首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
We report the high-resolution solution structure of the 6.3 kDa neurotoxic protein CsE-v5 from the scorpion Centruroides sculpturatus Ewing (CsE, range southwestern U.S.). This protein is the second example of an Old World-like neurotoxin isolated from the venom of this New World scorpion. However, unlike CsE-V, which is the first Old World-like toxin isolated and shows both anti-insect and anti-mammal activity, CsE-v5 shows high specificity for insect sodium channels. Sequence-specific proton NMR assignments and distance and angle constraints were obtained from 600 MHz 2D-NMR data. Distance geometry and dynamical simulated annealing refinements were performed to produce a final family of 20 structures without constraint violations, along with an energy-minimized average structure. The protein structure is well-defined (0.66 and 0.97 D rmsd for backbone and all heavy atoms, respectively) with a compact hydrophobic core and several extending loops. A large hydrophobic patch, containing four aromatic rings and other aliphatic residues, makes up a large area of one side of the protein. CsE-v5 shows secondary structural features characteristic of long-chain scorpion toxins: a two and a half-turn alpha-helix, a three-strand antiparallel beta-sheet, and four beta-turns. Among the proteins studied to date from the CsE venom, CsE-v5 is the most compact protein with nearly 50% of the amide protons having long exchange lifetimes, but CsE-v5 is unusual in that it has loop structures similar to both Old and New World toxins. Further, it also lacks prolines in its C-terminal 14 residues. It shows some important differences with respect to CsE-V not only in its primary sequence, but also in its electrostatic potential surface, especially around areas in register with residues 8, 9, 17, 18, 32, 43, and 57. The loss of anti-mammal activity in CsE-v5 and the differences in its anti-insect activity compared to that of other proteins such as CsE-V, v1, and v3 from this New World scorpion may be related to residue variations at these locations.  相似文献   

2.
The effects of purified scorpion toxins from two different species on the kinetics of sodium currents were evaluated in amphibian myelinated nerves under voltage clamp. A toxin from Leiurus quinquestriatus slowed and prevented sodium channel inactivation, exclusively, and a toxin from Centruroides sculpturatus Ewing reduced transient sodium currents during a maintained depolarization, and induced a novel inward current that appeared following repolarization, as previously reported by Cahalan (1975, J. Physiol. [Lond.]. 244:511-534) for the crude scorpion venom. Both of these effects were observed in fibers treated with both of these toxins, and the kinetics of the induced current were modified in a way that showed that the same sodium channels were modified simultaneously by both toxins. Although the toxins can act on different sites, the time course of the action of C. sculpturatus toxin was accelerated in the presence of the L. quinquestriatus toxin, indicating some form of interaction between the two toxin binding sites.  相似文献   

3.
The three-dimensional structures of the long-chain mammalian scorpion β-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/β fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Na(v) channels.  相似文献   

4.
H Darbon  C Weber  W Braun 《Biochemistry》1991,30(7):1836-1845
Sequence-specific nuclear magnetic resonance assignments for the polypeptide backbone and for most of the amino acid side-chain protons, as well as the general folding of AaH IT, are described. AaH IT is a neurotoxin purified from the venom of the scorpion Androctonus australis Hector and is specifically active on the insect nervous system. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The backbone folding is determined by distance geometry calculations with the DISMAN program. The regular secondary structure includes two and a half turns of alpha-helix running from residues 21 to 30 and a three-stranded antiparallel beta-sheet including peptides 3-5, 34-38, and 41-46. Two tight turns are present, one connecting the end of the alpha-helix to an external strand of the beta-sheet, i.e., turn 31-34, and another connecting this same strand to the central one, i.e., turn 38-41. These structure elements are very similar to the secondary structure reported in single crystals for either variant 3 from the scorpion Centruroides sculpturatus Ewing (CsE V3) or toxin II from the scorpion A. australis Hector (AaH II). The differences in the specificity of these related proteins, which are able to discriminate between mammalian and insect voltage-dependent sodium channels of excitable tissues, are most probably brought about by the position of the C-terminal peptide with regard to a hydrophobic surface common to all scorpion toxins examined thus far. This surface is made of an aromatic cluster that is surrounded by long hydrophobic side-chain residues, as well as the loops protruding out of it. Thus, the interaction of a given scorpion toxin with its receptor might well be governed by the presence of this solvent-exposed hydrophobic surface, whereas adjacent areas modulate the specificity of the interaction.  相似文献   

5.
Two toxins, which we propose to call toxins 2 and 3, were purified to homogeneity from the venom of the scorpion Centruroides noxius Hoffmann. The full primary structures of both peptides (66 amino acid residues each) was determined. Sequence comparison indicates that the two new toxins display 79% identity and present a high similarity to previously characterized Centruroides toxins, the most similar toxins being Centruroides suffusus toxin 2 and Centruroides limpidus tecomanus toxin 1. Six monoclonal antibodies (mAb) directed against purified fraction II-9.2 (which contains toxins 2 and 3) were isolated in order to carry out the immunochemical characterization of these toxins. mAb BCF2, BCF3, BCF7 and BCF9 reacted only with toxin 2, whereas BCF1 and BCF8 reacted with both toxins 2 and 3 with the same affinity. Simultaneous binding of mAb pairs to the toxin and cross-reactivity of the venoms of different scorpions with the mAb were examined. The results of these experiments showed that the mAb define four different epitopes (A-D). Epitope A (BCF8) is topographically unrelated to epitopes B (BCF2 and BCF7), C (BCF3) and D (BCF9) but the latter three appear to be more closely related or in close proximity to each other. Epitope A was found in all Centruroides venoms tested as well as on four different purified toxins of C. noxius, and thus seems to correspond to a highly conserved structure. Based on the cross-reactivity of their venoms with the mAb, Centruroides species could be classified in the following order: Centruroides elegans, Centruroides suffusus suffusus = Centruroides infamatus infamatus, Centruroides limpidus tecomanus, Centruroides limpidus limpidus, and Centruroides limpidus acatlanensis, according to increasing immunochemical relatedness of their toxins to those of Centruroides noxius. All six mAb inhibited the binding of toxin 2 to rat brain synaptosomal membranes, but only mAb BCF2, which belongs to the IgG2a subclass, displayed a clear neutralizing activity in vivo.  相似文献   

6.
Current literature concerning the taxonomic names of two possibly distinct species of scorpions from the genus Centruroides (sculpturatus and/or exilicauda) is controversial. This communication reports the results of biochemical, genetic and electrophysiological experiments conducted with C. exilicauda Wood of Baja California (Mexico) and C. sculpturatus Ewing of Arizona (USA). The chromatographic profile fractionation of the soluble venom from both species of scorpions is different. The N-terminal amino acid sequence for nine toxins of C. exilicauda was determined and compared with those from C. sculpturatus. Lethality tests conducted in mice support the idea that C. exilicauda venom should be expected to be medically less important than C. sculpturatus. Thirteen genes from the venomous glands of the scorpion C. exilicauda were obtained and compared with previously published sequences from genes of the species C. sculpturatus. Genes coding for cytochrome oxidase I and II of both species were also sequenced. A phylogenetic tree was generated with this information showing important differences between them. Additionally, the results of electrophysiological assays conducted with the venom from both species on the Ca(2+)-dependent K(+)-channels, showed significant differences. These results strongly support the conclusion that C. exilicauda and C. sculpturatus are in fact two distinct species of scorpions.  相似文献   

7.
The three-dimensional structures of the long-chain mammalian scorpion β-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/β fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Nav channels.  相似文献   

8.
The interaction of TiTx gamma, the major toxin in the venom of the scorpion Tityus serrulatus, with its receptor in excitable membranes was studied with the use of 125I-TiTx gamma. This derivative retains biological activity, and its specific binding to both brain synaptosomes and electroplaque membranes from Electrophorus electricus is characterized by a dissociation constant equal to that of the native toxin-receptor complex, about 2 to 5 pM. This very high affinity results mainly from a very slow rate of dissociation, equivalent to a half-life longer than 10 h at 4 degrees C. There is a 1:1 stoichiometry between TiTx gamma binding and tetrodotoxin binding to the membranes, but neither tetrodotoxin nor any of 7 other neurotoxins that are representative of 4 different classes of effectors of the Na+ channel interfere with TiTx gamma binding. Similarly, local anesthetics and other molecules that affect other types of ionic channels or neurotransmitter receptors have no effect on TiTx gamma binding. However, toxin II from Centruroides suffusus suffusus does compete with TiTx gamma, though its affinity for the receptor is much lower. Since the Centruroides toxin II is known to affect Na+ channel function, these two scorpion toxins must be put into a fifth class of Na+ channel effectors.  相似文献   

9.
The water-soluble part of the dried venom from the scorpion, Tityus serrulatus Lutz and Mello (range, Southeastern Brazil), showed 16 polypeptide bands on polyacrylamide gel electrophoresis. This material exhibited toxic and hyaluronidase activity but no phospholipase, phosphodiesterase, protease, or fibrinolytic activity. Fractionation on glycinamide-treated Sephadex G-50 afforded three protein fractions, which were non-toxic, equitoxic, and three times more toxic than the water-soluble venom. Subsequent separation of the toxic fractions on carboxymethyl-cellulose with phosphate buffers furnished five toxic components, which were further purified on carboxymethyl-cellulose with a salt gradient in acetate buffer. Toxin γ, the major and most basic toxin, is a 62-residue protein that, unlike other scorpion toxins, contains methionine. Automated Edman degradation showed the amino-terminal sequence to be H-Lys-Glu-Gly-Tyr-Leu-Met-Asp-His-Glu-Gly-Cys-Lys-Leu-Ser-Cys-Phe-Ile-Arg-Pro-Ser-Gly-Tyr-Cys-Gly-Arg-Glu-Cys-Gly-Ile-. Toxin γ is the first example of a fifth structural type of mammalian toxin from scorpion venom. Its amino-terminal sequence shows greater homology with toxins similar to Centruroides suffusus suffusus toxin III and Androctonus australis toxin II than with toxins similar to A. australis toxin I or Bhutus occitanus tunetanus toxin I.  相似文献   

10.
Three scorpion toxins have been analyzed by circular dichroism in water and in 2,2,2-trifluoroethanol (TFE) solutions. These toxins were chosen because they are representative of three kinds of pharmacological activities: (1) toxin AaH IT2, an antiinsect toxin purified from the venom of Androctonus australis Hector, which is able to bind to insect nervous system preparation, (2) toxin Css II, from the venom of Centruroides suffusus suffusus, which is a beta-type antimammal toxin capable of binding to mammal nervous system preparation, and (3) the toxin Ts VII from the venom of Tityus serrulatus, which is able to bind to both types of nervous systems. In order to minimize bias, CD data were analyzed by a predictive algorithm to assess secondary structure content. Among the three molecules, Ts VII presented the most unordered secondary structure in water, but it gained in ordered forms when solubilized in TFE. These results indicated that the Ts VII backbone is the most flexible, which might result in a more pronounced tendency for this toxin molecule to undergo conformational changes. This is consistent with the fact that it competes with both antiinsect and beta-type antimammal toxins for the binding to the sodium channel.  相似文献   

11.
The solution structure of a synthetic peptide, Cn2(1-15)NH2-S-S-acetyl-Cn2(52-66)NH2 from toxin 2 (Cn2) of the New World scorpion Centruroides noxius was determined using nmr and molecular dynamics calculations. The peptide has no significant secondary structure such as an alpha-helix or a beta-sheet, yet it has a fixed conformation for the first chain. The backbone secondary structure involving residues 6-12 in this peptide shows an excellent overlap with the structures of natural neurotoxins from Centruroides sculpturatus Ewing. Residues 6-9 form a distorted type I beta-turn and residues 10-12 form a gamma-turn. As residues 7-10 in the Centruroides toxins correspond to one of the regions of highest sequence variability, it may account for the species specificity and/or selectivity of toxic action. The conformation of this region evidently plays an important role in receptor recognition and in binding to the neutralizing monoclonal antibody BCF2 raised against the intact toxin.  相似文献   

12.
A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.  相似文献   

13.
Seven polypeptides highly toxic to mice were isolated from the venom of the scorpion, Centruroides suffusus suffusus (Css), and their chemical and toxic properties were characterized. It was shown that the most active toxins by intracerebroventricular injection are less active when injected subcutaneously. The complete amino acid sequence (66 residues) of toxin II (Css II) has been determined. The C-terminal end is amidated as found for most other scorpion toxins. Css II is a beta-type toxin, previously used to define the binding site for activation of the sodium channel. Using rat brain synaptosomes, we demonstrated that all Css toxins compete with 125I-Css II to bind to site 4 and should be considered as beta-scorpion toxins. Specific binding parameters for Css VI, one of the most active toxins, were determined: KD = 100 pM; capacity in binding sites, 2.2 pmol of toxin/mg of synaptosomal protein. Css VI was shown to inhibit gamma-aminobutyric acid uptake by synaptosomes: K 0.5 = 100 pM, which agrees with its KD. Competition experiments between the seven Css toxins and 125I-Css II for antiserum raised against Css II demonstrated that all these toxins have common antigenic properties.  相似文献   

14.
15.
We report a preliminary high-resolution proton nuclear magnetic resonance characterization of the variant-3 toxin from the scorpion Centruroides sculpturatus Ewing (range Southwestern USA). This toxin assumes a well defined folded conformation in aqueous solutions at room temperature and undergoes reversible thermal denaturation. A number of amide hydrogens exhibit exchange life times varying from several minutes to several hours. A few tentative assignments of the low field aromatic CH resonances has been made on the basis of 2D-COSY and NOE experiments. The upfield shifts exhibited by Trp-47 suggest a unique microenvironment for this residue. The NMR data suggest that there is some degree of correlation between the solution structure of the variant-3 toxin and its crystallographic structure. Our studies provide a basis for a detailed elucidation of the structure-function relationships of these interesting scorpion toxins which bind to the sodium channels of excitable membranes and delay sodium current inactivation.  相似文献   

16.
Neurotoxin M9 isolated from the venom of Central Asian scorpion Buthus eupeus (66 amino acid residues, 4 disulfide bridges) has two slowly exchangeable conformations at the acidic pH. 2D-1H-NMR spectroscopy has been used to determine the polypeptide backbone foiding in the conformer that dominates under physiological conditions. The conformer contains the right alpha-helix (residues 22-31) and the antiparallel beta-sheet, which consists of the three strands (residues 1-5, 46-52, 35-40). All five Xxx-Pro bonds are in the trans configuration. Comparison of the obtained data with the crystal structure of the homologous scorpion toxin v-3 Centruroides sculpturatus (65 residues) and the solution spatial structure of the "short" type insectotoxin I5A Buthus eupeus (35 residues) shows close similarity in the first case and similarity of the types and mutual disposition of the regular secondary structure elements in the second case.  相似文献   

17.
The further characterization of toxin I from venom of the scorpion Centruroides sculpturatus Ewing (region, Southwestern United States) is reported. Toxin I is a single polypeptide chain of 64 amino acid residues crosslinked by four disulfide bridges. The complete amino acid sequence of toxin I was deduced from the sequence of its tryptic peptides and overlaps provided by its chymotryptic peptides. Toxin I has an amino terminal lysyl residue and a carboxyl terminal threonyl residue.The amino acid sequences of toxin I and neurotoxic variants 1, 2, and 3, likewise isolated from C. sculpturatus venom, differ at 26 positions.The sequences of toxin I from C. sculpturatus and toxins I and II from the North African scorpion, Androctonus australis Hector, are also compared.  相似文献   

18.
Recent progress in biochemical, structural and physiological studies has revealed several interesting properties of the toxins from the American scorpion, Centruroides sculpturatus. These toxins, together with similar toxins from other species of scorpions, comprise a unique family of homologous proteins with phylogenetically related structural differences. There is now evidence from both binding and electrophysiological studies that two distinct classes of toxins are present in the venom of C. sculpturatus. One class of toxins markedly slows inactivation of the sodium permeability but has no demonstrable effect on activation, whereas the second class induces a transient shift in the voltage-dependence of activation. Both groups make inactivation incomplete.  相似文献   

19.
The gene for a beta-neurotoxin [Centruroides suffusus suffusus toxin II (Css II)] from the scorpion C. suffusus suffusus was synthesized by recursive PCR and cloned into the expression vector, pET15b. This recombinant vector was transformed into a thioredoxin mutant host bacterial cell, AD 494(DE3)pLysS, and expression was induced with isopropyl thiogalactoside (IPTG). Although the level of expression was low, the recombinant toxin was found only in the soluble fraction with no evidence for the formation of inclusion bodies as had been observed previously with other scorpion toxins. The recombinant Css II was purified by successive ion-exchange and hydrophobic interaction chromatography. Nuclear magnetic resonance (NMR) and circular dichroism (CD) spectral measurements indicate that the protein has a native structure with no indication of denatured species. The recombinant neurotoxin inhibits the uptake of [(3)H]GABA [gamma-aminobutyric acid (GABA)] in neuronal cells as effectively as natural beta-toxins.  相似文献   

20.
The crystal structure of neurotoxin Ts1, a major component of the venom of the Brazilian scorpion Tityus serrulatus, has been determined at 1.7 A resolution. It is the first X-ray structure of a highly toxic anti-mammalian beta-toxin. The folding of the polypeptide chain of Ts1 is similar to that of other scorpion toxins. A cysteine-stabilised alpha-helix/beta-sheet motif forms the core of the flattened molecule. All residues identified as functionally important by chemical modification and site-directed mutagenesis are located on one side of the molecule, which is therefore considered as the Na+channel recognition site. The distribution of charged and non-polar residues over this surface determines the specificity of the toxin-channel interaction. Comparison to other scorpion toxins shows that positively charged groups at positions 1 and 12 as well as a negative charge at position 2 are likely determinants of the specificity of beta-toxins. In contrast, the contribution of the conserved aromatic cluster to the interaction might be relatively small. Comparison of Ts1 to weak beta-toxins from Centruroides sculpturatus Ewing reveals that a number of basic amino acid residues located on the face of the molecule opposite to the binding surface may account for the high toxicity of Ts1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号