs were very similar to those of mammalian ALDH1 enzymes. The recombinant xALDH1 protein exhibited both T3-binding activity and ALDH activity converting retinal to retinoic acid (RA), which were similar to those of xCTBP purified from liver cytosol. The T3-binding activity was inhibited by NAD, while the ALDH activity was inhibited by thyroid hormones. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular concentration of free T3. Communications between thyroid hormone and retinoid pathways are discussed.  相似文献   

9.
10.
Amino acid sequencing of an internal peptide fragment derived from purified Xenopus cytosolic thyroid hormone-binding protein (xCTBP) demonstrates high similarity to the corresponding sequence of mammalian aldehyde dehydrogenase 1 (ALDH1) (Yamauchi, K., and Tata, J. R. (1994) Eur. J. Biochem. 225, 1105-1112). Here we show that xCTBP was co-purified with ALDH and 3,3',5-triiodo-L-thyronine (T3) binding activities. By photoaffinity labeling with [125I]T3, a T3-binding site in the xCTBP was estimated to reside in amino acid residues 93-114, which is distinct from the active site of the enzyme but present in the NAD+ binding domain. The amino acid sequences deduced from the two isolated xALDH1 cDNAs (xALDH1-I and xALDH1-II) were 94.6% identical to each other and very similar to those of mammalian ALDH1 enzymes. The two recombinant xALDH1 proteins exhibit both T3 binding activity and ALDH activity converting retinal to retinoic acid (RA), which are similar to those of xCTBP. The mRNAs were present abundantly in kidney and intestine of adult female Xenopus. Interestingly, their T3 binding activities were inhibited by NAD+ and NADH but not by NADP+ and NADPH, whereas NAD+ was required for their ALDH activities. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular level of free T3.  相似文献   

11.
We have previously shown that p3-13 (KTIAY-DEEARR) of the 65-kDa heat shock protein (hsp65) of Mycobacterium tuberculosis and Mycobacterium leprae is selected as an important T cell epitope in HLA-DR17+ individuals, by selectively binding to (a pocket in) DR17 molecules, the major subset of the DR3 specificity. We have now further studied the interaction between p3-13, HLA-DR17 and four different TCR (V beta 5.1, V beta 1, and V beta 4) by using T cell stimulation assays, direct peptide-DR binding assays, and a large panel (n = 240) of single amino acid substitution analogs of p3-13. We find that residues 5(I) and 8(D) of p3-13 are important DR17 binding residues, whereas the residues that interact with the TCR vary slightly for each DR17-restricted clone. By using N- and C-terminal truncated derivatives of p2-20 we defined the minimal peptide length for both HLA-DR17 binding and T cell activation: the minimal peptide that bound to DR17 was seven amino acids long whereas the minimal peptide that activated T cell proliferation was eight amino acids in length. Furthermore, two new DR17-restricted epitopes were identified on hsp70 and hsp18 of M. leprae. Alignment of the critical DR17-binding residues 5(I) and 8(D) of p3-13 with these two novel epitopes and two other DR17-binding peptides revealed the presence of highly conserved amino acids at positions n and n + 3 with I, L, and V at position n and D and E at position n + 3. D and E are particularly likely to interact with the DR17-specific, positively charged pocket that we have defined earlier. Based on these results, a set of single amino acid substituted analogs that failed to activate these T cell clones but still bound specifically to DR17 was defined and tested for their ability to inhibit T cell activation by p3-13 or other DR17-restricted epitopes. Those peptides were able to inhibit the response to p3-13 as well as other DR17-restricted mycobacterial epitopes in an allele-specific manner, and are anticipated to be of potential use for immunotherapeutic and vaccine design strategies.  相似文献   

12.
Vaccinia virus encodes a number of proteins that inhibit and manipulate innate immune signaling pathways that also have a role in virulence. These include A52, a protein shown to inhibit IL-1- and Toll-like receptor-stimulated NFκB activation, via interaction with interleukin-1 receptor-associated kinase 2 (IRAK2). Interestingly, A52 was also found to activate p38 MAPK and thus enhance Toll-like receptor-dependent IL-10 induction, which was TRAF6-dependent, but the manner in which A52 manipulates TRAF6 to stimulate p38 activation was unclear. Here, we show that A52 has a non-canonical TRAF6-binding motif that is essential for TRAF6 binding and p38 activation but dispensable for NFκB inhibition and IRAK2 interaction. Wild-type A52, but not a mutant defective in p38 activation and TRAF6 binding (F154A), caused TRAF6 oligomerization and subsequent TRAF6-TAK1 association. The crystal structure of A52 shows that it adopts a Bcl2-like fold and exists as a dimer in solution. Residue Met-65 was identified as being located in the A52 dimer interface, and consistent with that, A52-M65E was impaired in its ability to dimerize. A52-M65E although capable of interacting with TRAF6, was unable to cause either TRAF6 self-association, induce the TRAF6-TAK1 association, or activate p38 MAPK. The results suggest that an A52 dimer causes TRAF6 self-association, leading to TAK1 recruitment and p38 activation. This reveals a molecular mechanism whereby poxviruses manipulate TRAF6 to activate MAPKs (which can be proviral) without stimulating antiviral NFκB activation.  相似文献   

13.
The effect of NADPH and Ca2+ on 3, 5, 3'-L-triiodothyronine (T3) binding to cytosolic T3 binding protein (CTBP) in rat kidney was investigated in vitro. Extraction of rat kidney cytosol with 10% charcoal at 4 degrees C for 30 min. inactivated specific T3 binding. The decreased T3 binding activity in extracted cytosol could be restored by adding NADPH or Ca2+ to the incubation medium. Each substance increased the capacity for T3 without changes in the affinity for T3. The T3 binding was maximally increased by 25 microM NADPH or by 1.0 mM Ca2+ in the presence of 0.1 mM EDTA. The increase in T3 binding, induced by 25 microM NADPH, was enhanced by adding 0.2-1.0 mM Ca2+ in a concentration dependent-manner. The increase in T3 binding, induced by 1.0 mM Ca2+, was also enhanced by adding 3.125-25.0 microM NADPH. The NADPH-induced increase in T3 binding capacity was amplified by Ca2+ in a multiplicative manner. The results suggested that Ca2+ cooperatively augmented an NADPH function in cytosolic T3 binding.  相似文献   

14.
A data base search with YBR026c/MRF1', which encodes trans-2-enoyl thioester reductase of the intramitochondrial fatty acid synthesis (FAS) type II in yeast (Torkko, J. M., Koivuranta, K. T., Miinalainen, I. J., Yagi, A. I., Schmitz, W., Kastaniotis, A. J., Airenne, T. T., Gurvitz, A., and Hiltunen, K. J. (2001) Mol. Cell. Biol. 21, 6243-6253), revealed the clone AA393871 (HsNrbf-1, nuclear receptor binding factor 1) in human EST data bank. Expression of HsNrbf-1, tagged C-terminally with green fluorescent protein, in HeLa cells, resulted in a punctated fluorescence signal, superimposable with the MitoTracker Red dye. Wild-type polypeptide was immunoisolated from the extract of bovine heart mitochondria. Recombinant HsNrbf-1p reduces trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. Furthermore, expression of HsNRBF-1 in the ybr026cDelta yeast strain restored mitochondrial respiratory function allowing growth on glycerol. These findings provide evidence that Nrbf-1ps act as a mitochondrial 2-enoyl thioester reductase, and mammalian cells may possess bacterial type fatty acid synthetase (FAS type II) in mitochondria, in addition to FAS type I in the cytoplasm.  相似文献   

15.
A family of six high affinity IGF-binding proteins (IGFBPs 1-6) plays an important role in modulating IGF activities. Recent studies suggest that some IGFBPs may have IGF-independent effects, including induction of apoptosis and modulation of cell migration. However, very little is known about possible IGF-independent actions of IGFBP-6. We have generated a non-IGF-binding IGFBP-6 mutant by substituting Ala for four amino acid residues (Pro(93)/Leu(94)/Leu(97)/Leu(98)) in its N-domain IGF-binding site. A >10,000-fold loss of binding affinity for IGF-I and IGF-II was observed using charcoal solution binding assay, BIAcore biosensor, and ligand blotting. Wild-type and mutant IGFBP-6, as well as IGF-II, induced cell migration in RD rhabdomyosarcoma and LIM 1215 colon cancer cells. Cell migration was mediated by the C-domain of IGFBP-6. Transient p38 phosphorylation was observed in RD cells after treatment with IGFBP-6, whereas no change was seen in phospho-ERK1/2 levels. Phospho-JNK was not detected. IGFBP-6-induced cell migration was inhibited by SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of ERK1/2 MAPK activation. In contrast, SP600125, a JNK MAPK inhibitor, had no effect on migration. Knockdown of p38 MAPK using short interfering RNA blocked IGFBP-6-induced migration of RD cells. These results indicate that p38 MAPK is involved in IGFBP-6-induced IGF-independent RD cell migration.  相似文献   

16.
A 193-kDa SV40 large T antigen (T-Ag)-binding protein, designated p193, was identified and cloned. Inspection of the deduced amino acid sequence revealed the presence of a short motif similar to the Bcl-2 homology (BH) domain 3, suggesting that p193 may be a member of a family of apoptosis promoting proteins containing only BH3 motifs. In support of this, p193 expression promoted apoptosis in NIH-3T3 cells. Deletion of the BH3 motif abolished p193 apoptosis activity. p193-induced apoptosis was antagonized by co-expression of Bcl-X(L). Immune cytologic analysis indicated that p193 is localized to the cytoplasm of transfected cells. p193-induced apoptosis was also antagonized by co-expression of T-Ag, which resulted in the cytoplasmic localization of both proteins. The p193 binding site was mapped to an N-terminal region of T-Ag previously implicated in transforming activity. These results suggest that T-Ag possesses an antiapoptosis activity, independent of p53 sequestration, which is actuated by T-Ag/p193 binding in the cytoplasm.  相似文献   

17.
The poly(A)-binding protein (PABP) binds to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. PABP is thought to play a role in both translation and mRNA stability. Here we describe the molecular cloning and characterization of an inducible PABP, iPABP, from a cDNA library prepared from activated T cells. iPABP shows 79% sequence identity to PABP at the amino acid level. The RNA binding domains of iPABP and PABP are nearly identical, while their C termini are more divergent. Like PABP, iPABP is primarily localized to the cytoplasm. iPABP is expressed at low levels in resting normal human T cells; following T-cell activation, however, iPABP mRNA levels are rapidly up-regulated. In contrast, PABP is constitutively expressed in both resting and activated T cells. iPABP mRNA was also expressed at much higher levels than PABP mRNA in heart and skeletal muscle tissue. These data suggest that the regulation of cytoplasmic poly(A)-binding activity is more complex than previously believed. In most tissues, poly(A)-binding activity is likely to be the result of the combined effects of constitutively expressed PABP and iPABP, whose expression is subject to more complex regulation.  相似文献   

18.
A viral oncogene carrying well-defined K(b)/D(b)-restricted epitopes was expressed in a heat shock protein (hsp)-associated or nonassociated form in the murine tumor cells P815 and Meth-A. Wild-type SV40 large T-Ag (wtT-Ag) is expressed without stable hsp association; mutant (cytoplasmic cT-Ag) or chimeric (cT272-green fluorescent fusion protein) T-Ag is expressed in stable association with the constitutively expressed, cytosolic hsp73 (hsc70) protein. In vitro, remnants from apoptotic wtT-Ag- or cT-Ag-expressing tumor cells are taken up and processed by immature dendritic cells (DC), and the K(b)/D(b)-binding epitopes T1, T2/3, and T4 of the T-Ag are cross-presented to CTL in a TAP-independent way. DC pulsed with remnants of transfected, apoptotic tumor cells cross-presented the three T-Ag epitopes more efficiently when they processed ATP-sensitive hsp73/cT-Ag complexes than when they processed hsp-nonassociated (native) T-Ag. In vivo, more IFN-gamma-producing CD8+ T cells were elicited by a DNA vaccine that encoded hsp73-binding mutant T-Ag than by a DNA vaccine that encoded native, non-hsp-binding T-Ag. Three- to 5-fold higher numbers of T-Ag (T1-, T2/3-, or T4-) specific, D(b)/K(b)-restricted IFN-gamma-producing CD8+ T cells were primed during the growth of transfected H-2(d) Meth-A/cT tumors than during the growth of transfected Meth-A/T tumors in F(1)(b x d) hosts. Hence, the association of an oncogene with constitutively expressed, cytosolic hsp73 facilitates cross-priming in vitro and in vivo of CTL by DC that process material from apoptotic cells.  相似文献   

19.
A cytosolic thyroid-hormone-binding protein (xCTBP), predominantly responsible for the major binding activity of T3 in the cytosol of Xenopus liver, has been shown to be identical to aldehyde dehydrogenase class 1 (ALDH1) [Yamauchi, K., Nakajima, J., Hayashi, H., Horiuchi, R. & Tata, J.R. (1999) J. Biol. Chem. 274, 8460-8469]. Within this paper we surveyed which signaling, and other, compounds affect the thyroid hormone binding activity and aldehyde dehydrogenase activity of recombinant Xenopus ALDH1 (xCTBP/xALDH1) while examining the relationship between these two activities. NAD+ and NADH (each 200 microm), and two steroids (20 microm), inhibit significantly the T3-binding activity, while NADH and NADPH (each 200 microm), and iodothyronines (1 microm), inhibit the ALDH activity. Scatchard analysis and kinetic studies of xCTBP/xALDH1 indicate that NAD+ and T3 are noncompetitive inhibitors of thyroid-hormone-binding and ALDH activities, respectively. These results indicate the formation of a ternary complex consisting of the protein, NAD+ and thyroid hormone. Although the in vitro studies indicate that NAD+ and NADH markedly decrease T3-binding to xCTBP/xALDH1 at approximately 10-4 m, a concentration equal to the NAD content in various Xenopus tissues, photoaffinity-labeling of [125I]T3 using cultured Xenopus cells demonstrates xCTBP/xALDH1 bound T3 within living cells. These results raise the possibility that an unknown factor(s) besides NAD+ and NADH may modulate the thyroid-hormone-binding activity of xCTBP/xALDH1. In comparison, thyroid hormone, at its physiological concentration, would poorly modulate the enzyme activity of xCTBP/xALDH1.  相似文献   

20.
YL Su  SC Wang  PY Chiang  NY Lin  YF Shen  GD Chang  CJ Chang 《PloS one》2012,7(7):e41313

Background

Tristetraprolin binds mRNA AU-rich elements and thereby facilitates the destabilization of mature mRNA in the cytosol.

Methodology/Principal Findings

To understand how tristetraprolin mechanistically functions, we biopanned with a phage-display library for proteins that interact with tristetraprolin and retrieved, among others, a fragment of poly(A)-binding protein nuclear 1, which assists in the 3''-polyadenylation of mRNA by binding to immature poly(A) tails and thereby increases the activity of poly(A) polymerase, which is directly responsible for polyadenylation. The tristetraprolin/poly(A)-binding protein nuclear 1 interaction was characterized using tristetraprolin and poly(A)-binding protein nuclear 1 deletion mutants in pull-down and co-immunoprecipitation assays. Tristetraprolin interacted with the carboxyl-terminal region of poly(A)-binding protein nuclear 1 via its tandem zinc finger domain and another region. Although tristetraprolin and poly(A)-binding protein nuclear 1 are located in both the cytoplasm and the nucleus, they interacted in vivo in only the nucleus. In vitro, tristetraprolin bound both poly(A)-binding protein nuclear 1 and poly(A) polymerase and thereby inhibited polyadenylation of AU-rich element–containing mRNAs encoding tumor necrosis factor α, GM-CSF, and interleukin-10. A tandem zinc finger domain–deleted tristetraprolin mutant was a less effective inhibitor. Expression of a tristetraprolin mutant restricted to the nucleus resulted in downregulation of an AU-rich element–containing tumor necrosis factor α/luciferase mRNA construct.

Conclusion/Significance

In addition to its known cytosolic mRNA–degrading function, tristetraprolin inhibits poly(A) tail synthesis by interacting with poly(A)-binding protein nuclear 1 in the nucleus to regulate expression of AU-rich element–containing mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号