首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on the crystal structure of human topoisomerase I, we hypothesized that hydrogen bonding between the side chain of the highly conserved His(632) and one of the nonbridging oxygens of the scissile phosphate contributes to catalysis by stabilizing the transition state. This hypothesis has been tested by examining the effects of changing His(632) to glutamine, asparagine, alanine, and tryptophan. The change to glutamine reduced both the relaxation activity and single-turnover cleavage activity by approximately 100-fold, whereas the same change at three other conserved histidines (positions 222, 367, and 406) had no significant effect on the relaxation activity. The properties of the mutant protein containing asparagine instead of histidine at position 632 were similar to those of the glutamine mutant, whereas mutations to alanine or tryptophan reduced the activity by approximately 4 orders of magnitude. The reduction in activity for the mutants was not due to alterations in substrate binding affinities or changes in the cleavage specificities of the proteins. The above results for the glutamine mutation in conjunction with the similar effects of pH on the wild type and the H632Q mutant enzyme rule out the possibility that His(632) acts as a general acid to protonate the leaving 5'-oxygen during the cleavage reaction. Taken together, these data strongly support the hypothesis that the only role for His(632) is to stabilize the pentavalent transition state through hydrogen bonding to one of the nonbridging oxygens.  相似文献   

2.
3.
Mendel S  Arndt A  Bugg TD 《Biochemistry》2004,43(42):13390-13396
The extradiol catechol dioxygenases catalyze the non-heme iron(II)-dependent oxidative cleavage of catechols to 2-hydroxymuconaldehyde products. Previous studies of a biomimetic model reaction for extradiol cleavage have highlighted the importance of acid-base catalysis for this reaction. Two conserved histidine residues were identified in the active site of the class III extradiol dioxygenases, positioned within 4-5 A of the iron(II) cofactor. His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) were replaced by glutamine, alanine, and tyrosine. Each mutant enzyme was catalytically inactive for extradiol cleavage, indicating the essential nature of these acid-base residues. Replacement of neighboring residues Asp-114 and Pro-181 gave D114N, P181A, and P181H mutant enzymes with reduced catalytic activity and altered pH/rate profiles, indicating the role of His-179 as a base and His-115 as an acid. Mutant H179Q was catalytically active for the lactone hydrolysis half-reaction, whereas mutant H115Q was inactive, implying a role for His-115 in lactone hydrolysis. A catalytic mechanism involving His-179 and His-115 as acid-base catalytic residues is proposed.  相似文献   

4.
The acidic residues Asp-111, Asp-113, and Glu-115 of Escherichia coli DNA topoisomerase I are located near the active site Tyr-319 and are conserved in type IA topoisomerase sequences with counterparts in type IIA DNA topoisomerases. Their exact functional roles in catalysis have not been clearly defined. Mutant enzymes with two or more of these residues converted to alanines were found to have >90% loss of activity in the relaxation assay with 6 mM Mg(II) present. Mg(II) concentrations (15-20 mM) inhibitory for the wild type enzyme are needed by these double mutants for maximal relaxation activity. The triple mutant D111A/D113A/E115A had no detectable relaxation activity. Mg(II) binding to wild type enzyme resulted in an altered conformation detectable by Glu-C proteolytic digestion. This conformational change was not observed for the triple mutant or for the double mutant D111A/D113A. Direct measurement of Mg(II) bound showed the loss of 1-2 Mg(II) ions for each enzyme molecule due to the mutations. These results demonstrate a functional role for these acidic residues in the binding of Mg(II) to induce the conformational change required for the relaxation of supercoiled DNA by the enzyme.  相似文献   

5.
Among highly conserved residues in eucaryotic mitochondrial malate dehydrogenases are those with roles in maintaining the interactions between identical monomeric subunits that form the dimeric enzymes. The contributions of two of these residues, Asp-43 and His-46, to structural stability and catalytic function were investigated by construction of mutant enzymes containing Asn-43 and Leu-46 substitutions using in vitro mutagenesis of the Saccharomyces cerevisiae gene (MDH1) encoding mitochondrial malate dehydrogenase. The mutant enzymes were expressed in and purified from a yeast strain containing a disruption of the chromosomal MDH1 locus. The enzyme containing the H46L substitution, as compared to the wild type enzyme, exhibits a dramatic shift in the pH profile for catalysis toward an optimum at low pH values. This shift corresponds with an increased stability of the dimeric form of the mutant enzyme, suggesting that His-46 may be the residue responsible for the previously described pH-dependent dissociation of mitochondrial malate dehydrogenase. The D43N substitution results in a mutant enzyme that is essentially inactive in in vitro assays and that tends to aggregate at pH 7.5, the optimal pH for catalysis for the dimeric wild type enzyme.  相似文献   

6.
Several residues lining the ATP-binding site of Methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase (NMNATase) were mutated in an effort to better characterize their roles in substrate binding and catalysis. Residues selected were Arg-11 and Arg-136, both of which had previously been implicated as substrate binding residues, as well as His-16 and His-19, part of the HXGH active site motif and postulated to be of importance in catalysis. Kinetic studies revealed that both Arg-11 and Arg-136 contributed to the binding of the substrate, ATP. When these amino acids were replaced by lysines, the apparent Km values of the respective mutants for ATP decreased by factors of 1.3 and 2.9 and by factors of 1.9 and 8.8 when the same residues were changed to alanines. All four Arg mutants displayed unaltered Km values for NMN. The apparent kcat values of the R11K and R136K mutants were the same as those of WT NMNATase but the apparent kcat values of the alanine mutants had decreased. Crystal structures of the Arg mutants revealed NAD+ and SO42- molecules trapped at their active sites. The binding interactions of NAD+ were unchanged but the binding of SO42- was altered in these mutants compared with wild type. The alanine mutants at positions His-16 and His-19 retained approximately 6 and 1.3%, respectively, of WT NMNATase activity indicating that His-19 is a key catalytic group. Surprisingly, this H19A mutant displayed a novel and distinct mode of NAD+ binding when co-crystallized in the presence of NAD+ and SO42-.  相似文献   

7.
Reverse gyrase is a unique type IA topoisomerase that is able to introduce positive supercoils into DNA in an ATP-dependent process. ATP is bound to the helicase-like domain of the enzyme that contains most of the conserved motifs found in helicases of the SF1 and SF2 superfamilies. In this paper, we have investigated the role of the conserved helicase motifs I, II, V, VI, and Q by generating mutants of the Thermotoga maritima reverse gyrase. We show that mutations in motifs I, II, V, and VI completely eliminate the supercoiling activity of reverse gyrase and that a mutation in the Q motif significantly reduces this activity. Further analysis revealed that for most mutants, the DNA binding and cleavage properties are not significantly changed compared with the wild type enzyme, whereas their ATPase activity is impaired. These results clearly show that the helicase motifs are tightly involved in the coupling of ATP hydrolysis to the topoisomerase activity. The zinc finger motif located at the N-terminal end of reverse gyrases was also mutated. Our results indicate that this motif plays an important role in DNA binding.  相似文献   

8.
Prostaglandin endoperoxide (PGH) synthase has a single iron protoporphyrin IX which is required for both the cyclooxygenase and peroxidase activities of the enzyme. At room temperature, the heme iron is coordinated at the axial position by an imidazole, and about 20% of the heme iron is coordinated at the distal position by an imidazole. We have used site-directed mutagenesis to investigate which histidine residues are involved in PGH synthase catalysis and heme binding. Individual mutant cDNAs for ovine PGH synthases were prepared with amino acid substitutions at each of 13 conserved histidines. cos-1 cells were transfected with each of these cDNAs, and the cyclooxygenase and peroxidase activities of the resulting microsomal PGH synthases were measured. Mutant PGH synthases in which His-207, His-309, or His-388 was replaced with either glutamine or alanine lacked both activities. Gln-386 and Ala-386 PGH synthase mutants exhibited cyclooxygenase but not peroxidase activities. Other mutants exhibited both activities at varying levels. Because binding of heme renders native PGh synthase resistant to cleavage by trypsin, we examined the effects of heme on the relative sensitivities of native, Ala-204, Ala-207, Ala-309, Ala-386, and Ala-388 mutant PGH synthases to trypsin as a measure of the heme-protein interaction. The Ala-309 PGh synthase mutant was notably hypersensitive to tryptic cleavage, even in the presence of exogenous heme; in contrast, the native enzyme and the other alanine mutants exhibited similar, lower sensitivities toward trypsin and, except for the Ala-386 mutant, were partially protected from trypsin cleavage by heme. Preincubation of the native and each of the alanine mutant PGH synthases, including the Ala-309 mutant, with indomethacin protected the proteins from trypsin cleavage. Thus, all the mutant proteins retain sufficient three-dimensional structure to bind cyclooxygenase inhibitors. Our results suggest that His-309 is one of the heme ligands, probably the axial ligand, of PGH synthase. Two other histidines, His-207 and His-388, are essential for both PGH synthase activities suggesting that either His-207 or His-388 can serve as the distal heme ligand; however, the trypsin cleavage measurements imply that neither His-207 nor His-388 is required for heme binding. This is consistent with the fact that only 20% of the distal coordination position of the heme iron of PGH synthase is occupied by an imidazole side chain.  相似文献   

9.
The poxvirus type IB topoisomerases catalyze relaxation of supercoiled DNA by cleaving and rejoining DNA strands via a pathway involving a covalent phosphotyrosine intermediate. Recently we determined structures of the smallpox virus topoisomerase bound to DNA in covalent and non-covalent DNA complexes using x-ray crystallography. Here we analyzed the effects of twenty-two amino acid substitutions on the topoisomerase activity in vitro in assays of DNA relaxation, single cycle cleavage, and equilibrium cleavage-religation. Alanine substitutions at 14 positions impaired topoisomerase function, marking a channel of functionally important contacts along the protein-DNA interface. Unexpectedly, alanine substitutions at two positions (D168A and E124A) accelerated the forward rate of cleavage. These findings and further analysis indicate that Asp(168) is a key regulator of the active site that maintains an optimal balance among the DNA cleavage, religation, and product release steps. Finally, we report that high level expression of the D168A topoisomerase in Escherichia coli, but not other alanine-substituted enzymes, prevented cell growth. These findings help elucidate the amino acid side chains involved in DNA binding and catalysis and provide guidance for designing topoisomerase poisons for use as smallpox antivirals.  相似文献   

10.
Mycobacterium smegmatis topoisomerase I differs from the typical type IA topoisomerase in many properties. The enzyme recognizes both single and double-stranded DNA with high affinity and makes sequence-specific contacts during DNA relaxation reaction. The enzyme has a conserved N-terminal domain and a highly varied C-terminal domain, which lacks the characteristic zinc binding motifs found in most of the type I eubacterial enzymes. The roles of the individual domains of the enzyme in the topoisomerase I catalyzed reactions were examined by comparing the properties of full-length topoisomerase I with those of truncated polypeptides lacking the conserved N-terminal or the divergent C-terminal region. The N-terminal larger fragment retained the site-specific binding, DNA cleavage and religation properties, hallmark characteristics of the full-length M.smegmatis topoisomerase I. In contrast, the non-conserved C-terminal fragment lacking the typical DNA binding motif, exhibited non-specific DNA binding behaviour. The two polypeptide fragments, on their own do not catalyze DNA relaxation reaction. The relaxation activity is restored when both the fragments are mixed in vitro reconstituting the enzyme function. These results along with the DNA interaction pattern of the proteins implicate an essential role for the C-terminal region in single-strand DNA passage between the two transesterification reactions catalyzed by the N-terminal domain.  相似文献   

11.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I   总被引:12,自引:0,他引:12  
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes.  相似文献   

12.
The sequence dependence of Drosophila topoisomerase II supercoil relaxation and binding activities has been examined. The DNA substrates used in binding experiments were two fragments from Drosophila heat shock locus 87A7. One of these DNA fragments includes the coding region for the heat shock protein hsp70, and the other includes the intergenic non-coding region that separates two divergently transcribed copies of the hsp70 gene at the locus. The intergenic region was previously shown to have a much higher density of topoisomerase cleavage sites than the hsp70 coding region. Competition nitrocellulose filter binding assays demonstrate a preferential binding of the intergene fragment, and that binding specificity increases with increasing ionic strength. Dissociation kinetics indicate a greater kinetic stability of topoisomerase II complexes with the intergene DNA fragment. To study topoisomerase II relaxation activity, we used supercoiled plasmids that contained the same fragments from locus 87A7 cloned as inserts. The relative relaxation rates of the two plasmids were determined under several conditions of ionic strength, and when the plasmid substrates were included in separate reactions or when they were mixed in a single reaction. The relaxation properties of these two plasmids can be explained by a coincidence of high-affinity binding sites, strong cleavage sites, and sites used during the catalysis of strand passage events by topoisomerase II. Sequence dependence of topoisomerase II catalytic activity may therefore parallel the sequence dependence of DNA cleavage by this enzyme.  相似文献   

13.
14.
We investigated topoisomerase I activity at a specific camptothecin-enhanced cleavage site by use of a partly double-stranded DNA substrate. The cleavage site belongs to a group of DNA topoisomerase I sites which is only efficiently cleaved by wild-type topoisomerase I (topo I-wt) in the presence of camptothecin. With a mutated camptothecin-resistant form of topoisomerase I (topo I-K5) previous attempts to reveal cleavage activity at this site have failed. On this basis it was questioned whether the mutant enzyme has an altered DNA sequence recognition or a changed rate of catalysis at the site. Utilizing a newly developed assay system we demonstrate that topo I-K5 not only recognizes and binds to the strongly camptothecin-enhanced cleavage site but also has considerable cleavage/religation activity at this particular DNA site. Thus, topo I-K5 has a 10-fold higher rate of catalysis and a 10-fold higher affinity for DNA relative to topo I-wt. Our data indicate that the higher cleavage/religation activity of topo I-K5 is a result of improved DNA binding and a concomitant shift in the equilibrium between cleavage and religation towards the religation step. Thus, a recently identified point mutation which characterizes the camptothecin-resistant topo I-K5 has altered the enzymatic catalysis without disturbing the DNA sequence specificity of the enzyme.  相似文献   

15.
PDZ domains are protein-protein interaction modules found in hundreds of human proteins. Their binding reactions are sensitive to variations in salt and pH but the basis of the respective dependence has not been clear. We investigated the binding reaction between PSD-95 PDZ3 and a peptide corresponding to a native ligand with protein engineering in conjunction with stopped-flow and equilibrium fluorimetry and found that the two conserved residues Arg-318 and His-372 were responsible for the salt and pH dependencies, respectively. The basis of the salt-dependent variation of the affinity was explored by mutating all charged residues in and around the peptide-binding pocket. Arg-318 was found to be crucial, as mutation to alanine obliterated the effect of chloride on the binding constants. The direct interaction of chloride with Arg-318 was demonstrated by time-resolved urea denaturation experiments, where the Arg-318 --> Ala mutant was less stabilized by addition of chloride as compared with wild-type PDZ3. We also demonstrated that protonation of His-372 was responsible for the increase of the equilibrium dissociation constant at low pH. Both chloride concentration and pH (during ischemia) vary in the postsynaptic density, where PSD-95 is present, and the physiological buffer conditions may thus modulate the interaction between PSD-95 and its ligands through binding of chloride and protons to the "molecular switches" Arg-318 and His-372, respectively.  相似文献   

16.
For the five principal prostanoids PGD2, PGE2, PGF2alpha, prostacyclin and thromboxane A2 eight receptors have been identified that belong to the family of G-protein-coupled receptors. They display an overall homology of merely 30%. However, single amino acids in the transmembrane domains such as an Arg in the seventh transmembrane domain are highly conserved. This Arg has been identified as part of the ligand binding pocket. It interacts with the carboxyl group of the prostanoid. The aim of the current study was to analyze the potential role in ligand binding of His-81 in the second transmembrane domain of the rat PGF2alpha receptor, which is conserved among all PGF2alpha receptors from different species. Molecular modeling suggested that this residue is located in close proximity to the ligand binding pocket Arg 291 in the 7th transmembrane domain. The His81 (H) was exchanged by site-directed mutagenesis to Gln (Q), Asp (D), Arg (R), Ala (A) and Gly (G). The receptor molecules were N-terminally extended by a Flag epitope for immunological detection. All mutant proteins were expressed at levels between 50% and 80% of the wild type construct. The H81Q and H81D receptor bound PGF2alpha with 2-fold and 25-fold lower affinity, respectively, than the wild type receptor. Membranes of cells expressing the H81R, H81A or H81G mutants did not bind significant amounts of PGF2alpha. Wild type receptor and H81Q showed a shallow pH optimum for PGF2alpha binding around pH 5.5 with almost no reduction of binding at higher pH. In contrast the H81D mutant bound PGF2alpha with a sharp optimum at pH 4.5, a pH at which the Asp side chain is partially undissociated and may serve as a hydrogen bond donor as do His and Gln at higher pH values. The data indicate that the His-81 in the second transmembrane domain of the PGF2alpha receptor in concert with Arg-291 in the seventh transmembrane domain may be involved in ligand binding, most likely not by ionic interaction with the prostaglandin's carboxyl group but rather as a hydrogen bond donor.  相似文献   

17.
Type II DNA topoisomerases are ATP-dependent enzymes that catalyze alterations in DNA topology. These enzymes are important targets of a variety of anti-bacterial and anti-cancer agents. We identified a mutation in human topoisomerase II alpha, changing aspartic acid 48 to asparagine, that has the unique property of failing to transform yeast cells deficient in recombinational repair. In repair-proficient yeast strains, the Asp-48 --> Asn mutant can be expressed and complements a temperature-sensitive top2 mutation. Purified Asp-48 --> Asn Top2alpha has relaxation and decatenation activity similar to the wild type enzyme, but the purified protein exhibits several biochemical alterations compared with the wild type enzyme. The mutant enzyme binds both covalently closed and linear DNA with greater avidity than the wild type enzyme. hTop2alpha(Asp-48 --> Asn) also exhibited elevated levels of drug-independent cleavage compared with the wild type enzyme. The enzyme did not show altered sensitivity to bisdioxopiperazines nor did it form stable closed clamps in the absence of ATP, although the enzyme did form elevated levels of closed clamps in the presence of a non-hydrolyzable ATP analog compared with the wild type enzyme. We suggest that the lethality exhibited by the mutant is likely because of its enhanced drug-independent cleavage, and we propose that alterations in the ATP binding domain of the enzyme are capable of altering the interactions of the enzyme with DNA. This mutant enzyme also serves as a new model for understanding the action of drugs targeting topoisomerase II.  相似文献   

18.
Vaccinia topoisomerase forms a covalent protein-DNA intermediate at 5'-CCCTT downward arrow sites in duplex DNA. The T downward arrow nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that mutant enzymes containing glutamate, cysteine or histidine in lieu of Tyr-274 catalyze endonucleolytic cleavage of a 60 bp duplex DNA at the CCCTT downward arrow site to yield a 3' phosphate-terminated product. The Cys-274 mutant forms trace levels of a covalent protein-DNA complex, suggesting that the DNA cleavage reaction may proceed through a cysteinyl-phosphate intermediate. However, the His-274 and Glu-274 mutants evince no detectable accumulation of a covalent protein-DNA adduct. Glu-274 is the most active of the mutants tested. The pH dependence of the endonuclease activity of Glu-274 (optimum pH = 6.5) is distinct from that of the wild-type enzyme in hydrolysis of the covalent adduct (optimum pH = 9.5). At pH 6.5, the Glu-274 endonuclease reaction is slower by 5-6 orders of magnitude than the rate of covalent adduct formation by the wild-type topoisomerase, but is approximately 20 times faster than the rate of hydrolysis by the wild-type covalent adduct. We discuss two potential mechanisms to account for the apparent conversion of a topoisomerase into an endonuclease.  相似文献   

19.
High-M(r) thioredoxin reductase from the malaria parasite Plasmodium falciparum (PfTrxR) contains three redox active centers (FAD, Cys-88/Cys-93, and Cys-535/Cys-540) that are in redox communication. The catalytic mechanism of PfTrxR, which involves dithiol-disulfide interchanges requiring acid-base catalysis, was studied by steady-state kinetics, spectral analyses of anaerobic static titrations, and rapid kinetics analysis of wild-type enzyme and variants involving the His-509-Glu-514 dyad as the presumed acid-base catalyst. The dyad is conserved in all members of the enzyme family. Substitution of His-509 with glutamine and Glu-514 with alanine led to TrxR with only 0.5 and 7% of wild type activity, respectively, thus demonstrating the crucial roles of these residues for enzymatic activity. The H509Q variant had rate constants in both the reductive and oxidative half-reactions that were dramatically less than those of wild-type enzyme, and no thiolateflavin charge-transfer complex was observed. Glu-514 was shown to be involved in dithiol-disulfide interchange between the Cys-88/Cys-93 and Cys-535/Cys-540 pairs. In addition, Glu-514 appears to greatly enhance the role of His-509 in acid-base catalysis. It can be concluded that the His-509-Glu-514 dyad, in analogy to those in related oxidoreductases, acts as the acid-base catalyst in PfTrxR.  相似文献   

20.
Eukaryotic DNA topoisomerase II is a dimeric nuclear enzyme essential for DNA metabolism and chromosome dynamics. It changes the topology of DNA by coupling binding and hydrolysis of two ATP molecules to the transport of one DNA duplex through a temporary break introduced in another. During this process the structurally and functionally complex enzyme passes through a cascade of conformational changes, which requires intra- and intersubunit communication. To study the importance of ATP binding and hydrolysis in relation to DNA strand transfer, we have purified and characterized a human topoisomerase II alpha heterodimer with only one ATP binding site. The heterodimer was able to relax supercoiled DNA, although less efficiently than the wild type enzyme. It furthermore possessed a functional N-terminal clamp and was sensitive to ICRF-187. This demonstrates that human topoisomerase II alpha can pass through all the conformations required for DNA strand passage and enzyme resetting with binding and hydrolysis of only one ATP. However, the heterodimer lacked the normal stimulatory effect of DNA on ATP binding and hydrolysis as well as the stimulatory effect of ATP on DNA cleavage. The results can be explained in a model, where efficient catalysis requires an extensive communication between the second ATP and the DNA segment to be cleaved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号