首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Myosin plays an important role in mitosis, especially during cytokinesis. Although it has been assumed that phosphorylation of regulatory light chain of myosin (RLC) controls motility of mammalian non-muscle cells, the functional significance of RLC phosphorylation remains uninvestigated. To address this problem, we have produced unphosphorylatable RLC (T18A/S19A RLC) and overexpressed it in COS-7 cells and normal rat kidney cells. Overexpression of T18A/S19A RLC but not wild type RLC almost completely abolished concanavalin A-induced receptor cap formation. The results indicate that myosin phosphorylation is critical for concanavalin A-induced gathering of surface receptors. T18A/S19A RLC overexpression resulted in the production of multinucleated cells, suggesting the failure of proper cell division in these cells. Video microscopic observation revealed that cells expressing T18A/S19A RLC showed abnormalities during mitosis in two respects. One is that the cells produced abnormal cleavage furrows, resulting in incomplete cytokinesis, which suggests that myosin phosphorylation is important for the normal recruitment of myosin molecules into the contractile ring structure. The other is that separation of chromosomes from the metaphase plate is disrupted in T18A/S19A RLC expressing cells, thus preventing proper transition from metaphase to anaphase. These results suggest that, in addition to cytokinesis, myosin and myosin phosphorylation play a role in the karyokinetic process.  相似文献   

2.
In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle. Centrosomes play a pivotal role in orchestrating the formation of the bipolar spindle during mitosis. Recent studies have linked centrosomal activity on centrioles or centriole-associated structures to cytokinesis and cell cycle progression through G1 into the S phase. In this study, we have identified centrobin as a centriole-associated protein that asymmetrically localizes to the daughter centriole. The silencing of centrobin expression by small interfering RNA inhibited centriole duplication and resulted in centrosomes with one or no centriole, demonstrating that centrobin is required for centriole duplication. Furthermore, inhibition of centriole duplication by centrobin depletion led to impaired cytokinesis.  相似文献   

3.
In somatic cells, integrity of cell division is safeguarded by the spindle checkpoint, a signaling cascade that delays the separation of sister chromatids in the presence of misaligned chromosomes. Aurora kinases play important roles in this process by promoting centrosome maturation, chromosome bi-orientation, spindle checkpoint signaling, and cytokinesis. To investigate the functions of Aurora kinases in male meiosis, we applied a small molecule Aurora inhibitor, ZM447439, to seminiferous tubules in vitro. Primary and secondary spermatocytes exposed to ZM447439 exhibit defects in the spindle morphology and fail to align their chromosomes at the metaphase plate. Moreover, the treated spermatocytes undergo a forced exit from the meiotic M-phase without cytokinesis. These results suggest that the activities of Aurora kinases are required for normal spindle assembly as well as for establishment and maintenance of proper microtubule-kinetochore attachments and spindle checkpoint signaling in male mammalian meiosis.  相似文献   

4.
Aurora-A is a serine/threonine protein kinase that plays important regulatory roles during mitotic cell cycle progression. In this study, Aurora-A expression, subcellular localization, and possible functions during porcine oocyte meiotic maturation, fertilization and early embryonic cleavage were studied by using Western blot, confocal microscopy and drug treatments. The quantity of Aurora-A protein remained stable during porcine oocyte meiotic maturation. Confocal microscopy revealed that Aurora-A distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, Aurora-A concentrated around the condensed chromosomes and the metaphase I spindle, and finally, Aurora-A was associated with spindle poles during the formation of the metaphase II spindle. Aurora-A concentrated in the pronuclei in fertilized eggs. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. In conclusion, Aurora-A may be a multifunctional kinase that plays pivotal regulatory roles in microtubule assembly during porcine oocyte meiotic maturation, fertilization and early embryonic mitosis.  相似文献   

5.
The human autoantigen CENP-C has been demonstrated by immunoelectron microscopy to be a component of the inner kinetochore plate. Here we have used antibodies raised against various portions of CENP-C to probe its function in mitosis. We show that nuclear microinjection of anti- CENP-C antibodies during interphase causes a transient arrest at the following metaphase. Injection of the same antibodies after the initiation of prophase, however, does not disrupt mitosis. Correspondingly, indirect immunofluorescence using affinity-purified human anti-CENP-C antibodies reveals that levels of CENP-C staining are reduced at centromeres in cells that were injected during interphase, but appear unaffected in cells which were injected during mitosis. Thus, we suggest that the injected antibodies cause metaphase arrest by reducing the amount of CENP-C at centromeres. Examination of kinetochores in metaphase-arrested cells by electron microscopy reveals that the number of trilaminar structures is reduced. More surprisingly, the few remaining kinetochores in these cells retain a normal trilaminar morphology but are significantly reduced in diameter. In cells arrested for extended periods, these small kinetochores become disrupted and apparently no longer bind microtubules. These observations are consistent with an involvement of CENP-C in kinetochore assembly, and suggest that CENP-C plays a critical role in both establishing and/or maintaining proper kinetochore size and stabilizing microtubule attachments. These findings also support the idea that proper assembly of kinetochores may be monitored by the cell cycle checkpoint preceding the transition to anaphase.  相似文献   

6.
In mitosis, centrosomes nucleate microtubules that capture the sister kinetochores of each chromosome to facilitate chromosome congression. In contrast, during meiosis chromosome congression on the acentrosomal spindle is driven primarily by movement of chromosomes along laterally associated microtubule bundles. Previous studies have indicated that septin2 is required for chromosome congression and cytokinesis in mitosis, we therefore asked whether perturbation of septin2 would impair chromosome congression and cytokinesis in meiosis. We have investigated its expression, localization and function during mouse oocyte meiotic maturation. Septin2 was modified by SUMO-1 and its levels remained constant from GVBD to metaphase II stages. Septin2 was localized along the entire spindle at metaphase and at the midbody in cytokinesis. Disruption of septins function with an inhibitor and siRNA caused failure of the metaphase I /anaphase I transition and chromosome misalignment but inhibition of septins after the metaphase I stage did not affect cytokinesis. BubR1, a core component of the spindle checkpoint, was labeled on misaligned chromosomes and on chromosomes aligned at the metaphase plate in inhibitor-treated oocytes that were arrested in prometaphase I/metaphase I, suggesting activation of the spindle assembly checkpoint. Taken together, our results demonstrate that septin2 plays an important role in chromosome congression and meiotic cell cycle progression but not cytokinesis in mouse oocytes.  相似文献   

7.
The cytokinesis phase, or C phase, of the cell cycle results in the separation of one cell into two daughter cells after the completion of mitosis. Although it is known that microtubules are required for proper positioning of the cytokinetic furrow [1] [2], the role of pre-anaphase microtubules in cytokinesis has not been clearly defined for three key reasons. First, inducing microtubule depolymerization or stabilization before the onset of anaphase blocks entry into anaphase and cytokinesis via the spindle checkpoint [3]. Second, microtubule organization changes rapidly at anaphase onset as the mitotic kinase, Cdc2-cyclin B, is inactivated [4]. Third, the time between the onset of anaphase and the initiation of cytokinesis is very short, making it difficult to unambiguously alter microtubule polymer levels before cytokinesis, but after inactivation of the spindle checkpoint. Here, we have taken advantage of the discovery that microinjection of antibodies to the spindle checkpoint protein Mad2 (mitotic arrest deficient) in prometaphase abrogates the spindle checkpoint, producing premature chromosome separation, segregation, and normal cytokinesis [5] [6]. To test the role of pre-anaphase microtubules in cytokinesis, microtubules were disassembled in prophase and prometaphase cells, the cells were then injected with anti-Mad2 antibodies and recorded through C phase. The results show that exit from mitosis in the absence of microtubules triggered a 50 minute period of cortical contractility that was independent of microtubules. Furthermore, upon microtubule reassembly during this contractile C-phase period, approximately 30% of the cells underwent chromosome poleward movement, formed a midzone microtubule complex, and completed cytokinesis.  相似文献   

8.
Rab24 is an atypical member of the Rab GTPase family whose distribution in interphase cells has been characterized; however, its function remains largely unknown. In this study, we have analyzed the distribution of Rab24 throughout cell division. We have observed that Rab24 was located at the mitotic spindle in metaphase, at the midbody during telophase and in the furrow during cytokinesis. We have also observed partial co‐localization of Rab24 and tubulin and demonstrated its association to microtubules. Interestingly, more than 90% of transiently transfected HeLa cells with Rab24 presented abnormal nuclear connections (i. e. chromatin bridges). Furthermore, in CHO cells stably transfected with GFP‐Rab24wt, we observed a large percentage of binucleated and multinucleated cells. In addition, these cells presented an extremely large size and multiple failures in mitosis, as aberrant spindle formation (metaphase), delayed chromosomes (telophase) and multiple cytokinesis. A marked increase in binucleated, multinucleated and multilobulated nucleus formation was observed in HeLa cells depleted of Rab24. We also present evidence that a fraction of Rab24 associates with microtubules. In addition, Rab24 knock down resulted in misalignment of chromosomes and abnormal spindle formation in metaphase leading to the appearance of delayed chromosomes during late telophase and failures in cytokinesis. Our findings suggest that an adequate level of Rab24 is necessary for normal cell division. In summary, Rab24 modulates several mitotic events, including chromosome segregation and cytokinesis, perhaps through the interaction with microtubules.  相似文献   

9.
BACKGROUND: Cytokinesis occurs just as chromosomes complete segregation and reform nuclei. It has been proposed that cyclin/Cdk kinase inhibits cytokinesis until exit from mitosis; however, the timer of cytokinesis has not been experimentally defined. Whereas expression of a stable version of Drosophila cyclin B blocks cytokinesis along with numerous events of mitotic exit, stable cyclin B3 allows cytokinesis even though it blocks late events of mitotic exit. We examined the interface between mitotic cyclin destruction and the timing of cytokinesis. RESULTS: In embryonic mitosis 14, the cytokinesis furrow appeared 60 s after the metaphase/anaphase transition and closed 90 s later during telophase. In cyclin B or cyclin B3 mutant cells, the cytokinesis furrow appeared at an earlier stage of mitosis. Expression of stable cyclin B3 delayed and prolonged furrow invagination; nonetheless, cytokinesis completed during the extended mitosis. Reduced function of Pebble, a Rho GEF required for cytokinesis, also delayed and slowed furrow invagination, but incomplete furrows were aborted at the time of mitotic exit. In functional and genetic tests, cyclin B and cyclin B3 inhibited Pebble contributions to cytokinesis. CONCLUSIONS: Temporal coordination of mitotic events involves inhibition of cytokinesis by cyclin B and cyclin B3 and punctual relief of the inhibition by destruction of these cyclins. Both cyclins inhibit Pebble-dependent activation of cytokinesis, whereas cyclin B can inhibit cytokinesis by additional modes. Stable cyclin B3 also blocks the later return to interphase that otherwise appears to impose a deadline for the completion of cytokinesis.  相似文献   

10.
Inhibition of S/G2 phase CDK4 reduces mitotic fidelity   总被引:2,自引:0,他引:2  
Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.  相似文献   

11.
The mitosis and cytokinesis of Draparnaldia glomerata as examined here by transmission electron microscopy are in many aspects similar to those described earlier for other chaetophoralean algae. The standard chaetophoralean model of the mechanism of mitosis/cytokinesis is described in detail. Characteristic in this pattern is the movement of sets of centrioles towards the nuclear poles followed by a proliferation of extranuclear microtubules at prophase, the (partial) fusion of centrioles with the spindle poles at metaphase and anaphase, the simultaneous separation of chromosomes apparently caused by both spindle elongation and shortening of the chromosomal microtubules at anaphase, the expulsion of the centrioles by daughter nuclei and finally the non–persistent spindle at telophase. Cytokinesis takes place by formation of a cell plate associated with phycoplast microtubules. The possible function of the phycoplast in cytokinesis in Draparnaldia is discussed.  相似文献   

12.
The mitotic phases and the changes that the chromatin and mitotic microtubules undergo during mitosis in the sexually transmitted parasite Trichomonas vaginalis are described. Parasites arrested in the gap 2 phase of the cell cycle by nutrient starvation were induced to mitosis by addition of fresh whole medium. [(3)H] Thymidine labeling of trichomonad parasites for 24 h showed that parasites have at least four synchronic duplications after mitosis induction. Fixed or live and acridine orange (AO)-stained trichomonads analyzed at different times during mitosis by epifluorescence microscopy showed that mitosis took about 45 min and is divided into five stages: prophase, metaphase, early and late anaphase, early and late telophase, and cytokinesis. The AO-stained nucleus of live trichomonads showed green (DNA) and orange (RNA) fluorescence, and the nucleic acid nature was confirmed by DNase and RNase treatment, respectively. The chromatin appeared partially condensed during interphase. At metaphase, it appeared as six condensed chromosomes, as recently reported, which decondensed at anaphase and migrated to the nuclear poles at telophase. In addition, small bundles of microtubules (as hemispindles) were detected only in metaphase with the polyclonal antibody anti-Entamoeba histolytica alpha-tubulin. This antibody showed that the hemispindle and an atractophore-like structure seem to duplicate and polarize during metaphase. In conclusion, T. vaginalis mitosis involves five mitotic phases in which the chromatin undergoes different degrees of condensation, from chromosomes to decondensed chromatin, and two hemispindles that are observed only in the metaphase stage.  相似文献   

13.
At mitosis, cells undergo drastic alterations in morphology and cytoskeletal organization including cell rounding during prophase, mitotic spindle assembly during prometaphase and metaphase, chromatid segregation in anaphase, and cytokinesis during telophase. It is well established that myosin II is a motor responsible for cytokinesis. Recent reports have indicated that myosin II is also involved in spindle assembly and karyokinesis. In this review, we summarize current understanding of the functions of myosin II in mitosis and cytokinesis of higher eukaryotes, and discuss the roles of possible upstream molecules that control myosin II in these mitotic events.  相似文献   

14.
We report the characterization of Cep170, a forkhead-associated (FHA) domain protein of previously unknown function. Cep170 was identified in a yeast two-hybrid screen for interactors of Polo-like kinase 1 (Plk1). In human cells, Cep170 is constantly expressed throughout the cell cycle but phosphorylated during mitosis. It interacts with Plk1 in vivo and can be phosphorylated by Plk1 in vitro, suggesting that it is a physiological substrate of this kinase. Both overexpression and small interfering RNA (siRNA)-mediated depletion studies suggest a role for Cep170 in microtuble organization and cell morphology. Cep170 associates with centrosomes during interphase and with spindle microtubules during mitosis. As shown by immunoelectron microscopy, Cep170 associates with subdistal appendages, typical of the mature mother centriole. Thus, anti-Cep170 antibodies stain only one centriole during G1, S, and early G2, but two centrioles during late G2 phase of the cell cycle. We show that Cep170 labeling can be used to discriminate bona fide centriole overduplication from centriole amplification that results from aborted cell division.  相似文献   

15.
In the root meristem cells of the rice line AMR, which causes loss of heterozygosity in its hybrids, both normal and assortment mitoses were observed. During normal mitosis, chromosomes did not form homologous pairs at metaphase; all chromosomes lined up at the equatorial plate and 2 chromatids of each chromosome disjoined at the centromere and moved toward opposite poles. During assortment mitosis, varying numbers of paired homologues were observed at mitotic metaphase. Two groups of 12 chromosomes separated and moved towards the opposite poles of daughter cells with few chromosomes having their chromatids separated at anaphase. These observations support the proposed mechanism that is responsible for early genotype fixation in rice hybrids involving AMR.  相似文献   

16.
Wolf F  Wandke C  Isenberg N  Geley S 《The EMBO journal》2006,25(12):2802-2813
The disassembly of the mitotic spindle and exit from mitosis require the inactivation of Cdk1. Here, we show that expression of nondegradable cyclinB1 causes dose-dependent mitotic arrest phenotypes. By monitoring chromosomes in living cells, we determined that pronounced overexpression of stable cyclinB1 entailed metaphase arrest without detectable sister chromatid separation, while moderate overexpression arrested cells in a pseudometaphase state, in which separated sister chromatids were kept at the cellular equator by a bipolar 'metaphase-like' spindle. Chromosomes that left the pseudometaphase plate became pulled back and individual kinetochores were found to be merotelically attached to both spindle poles in stable cyclinB1 arrested cells. Inactivation of the chromokinesin hKid, by RNAi or antibody microinjection, prevented the formation of stable bipolar spindles and the 'metaphase-like' alignment of chromosomes in cells expressing stable cyclinB1. These experiments show that cyclinB1 is able to maintain a bipolar spindle even after sister chromatids had become separated and suggest an important role of hKid in this process. Cells expressing low levels of nondegradable cyclinB1 progressed further in mitosis and arrested in telophase.  相似文献   

17.
Aurora family kinases contribute to regulation of mitosis. Using RNA interference in synchronized HeLa cells, we now show that Aurora-A is required for mitotic entry. We found that initial activation of Aurora-A in late G2 phase of the cell cycle is essential for recruitment of the cyclin B1-Cdk1 complex to centrosomes, where it becomes activated and commits cells to mitosis. A two-hybrid screen identified the LIM protein Ajuba as an Aurora-A binding protein. Ajuba and Aurora-A interact in mitotic cells and become phosphorylated as they do so. In vitro analyses revealed that Ajuba induces the autophosphorylation and consequent activation of Aurora-A. Depletion of Ajuba prevented activation of Aurora-A at centrosomes in late G2 phase and inhibited mitotic entry. Overall, our data suggest that Ajuba is an essential activator of Aurora-A in mitotic commitment.  相似文献   

18.
Calpains form a superfamily of Ca(2+)-dependent intracellular cysteine proteases with various isoforms. Two isoforms, micro- and m-calpains, are ubiquitously expressed and known as conventional calpains. It has been previously shown that the mammalian calpains are activated during mitosis by transient increases in cytosolic Ca(2+) concentration. However, it is still unknown whether the activation of calpains contributes to particular events in mitosis. With the use of RNA interference (RNAi), we investigated the roles of calpains in mitosis. Cells reduced the levels of m-calpain, but not mu-calpain, arrested at prometaphase and failed to align their chromosomes at the spindle equator. Specific peptidyl calpain inhibitors also induced aberrant mitosis with chromosome misalignment. Although both m-calpain RNAi and calpain inhibitors affected neither the separation of centrosomes nor the assembly of bipolar spindles, Mad2 was detected on the kinetochores of the misaligned chromosomes, indicating that the prometaphase arrest induced by calpain inhibition is due to activation of the spindle assembly checkpoint. Furthermore, when calpain activity was inhibited in cells having monopolar spindles, chromosomes were clustered adjacent to the centrosome, suggesting that calpain activity is involved in a polar ejection force for metaphase alignment of chromosomes. Based on these findings, we propose that activation of m-calpain during mitosis is required for cells to establish the chromosome alignment by regulating some molecules that generate polar ejection force.  相似文献   

19.
Proper completion of mitosis requires careful coordination of numerous cellular events. It is crucial, for example, that cells do not initiate spindle disassembly and cytokinesis until chromosomes have been properly segregated. Cells have developed numerous safeguards or checkpoints to delay exit from mitosis and initiation of the next cell cycle in response to defects in late mitosis. In this review, we discuss recent work on two homologous signaling pathways in budding and fission yeast, termed the mitotic exit network (MEN) and septation initiation network (SIN), respectively, that are essential for coordinating completion of mitosis and cytokinesis with other mitotic events.  相似文献   

20.
In rapidly growing hyphae of Saprolegnia ferax, all nuclei contain arrays of kinetochore microtubules, which suggests that the nuclei are all in various phases of mitosis, with no apparent interphase. In prophase nuclei, kinetochore microtubules form a single, hemispherical array adjacent to the centrioles. This array separates into two similar arrays after centriole replication. The two arrays form by separation of the initial group of microtubules, with no kinetochore replication. During metaphase, between 6.5 and 85% of the kinetochores occur as amphitelic pairs, with a slight tendency for pairing to increase as the spindle elongates. 100% pairing has never been observed. The interkinetochore distance in these pairs is consistently similar to or approximately 0.17 microns. Throughout metaphase and early anaphase, there is extensive and increasing diversity in kinetochore microtubule length, so that a true metaphase plate has not been found. During metaphase, anaphase, and telophase, kinetochore numbers vary considerably, with a mean of similar to or approximately 30 per half spindle. A number of artefactual causes for this variability were examined and discarded. Thus, these results are accepted as real, suggesting either variable ploidy levels in the coenocytic hyphae or kinetochore replication during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号