首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localisation of maize (Zea mays L.) auxin-binding protein (ABP1) has been studied using a variety of techniques. At the whole-tissue level, tissue printing indicated that ABP1 is expressed to similar levels in all cells of the maize coleoptile and in the enclosed leaf roll. Within cells, the signals from immunofluorescence and immunogold labelling of ultrathin sections both indicated that ABP1 is confined to the endoplasmic reticulum (ER), none being detected in either Golgi apparatus or cell wall. This distribution is consistent with targeting motifs in its sequence. These observations are discussed with reference to the various reports which place a population of ABP1 on the outer face of the plasma membrane, including those suggesting that it is necessary on the cell surface for rapid, auxin-mediated protoplast hyperpolarisation. We have tested one proposed model to account for release of ABP1 from the ER, namely that auxin binding induces a conformational change in ABP1 leading to concealment of the KDEL retention motif. Using double-label immunofluorescence the characteristic auxin-induced rise in Golgi-apparatus signal was found, yet no change in the distribution of the ABP1 signal was detected. Maize suspension cultures were used to assay for auxin-promoted secretion of ABP1 into the medium, but secretion was below the limit of detection. This can be ascribed at least partly to the very active acidification of the medium by these cells and the instability of ABP1 in solution below pH 5.0. In the insect-baculovirus expression system, in which cell cultures maintain pH 6.2, a small amount of ABP1 secretion, less than 1% of the total, was detected under all conditions. Insect cells were shown to take up auxin and no inactivation of added auxin was detected, but auxin did not affect the level of ABP1 in the medium. Consequently, no evidence was found to support the model for auxin promotion of ABP1 secretion. Finally, quantitative glycan analysis was used to determine what proportion of ABP1 might reach the plasma membrane in maize coleoptile tissue. The results suggest that less than 15% of ABP1 ever escapes from the ER as far as the cis-Golgi and less than 2% passes further through the secretory pathway. Such leakage rates probably do not require a specialised mechanism allowing ABP1 past the KDEL retrieval pathway, but we are not able to rule out the possibility that some ABP1 is carried through associated with other proteins. The data are consistent with the presence of ABP1 both on the plasma membrane and in the ER. The relative sizes of the two pools explain the results obtained with immunofluorescence and immunogold labelling and illustrate the high efficiency of ER retention in plants. Received: 31 October 1996 / Accepted: 16 December 1996  相似文献   

2.
The auxin receptor literature contains a glaring discrepancy that invites explanation. While some physiological experiments suggest that active auxin receptors are sited inside the cell, others point to action at the cell surface. Furthermore, although the major auxin-binding protein (ABP) of maize (Zea mays) coleoptiles is found in the lumen of the endoplasmic reticulum (ER), exogenous ABP can mediate auxin-dependent changes in the plasma membrane potential of protoplasts. How can an ER protein mediate changes in cell potential? To resolve this dilemma, I propose that ABP cycles through the cell. In response to auxin, ABP is released from the ER and follows a secretory pathway to the cell surface. After secretion, ABP would bind sites on the cell surface and become subject to endocytosis, cycling back to the ER. Elevated auxin would accelerate the cycling of ABP between the ER and the cell surface. If cell wall precursors interacted with ABP during their progression through the secretory pathway, this would provide a mechanism for regulating cell wall synthesis. At the cell surface ABP would regulate an enzyme responsible for maintaining membrane potential. Both of these responses are components of auxin-regulated growth. This hypothesis does not exclude other mechanisms of signal transduction, particularly in gene regulation.  相似文献   

3.
Molecular analysis of auxin-specific signal transduction   总被引:2,自引:0,他引:2  
The auxin-binding protein (ABP1) of maize has been purified, cloned and sequenced. Homologues have been found in a wide range of plants and at least seven ABP sequences from four different species are now known. We have developed a range of anti-ABP antibodies and these have been applied to analysis of the structure, localization and receptor function of ABP. ABP1 is a glycoprotein with two identical subunits of apparent M r =22 kDa. The regions recognised by our five monoclonal antibodies (MAC 256–260) and by polyclonal antisera from our own and other laboratories have been specified by epitope mapping and fragmentation studies. All polyclonal anti-ABP sera recognise two or three dominant epitopes around the single glycosylation site. Two monoclonals (MAC 256, 259) are directed at the endoplasmic reticulum (ER) retention sequence KDEL at the C-terminus. Early biochemical data pointed to six amino acids likely to be involved in the auxin binding site. Inspection of the deduced sequence of ABP1 showed a hexapeptide (HRHSCE) containing five of these residues. Antibodies were raised against a polypeptide embracing this region and recognised ABP homologs in many species, suggesting that the region is highly conserved. This is confirmed by more recent information showing that the selected polypeptide contains the longest stretch of wholly conserved sequence in ABP1. Most strikingly, the antibodies show auxin agonist activity against protoplasts in three different electrophysiological systems-hyperpolarization of tobacco transmembrane potential; stimulation of outward ATP-dependent H+ current in maize; modulation of anion channels in tobacco. The biological activity of these antibodies indicates that the selected peptide does form a functionally important part of the auxin binding site and strongly supports a role for ABP1 as an auxin receptor. Although ABP contains a KDEL sequence and is located mainly in the ER lumen, the electrophysiological evidence shows clearly that some ABP must reach the outer face of the plasma membrane. One possible mechanism is suggested by our earlier demonstration that the ABP C-terminus recognised by MAC 256 undergoes an auxin-induced conformational change, masking the KDEL epitope and it is of interest that this C-terminal region appears to be important in auxin signalling [22]. So far we have been unable to detect the secretion of ABP into the medium of maize cell (bms) cultures reported by Jones and Herman [7]. However, recent silver enhanced immunogold studies on maize protoplasts have succeeded in visualizing ABP at the cell surface, as well as auxin-specific clustering of the signal induced within 30 minutes. The function of ABP in the ER, as well as the mechanisms of auxin signal transduction both at plasma membrane and gene levels remain to be elucidated.  相似文献   

4.
High level expression of the major auxin-binding protein (ABP1) from maize (Zea maysL.) has been used to demonstrate that the machinery for retaining proteins in the endoplasmic reticulum (ER) of insect cells functions efficiently throughout the baculovirus infection cycle. Immuno-localization showed wild-type ABP1 (ABP1-KDEL) to be targeted to the lumen of the ER, in accordance with its signal peptide and carboxyterminal KDEL ER-retention signal. The protein accumulated in dilations of the ER, and none was detected at the cell surface. Immunoblotting of concentrated culture medium confirmed that ABP1-KDEL was not secreted at a detectable level. In contrast, when the carboxyterminus was mutated to KEQL, secretion of the baculovirus-expressed protein was readily detected. Immunolocalization and immunoblotting demonstrated that a high proportion of the ABP1-KEQL protein was secreted at the cell surface and into the culture medium. The data demonstrate that the ER of insect cells has a great capacity to retain proteins and that this property is largely unaffected by the cellular disruption caused by baculovirus replication.  相似文献   

5.
6.
The N-terminal signal anchor of cytochrome P-450 2C1 mediates retention in the endoplasmic reticulum (ER) membrane of several reporter proteins. The same sequence fused to the C terminus of the extracellular domain of the epidermal growth factor receptor permits transport of the chimeric protein to the plasma membrane. In the N-terminal position, the ER retention function of this signal depends on the polarity of the hydrophobic domain and the sequence KQS in the short hydrophilic linker immediately following the transmembrane domain. To determine what properties are required for the ER retention function of the signal anchor in a position other than the N terminus, the effect of mutations in the linker and hydrophobic domains on subcellular localization in COS1 cells of chimeric proteins with the P-450 signal anchor in an internal or C-terminal position was analyzed. For the C-terminal position, the signal anchor was fused to the end of the luminal domain of epidermal growth factor receptor, and green fluorescent protein was additionally fused at the C terminus of the signal anchor for the internal position. In these chimeras, the ER retention function of the signal anchor was rescued by deletion of three leucines at the C-terminal side of its hydrophobic domain; however, deletion of three valines from the N-terminal side did not affect transport to the cell surface. ER retention of the C-terminal deletion mutants was eliminated by substitution of alanines for glutamine and serine in the linker sequence. These data are consistent with a model in which the position of the linker sequence at the membrane surface, which is critical for ER retention, is dependent on the transmembrane domain.  相似文献   

7.
The second step in glycosylphosphatidylinositol biosynthesis is the de-N-acetylation of N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) catalyzed by N-acetylglucosaminylphosphatidylinositol deacetylase (PIG-L). Previous studies of mouse thymoma cells showed that GlcNAc-PI de-N-acetylase activity is localized to the endoplasmic reticulum (ER) but enriched in a mitochondria-associated ER membrane (MAM) domain. Because PIG-L has no readily identifiable ER sorting determinants, we were interested in learning how PIG-L is localized to the ER and possibly enriched in MAM. We used HeLa cells transiently or stably expressing epitope-tagged PIG-L variants or chimeric constructs composed of elements of PIG-L fused to Tac antigen, a cell surface protein. We first analyzed the subcellular distribution of PIG-L and Glc-NAc-PI-de-N-acetylase activity and then studied the localization of Tac-PIG-L chimeras to identify sequence elements in PIG-L responsible for its subcellular localization. We show that human PIG-L is a type I membrane protein with a large cytoplasmic domain and that, unlike the result with mouse thymoma cells, both PIG-L and GlcNAc-PI-de-N-acetylase activity are uniformly distributed between ER and MAM in HeLa cells. Analyses of a series of Tac-PIG-L chimeras indicated that PIG-L contains two ER localization signals, an independent retention signal located between residues 60 and 88 of its cytoplasmic domain and another weak signal in the luminal and transmembrane domains that functions autonomously in the presence of membrane proximal residues of the cytoplasmic domain that themselves lack any retention information. We conclude that PIG-L, like a number of other ER membrane proteins, is retained in the ER through a multi-component localization signal rather than a discrete sorting motif.  相似文献   

8.
Human UDP-glucuronosyltransferase 1A (UGT1A) isoforms are endoplasmic reticulum (ER)-resident type I membrane proteins responsible for the detoxification of a broad range of toxic phenolic compounds. These proteins contain a C-terminal stop transfer sequence with a transmembrane domain (TMD), which anchors the protein into the membrane, followed by a short cytosolic tail (CT). Here, we investigated the mechanism of ER residency of UGT1A mediated by the stop transfer sequence by analysing the subcellular localization and sensitivity to endoglycosidases of chimeric proteins formed by fusion of UGT1A stop transfer sequence (TMD/CT) with the ectodomain of the plasma membrane CD4 reporter protein. We showed that the stop transfer sequence, when attached to C-terminus of the CD4 ectodomain was able to prevent it from being transported to the cell surface. The protein was retained in the ER indicating that this sequence functions as an ER localization signal. Furthermore, we demonstrated that ER localization conferred by the stop transfer sequence was mediated in part by the KSKTH retrieval signal located on the CT. Interestingly, our data indicated that UGT1A TMD alone was sufficient to retain the protein in ER without recycling from Golgi compartment, and brought evidence that organelle localization conferred by UGT1A TMD was determined by the length of its hydrophobic core. We conclude that both retrieval mechanism and static retention mediated by the stop transfer sequence contribute to ER residency of UGT1A proteins.  相似文献   

9.
Maize plasma membrane aquaporins (ZmPIPs, where PIP is the plasma membrane intrinsic protein) fall into two groups, ZmPIP1s and ZmPIP2s, which, when expressed alone in mesophyll protoplasts, are found in different subcellular locations. Whereas ZmPIP1s are retained in the endoplasmic reticulum (ER), ZmPIP2s are found in the plasma membrane (PM). We previously showed that, when co-expressed with ZmPIP2s, ZmPIP1s are relocalized to the PM, and that this relocalization results from the formation of hetero-oligomers between ZmPIP1s and ZmPIP2s. To determine the domains responsible for the ER retention and PM localization, respectively, of ZmPIP1s and ZmPIP2s, truncated and mutated ZmPIPs were generated, together with chimeric proteins created by swapping the N- or C-terminal regions of ZmPIP2s and ZmPIP1s. These mutated proteins were fused to the mYFP and/or mCFP, and the fusion proteins were expressed in maize mesophyll protoplasts, and were then localized by microscopy. This allowed us to identify a diacidic motif, DIE (Asp-Ile-Glu), at position 4–6 of the N-terminus of ZmPIP2;5, that is essential for ER export. This motif was conserved and functional in ZmPIP2;4, but was absent in ZmPIP2;1. In addition, we showed that the N-terminus of ZmPIP2;5 was not sufficient to cause the export of ZmPIP1;2 from the ER. A study of ZmPIP1;2 mutants suggested that the N- and C-termini of this protein are probably not involved in ER retention. Together, these results show that the trafficking of maize PM aquaporins is differentially regulated depending on the isoform, and involves a specific signal and mechanism.  相似文献   

10.
The secretory lympho-epithelial Kazal-type-inhibitor (LEKTI) is synthesized as a pro-LEKTI protein containing an N-terminal signal peptide and 15 potentially inhibitory domains. This inhibitor is of special interest because of its pathophysiological importance for the severe congenital disease Netherton syndrome. We showed that LEKTI is a potent inhibitor of a family of serine proteinases involved in extracellular matrix remodeling and its expression is downregulated in head and neck squamous cell carcinomas. To assess the role of C-terminal domains and N-terminal signal peptide in LEKTI secretion, we constructed deletion mutants of LEKTI, expressed them in HEK 293T cells, and analyzed their secretion behavior, stability, subcellular distribution, and proteinase inhibitory function. Pro-LEKTI is processed and secreted into the medium. On the basis of partial N-terminal sequencing and immunoblotting, the cleavage products are ordered from amino- to carboxy-terminal as follows: 37, 40, and 60kDa. Inhibitors of furin lead to enhanced secretion of unprocessed LEKTI, suggesting that processing was not required for secretion. Deletion of the N-terminal signal peptide of pro-LEKTI caused altered distribution of LEKTI from endoplasmic reticulum (ER) to cytoplasm and markedly reduced its stability, consistent with its failure to become secreted into the medium. Interestingly, when we deleted the C-terminal domains, stable partial LEKTI (LD-1-6) accumulated and still retained its association with ER but was not secreted. Recombinant LD-1-6 specifically inhibited the trypsin activity. We conclude that N-terminal signal peptide is required for LEKTI import into ER and elements present in C-terminal domains may have a role in regulating LEKTI secretion.  相似文献   

11.
There is evidence that auxin-binding protein 1 (ABP1) is an auxin receptor on the plasma membrane. Maize (Zea mays L.) possesses a high level of auxin-binding activity due to ABP1, but no other plant source has been shown to possess such an activity. We have analyzed the ABP1 content of tobacco (Nicotiana tabacum L.) to examine whether or not the ABP1 content of maize is exceptionally high among plants. The ABP1 content of tobacco leaves was shown by quantitative immunoblot analysis to be between 0.7 and 1.2 μg ABP1 per gram of fresh leaf. This value is comparable to the reported value in maize shoots, indicating that ABP1 is present at a similar level in both monocot and dicot plants. The ABP1 content of tobacco leaves was increased up to 20-fold by expression of a recombinant ABP1 gene, and decreased to half of the original value by expression of the antisense gene. Although ABP1 was found mainly in the endoplasmic reticulum fraction, a secreted protein showing a molecular size and epitopes similar to intracellular ABP1 was also detected in the culture medium of tobacco leaf disks. The secretion of this protein was dependent on the expression level of the ABP1 gene. Received: 24 February 1999 / Accepted: 25 March 1999  相似文献   

12.
The major auxin-binding protein (ABP1) from maize (Zea mays L.) has been expressed in insect cells using the baculovirus expression system. The recombinant protein can be readily detected in total insect cell lysates by Coomassie blue staining on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Our data suggest that ABP1 is processed similarly in both insect cells and maize. The signal peptide is cleaved at the same position as in maize and the mature protein undergoes tunicamycin-sensitive glycosylation, yielding a product with the same mobility on SDS-PAGE as authentic maize ABP1. On immunoblots the expressed protein is recognized by anti-KDEL monoclonal antibodies. Immunofluorescence localization demonstrates that it is targeted to and retained in the endoplasmic reticulum of insect cells in accordance with its signal peptide and KDEL retention sequence. The expressed ABP1 also appears to be active, since extracts of insect cells expressing ABP1 contain a saturable high-affinity 1-naphthylacetic acid-binding site, whereas no saturable auxin-binding activity is detected in extracts from control cells.  相似文献   

13.
The auxiliary beta subunit is essential for functional expression of high voltage-activated Ca2+ channels. This effect is partly mediated by a facilitation of the intracellular trafficking of alpha1 subunit toward the plasma membrane. Here, we demonstrate that the I-II loop of the alpha1 subunit contains an endoplasmic reticulum (ER) retention signal that severely restricts the plasma membrane incorporation of alpha1 subunit. Coimmunolabeling reveals that the I-II loop restricts expression of a chimera CD8-I-II protein to the ER. The beta subunit reverses the inhibition imposed by the retention signal. Extensive deletion of this retention signal in full-length alpha1 subunit facilitates the cell surface expression of the channel in the absence of beta subunit. Our data suggest that the beta subunit favors Ca2+ channel plasma membrane expression by inhibiting an expression brake contained in beta-binding alpha1 sequences.  相似文献   

14.
STIM1 is a core component of the store‐operated Ca2+‐entry channel involved in Ca2+‐signaling with an important role in the activation of immune cells and many other cell types. In response to cell activation, STIM1 protein senses low Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) and activates the channel protein Orai1 in the plasma membrane by direct physical contact. The related protein STIM2 functions similar but its physiological role is less well defined. We found that STIM2, but not STIM1, contains a di‐lysine ER‐retention signal. This restricts the function of STIM2 as Ca2+ sensor to the ER while STIM1 can reach the plasma membrane. The intracellular distribution of STIM1 is regulated in a cell‐cycle‐dependent manner with cell surface expression of STIM1 during mitosis. Efficient retention of STIM1 in the ER during interphase depends on its lysine‐rich domain and a di‐arginine ER retention signal. Store‐operated Ca2+‐entry enhanced ER retention, suggesting that trafficking of STIM1 is regulated and this regulation contributes to STIM1s role as multifunctional component in Ca2+‐signaling.  相似文献   

15.
生长素影响了植物生长发育的诸多过程。生长素结合蛋白 ABP1 (auxin binding protein) 作为一种生长素受体,在质膜上生长素诱导的快速反应中起重要作用。小麦中已经克隆得到了TaABP1-D,但其在细胞中的作用位置以及在染色体定位情况仍不明确。本实验利用洋葱表皮细胞瞬时表达系统对小麦生长素结合基因 TaABP1-D进行亚细胞定位,表明TaABP1-D蛋白为膜蛋白,存在于细胞质和细胞膜中;同时利用中国春缺体-四体材料和信息学方法,将TaABP1-D定位在小麦5D染色体长臂的近着丝粒位置上,距两侧EST标记BE490079和BE405060的遗传距离分别为0.51 cM和0.28 cM。  相似文献   

16.
Endoplasmic reticulum (ER) type I signal peptidases (ER SPases I) are vital proteases that cleave signal peptides from secreted proteins. However, the specific function of ER SPase I in plants has not been genetically characterized, and the substrate is largely unknown. Here, we report the identification of a maize (Zea mays) miniature seed6 (mn6) mutant. The loss-of-function mn6 mutant exhibited severely reduced endosperm size. Map-based cloning and molecular characterization indicated that Mn6 is an S26-family ER SPase I, with Gly102 (box E) in Mn6 critical for protein function during processing. Mass spectrometric and immunoprecipitation analyses revealed that Mn6 is predominantly involved in processing carbohydrate synthesis-related proteins, including the cell wall invertase miniature seed1 (Mn1), which is specifically expressed in the basal endosperm transfer layer. RNA and protein expression levels of Mn1 were both significantly downregulated in the mn6 mutant. Due to the significant reduction in cell wall invertase activity in the transfer cell layer, mutation of Mn6 caused dramatic defects in endosperm development. These results suggest that proper maturation of Mn1 by Mn6 may be a crucial step for proper seed filling and maize development.

Miniature seed6 (Mn6), involved in maize (Zea mays) seed development, is necessary for processing the cell wall invertase Mn1, which is specifically expressed in the basal endosperm transfer layer.  相似文献   

17.
Cytochrome P450 (P450) 2C1/2 contains redundant endoplasmic reticulum (ER) retention signals and is excluded from the recycling pathway. Other P450s, such as P450 2E1, have been detected in the plasma membrane and Golgi apparatus. To examine whether the mechanisms of ER retention might differ for P450 2C1/2 and P450 2E1, chimeras of green flourescent protein and the full-length proteins, N-terminal signal/anchor sequences, or the cytoplasmic catalytic domains from these proteins have been expressed in COS1 cells. Chimeras with either the N-terminal signal/anchor sequence or the cytoplasmic domain of P450 2C1/2 were retained in the ER and the distribution was not altered by treatment with nocodazole. A chimera with full-length P450 2E1 was located in the ER, but in contrast to P450 2C1/2, treatment with nocodazole resulted in redistribution to a vesicular pattern, which suggested that this protein was retained in the ER by a retrieval mechanism. In support of this possibility, the P450 2E1 chimera, but not the P450 2C1/2 chimera, was included in transport vesicles generated in an in vitro budding assay. A chimera with only the N-terminal signal/anchor sequence of P450 2E1 fused to green fluorescent protein was located in the ER and nocodazole treatment altered its distribution, whereas a chimera with only the cytoplasmic domain of P450 2E1 was not efficiently retained in the ER and accumulated primarily in the Golgi region. These results demonstrate that the mechanisms for retention in the ER of two closely related members of the P450 superfamily are different and that the N-terminal signal/anchor sequence contains the dominant retention signal.  相似文献   

18.
J C Semenza  K G Hardwick  N Dean  H R Pelham 《Cell》1990,61(7):1349-1357
Resident proteins of the ER lumen carry a specific tetrapeptide signal (KDEL or HDEL) that prevents their secretion. We have previously described the isolation of yeast mutants that fail to retain such resident proteins within the cell. Here we describe ERD2, a gene required for retention. It encodes a 26 kd integral membrane protein whose abundance determines the efficiency and capacity of the retention system. Reduced expression of ERD2 leads to secretion of proteins bearing the HDEL signal, whereas overexpression of ERD2 improves retention both in wild-type cells and in other mutants. These results are consistent with other evidence that ERD2 encodes the HDEL receptor (see accompanying paper). The gene is also required, perhaps indirectly, for normal protein transport through the Golgi, and hence for growth. We discuss possible roles for ERD2 in the secretory pathway.  相似文献   

19.
We used immunocytochemical and fluorescence assays to investigate the subcellular location of the protein encoded by Down syndrome critical region gene 2 (DSCR2) in transfected cells. It was previously suggested that DSCR2 is located in the plasma membrane as an integral membrane protein. Interestingly, we observed this protein in the endoplasmic reticulum (ER) of cells. We also studied whether the truncated forms of DSCR2 showed different subcellular distributions. Our observations indicate that DSCR2 probably is not inserted into the membrane of the endoplasmic reticulum since the fragments lacking the predicted transmembrane (TM) helices remained associated with the ER. Our analyses suggest that, although DSCR2 is associated with the endoplasmic reticulum, it is not an integral membrane protein and it is maintained on the cytoplasmic side of the ER by indirect interaction with the ER membrane or with another protein.  相似文献   

20.
The objective of this study was to test an approach that combines bioinformatic and subcellular localization analysis to identify novel cell wall protein genes in Arabidopsis. Proteins with unknown function in the Arabidopsis genome were first identified and scanned for the presence of N-terminal signal peptides. The signal peptide-containing function-unknown proteins were further analyzed to eliminate the ones containing other sequences, such as endoplasmic reticulum and vacuole retention signals, that may prevent a protein from secretion into cell walls. The top ten genes passing the bioinformatic analysis were selected for protein subcellular localization using green fluorescence protein (GFP) as a reporter. A vector was constructed for high throughput gene-GFP fusion protein generation and overexpression in Arabidopsis for gene function analysis. Transformants of six genes showed reasonable expression of GFP fusion protein. However, none of the transformants showed GFP localization in cell walls. The low rate of new cell wall protein discovery suggests that the number of unidentified cell wall proteins in the Arabidopsis genome may be small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号