首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feedback inhibition of the regulatory enzyme threonine deaminase by isoleucine provides an important level of enzymic control over branched chain amino acid biosynthesis in Escherichia coli. Cloning ilvA, the structural gene for threonine deaminase, under control of the trc promoter results in expression of active enzyme upon induction by isopropyl 1-thio-beta-D-galactoside to levels of approximately 20% of the soluble protein in cell extracts. High level expression of threonine deaminase has facilitated the development of a rapid and efficient protocol for the purification of gram quantities of enzyme with a specific activity 3-fold greater than previous preparations. The catalytic activity of threonine deaminase is absolutely dependent on the presence of pyridoxal phosphate, and the tetrameric molecule is isolated containing 1 mol of cofactor/56,000-Da chain. Wild-type threonine deaminase demonstrates a sigmoidal dependence of initial velocity on threonine concentration in the absence of isoleucine, consistent with a substrate-promoted conversion of the enzyme from a low activity to a high activity conformation. The enzymic dehydration of threonine to alpha-ketobutyrate measured by steady-state kinetics, performed at 20 degrees C in 0.05 M potassium phosphate, pH 7.5, is described by a Hill coefficient, nH, of 2.3 and a K0.5 of 8.0 mM. The negative allosteric effector L-isoleucine strongly inhibits the enzyme, yielding a value for nH of 3.9 and K0.5 of 74 mM whereas enzyme activity is greatly increased by L-valine, which yields nearly hyperbolic kinetics characterized by a value for nH of 1.0 and a K0.5 of 5.7 mM. Thus, these effectors promote dramatic and opposing effects on the transition from the low activity to the high activity conformation of the tetrameric enzyme.  相似文献   

2.
Hepatic lipase (HL) plays a central role in LDL and HDL remodeling. High HL activity is associated with small, dense LDL particles and with reduced HDL2 cholesterol levels. HL activity is determined by an HL gene promoter polymorphism, by gender (lower in premenopausal women), and by visceral obesity with insulin resistance. The activity is affected by dietary fat intake and selected medications. There is evidence for an interaction of the HL promoter polymorphism with visceral obesity, dietary fat intake, and with lipid-lowering medications in determining the level of HL activity.The dyslipidemia with high HL activity is a potentially proatherogenic lipoprotein profile in the metabolic syndrome, in Type 2 diabetes, and in familial combined hyperlipidemia.  相似文献   

3.
This article reviews those factors other than light that affectthe activity of the pineal gland. Both testosterone and dihydrotestosteronewere shown to have tissue specific inhibitory effects on pinealMAO activity concomitant with an increased activity of the gland.Estradiol stimulated pineal MAO activity and decreased the activityof this gland. This effect also was tissue-specific. Bilateraland unilateral experimental cryptorchidism also decreased pinealMAO activity 3 to 4 weeks after surgery. Acute stresses appearto increase adrenal catecholamine output (epinephrine and norepinephrine)as well as to stimulate local adrenergic pathways, while chronicstress, such as starvation, appears to act through the adrenalcorticosteroids by decreasing pineal MAO activity thereby indirectlyincreasing melatonin synthesis. Thusly, both components of theadrenal gland appear to act in concert to increase effectivelymelatonin synthesis by the pineal gland. Irradiation and histaminehave also been reported to affect pineal function—thelatter specifically inhibits HIOMT activity. These observationsindicate that many factors other than light affect pineal morphologyand melatonin synthesis. The pineal appears to be a true neuroendocrineorgan that is affected by hypophysectomy and is responsive tofeedback and control from other organs within the mammalianorganism.  相似文献   

4.
5.
Phenylmethylsulfonyl fluoride (PMSF)-inhibited carboxypeptidase from cat liver was purified 148-fold by chromatography on CM- and DEAE-cellulose with 27.3% yield. Molecular weight of the enzyme is 100-110 kD as determined by gel filtration on Sephadex G-150. The enzyme has maximum activity at pH 5.50-5.75; its activity is completely inhibited by PMSF or p-chloromercuribenzoate and partially inhibited by iodoacetamide. EDTA, 2-mercaptoethanol, N-ethylmaleimide, Co2+ and Ca2+, basic carboxypeptidase inhibitor guanidinoethylmercaptosuccinic acid, and angiotensin-converting enzyme inhibitor captopril do not influence its activity. The enzyme cleaves arginine from enkephalin-Leu5-Arg6 and dansyl-Phe-Leu-Arg to form enkephalin-Leu5 and dansyl-Phe-Leu, respectively, and very slowly cleaves leucine from carbobenzoxy-Gly-Leu. Further cleavage of either enkephalin-Leu5 or dansyl-Phe-Leu was not detected. The highest activity of this enzyme was found in adrenal glands and testicles; this activity was 30% lower in hypophysis, and still lower in liver and kidney. The PMSF-inhibited carboxypeptidase activity in brain was about 6-16 times lower than that in adrenal gland. In brain regions, the highest activity was detected in gray matter of cerebral hemispheres and cerebellum, and slightly lower activity was found in thalamus/hypothalamus, striatum, and hippocampus. The lowest activity was found in quadrigeminal bodies, medulla oblongata, and white matter of cerebral hemispheres. The enzyme exists mainly in soluble form; the activity of membrane-associated enzyme is 7-25% of soluble enzyme activity depending on tissue type. We consider here a possible involvement of PMSF-inhibited carboxypeptidase in the metabolism of biologically active peptides.  相似文献   

6.
The biologically damaging effects of reactive oxygen species are controlled in vivo by a wide spectrum of antioxidant defence mechanisms. Dietary constituents of antioxidant vitamins and trace elements may play an important role in protecting against oxidant damage. The effects of supplementation of vitamins A, C, E and trace elements Cu and Se on the activities of antioxidant enzymes and lipid peroxide levels in chicken erythrocytes were investigated depend on the time. CuZnSOD activity and plasma Cu levels in the Cu group were increased by 39 and 37 per cent respectively. CuZnSOD activity in vitamin C groups was also increased by 20 per cent. The GSH-Px activity in Se, Se+E and Se+Cu groups was raised by 35, 46 and 69 per cent respectively. Also, the GSH-Px activity in the vitamin C group was increased by 33 per cent. Catalase activity in all of these groups was not significantly different when compared with controls (p<0.01). The maximum decrease in LPO levels of 42 per cent was obtained for the Se+E group.  相似文献   

7.
The activity of transglutaminase was characterized in the rat brain. In adults, comparable levels of transglutaminase activity are present in all brain regions examined. The activity is present in all subcellular fractions, as studied by differential centrifugation, but the soluble fraction contains the highest specific activity. The endogenous activity (enzyme activity assayed in the absence of the exogenous substrate casein) is very low in all subcellular fractions, except in the synaptosomal fraction where its highest levels are about 40-60% of the activity assayed in the presence of casein. Furthermore, enzyme activity is present on the external surface of synaptosomes. In the soluble fraction, maximal activity can be detected between pH values of 9 and 10 when assayed in the presence of 5 mM CaCl2 (with half-maximal activity requiring 0.75 mM CaCl2) and 0.4 mM putrescine (with an apparent Km for putrescine of 0.1 mM). The activity can be partially inhibited by ZnCl2 (with an IC50 of 4.5 mM) and by AlCl3 (with an IC50 of 5.1 mM). In the cerebellum, where the full span of neuronal development can be studied after birth, the highest specific activity is observed just after birth, thereafter the activity starts to decline and by 14 days, after a reduction of about 65%, it reaches levels observed throughout life.  相似文献   

8.
An insecticidal protein produced by Bacillus sphaericus A3-2 was purified to elucidate its structure and mode of action. The active principle purified from the culture broth of A3-2 was a protein with a molecular mass of 53 kDa that rapidly intoxicated German cockroaches (Blattela germanica) at a dose of about 100 ng when injected. The insecticidal protein sphaericolysin possessed the undecapeptide motif of cholesterol-dependent cytolysins and had a unique N-terminal sequence. The recombinant protein expressed in Escherichia coli was equally as potent as the native protein. Sphaericolysin-induced hemolysis resulted from the protein's pore-forming action. This activity as well as the insecticidal activity was markedly reduced by a Y159A mutation. Also, coapplication of sphaericolysin with cholesterol abolished the insecticidal action, suggesting that cholesterol binding plays an important role in insecticidal activity. Sphaericolysin-lysed neurons dissociated from the thoracic ganglia of the German cockroaches. In addition, sphaericolysin's activity in ganglia was suppressed by the Y159A mutation. The sphaericolysin-induced damage to the cockroach ganglia was greater than the damage to the ganglia of common cutworms (Spodoptera litura), which accounts, at least in part, for the higher sensitivity to sphaericolysin displayed by the cockroaches than that displayed by cutworms.  相似文献   

9.
谷氨酰内切酶在生物制药及检测中应用较多,但来源受限,将全基因合成的金黄色葡萄球菌来源的谷氨酰内切酶功能区部分对应的基因进行改造后,克隆入表达载体pGEX-4T-2,导入E.coli BL21(DE3),重组蛋白以可溶性形式表达。采用亲和层析等纯化步骤对重组蛋白进行纯化,用底物Z-Phe-Leu-Glu-pNA(L-2135)对重组蛋白的酶学性质进行了研究,用HPLC、LC-MS/MS检测方法对酶切融合蛋白的位点特异性进行了鉴定。结果表明该酶的相对活性为1568U/mg,最适作用温度为42℃、最适作用pH为8.0,在pH 9.0,50℃时仍有较高的酶活,将该酶与胰酶酶切融合蛋白所得肽段结合能够提升质谱检测结果的精确度。以上结果表明该重组酶具有良好的应用前景。  相似文献   

10.
The production of alpha-amidated peptides from their glycine-extended precursors is a two-step process involving the sequential action of two catalytic domains encoded by the bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) precursor. The NH2-terminal third of the PAM precursor contains the first enzyme, peptidylglycine alpha-hydroxylating monooxygenase (PHM), a copper, molecular oxygen, and ascorbate-dependent enzyme. The middle third of the PAM precursor contains the second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL). The COOH-terminal third of the PAM precursor encodes a transmembrane domain and a hydrophilic domain that may form a cytoplasmic tail. Antisera to a peptide within the PAL domain were used to identify a 50-kDa protein as the major form of PAL in bovine neurointermediate pituitary granules. This 50-kDa PAL protein was purified and found to begin at Asp434 of bPAM, indicating that it could arise through endoproteolytic cleavage of the bPAM precursor at Lys432-Lys433. With alpha-N-acetyl-Tyr-Val-alpha-hydroxyglycine as the substrate, PAL exhibits a pH optimum of 5.0; enzymatic activity is inhibited by high concentrations of salt but is relatively resistant to thiol reagents and urea. PAL activity is inhibited by EDTA and restored by a number of divalent metals, including Cd2+, Cu2+, Zn2+, and Ca2+. Kinetic studies using alpha-N-acetyl-Tyr-Val-alpha-hydroxyglycine indicate that PAL has a Km of 38 microM and a turnover number of 220/s. Expression vectors encoding only the soluble PHM domain or the PAM precursor from which the PHM domain had been deleted were constructed. hEK293 cells transfected with the PHM vector exhibited a 10-fold increase in secretion of PHM activity with no PHM activity detectable in control or transfected cells. hEK293 cells transfected with the PAL vector exhibited a 2-fold increase in secretion of PAL activity and a 15-fold increase in cellular PAL activity. Most of the PAL activity produced by the transfected cells remained membrane-associated.  相似文献   

11.
The concentration dependences of the activities of cytochalasin B, D, E, and H in capping and cleaving actin filaments have been assayed using fluorescence photobleaching recovery. Filament capping was detected by the increase in mobile G-actin. Cytochalasin D (CD) showed the strongest filament capping activity, with an apparent dissociation constant from filament ends of 50 nM. The order of capping activity was CD greater than CH greater than CE much greater than CB. Filament cleavage was detected by the increase in the diffusion coefficients of actin filaments. By this criterion the order of filament cleavage activity was CD, CE greater than CH much greater than CB. Cytochalasin B shows some activity in cleavage of filaments over a concentration range (0-100 microM) at which it shows no appreciable capping activity. This activity, together with results from other groups, is interpreted to mean that CB binds to protomers within the filament, but not to the barbed end. The reversal of activities for CH and CE, combined with the activity profile of CB, constitute the strongest evidence to date that there is more than one cytochalasin binding site on the actin molecule.  相似文献   

12.
An antiserum to rat liver catechol-O-methyltransferase (COMT) was utilized in the immunological characterization of COMT from rat kidney, brain, and choroid plexuses, in addition to rat liver. The presence of anti-COMT activity was confirmed by the direct inhibition of the activity of the enzyme from rat liver by small quantities of the antiserum and by the inhibition of the activity of the enzyme from rat brain. The specificity of the antiserum was demonstrated both by immunoelectrophoresis of rat liver COMT, and by a partial purification of rat liver COMT in which changes in COMT specific activity were correlated with the appearance of a precipitin line in double-immunodiffusion experiments. The antigenic similarity of the enzyme derived from rat liver, kidney, brain, and choroid plexuses was demonstrated by the formation of a precipitin line of identity when preparations from these four tissues were diffused against the antiserum.  相似文献   

13.
Water-soluble phospholipase B was purified to homogeneity from Torulaspora delbrueckii cell washings. The washings were concentrated by ultrafiltration, and then a fraction with phospholipase B activity was precipitated with ammonium sulfate, and purified by sequential column chromatographies on Octyl-Sepharose CL-4B, DEAE-Sephacel, and Sepharose 6B. The molecular weight of the enzyme was estimated to be 170,000~200,000 by SDS-polyacrylamide gel electrophoresis and by gel filtration with a Sephadex G-200 column. The isoelectric point of the enzyme was 4.0. The purified enzyme had two pH optima at pH 2.5 and pH 7.5. The activity at acidic pH was greatly stimulated by the divalent metal ions tested, but the activity at alkaline pH was stimulated mainly by Ca2+ and Fe2+. The purified enzyme had both lysophospholipase activity and phospholipase B activity in a ratio of 37:1 at acidic pH and 73:1 at alkaline pH. The amino acid composition of the enzyme was characterized by high contents of Asp, Ser, Leu, and Gly.  相似文献   

14.
Metabolic, mechanical, thermal, and chemical injury induced ornithine decarboxylase (ODC) activity in rat brain. A two- to sixfold increase in ODC activity was measured at 5-9 h after different modes of injury to the brain. During the early phase of recovery from transient ischemia, when average protein synthesis was less than 50% of control, ODC activity was increased nearly fivefold. The rise in activity could be blocked by anisomycin, or reduced by intracerebral injections of actinomycin D. Drilling burr holes into the skull, injection of the vehicle for actinomycin D, hyperthermia, and freezing lesions all caused increased ODC activity. Neurotoxic chemicals (ammonia, methionine sulfoximine, acrylamide, carbon tetrachloride, and anisomycin) also increased brain ODC activity, whereas other chemicals (mannitol and valine) did not. Treatments known to stimulate the synthesis of heat shock proteins (carotid occlusion, hyperthermia, Cd2+, canavanine, and ethanol) induced ODC activity in the liver, whereas only hyperthermia and ethanol caused significant increases in spleen ODC activity. All increases in ODC activity were blocked by difluoromethylornithine, an irreversible inhibitor of ODC. The cellular response to noxious or stressful stimuli includes the synthesis of a small number of proteins of unknown functions; ODC may be one of these "heat shock" or "trauma" proteins.  相似文献   

15.
Isopycnic sucrose gradient separation of rat liver organelles revealed the presence of two distinct branched-chain α-keto acid decarboxylase activities; a mitochondrial activity, which decarboxylates the three branched-chain α-keto acids and requires CoA and NAD+ and a cytosolic activity, which decarboxylates α-ketoisocaproate, but not α-ketoisovalerate, or α-keto-β-methylvalerate. The latter enzyme does not require added CoA or NAD+. Assay conditions for the cytosolic α-ketoisocaproate decarboxylase activity were optimized and this activity was partially characterized. In rat liver cytosol preparations this activity has a pH optimum of 6.5 and is activated by 1.5 m ammonium sulfate. The decarboxylase activity has an apparent Km of 0.03 mm for α-ketoisocaproate when optimized assay conditions are employed. Phenylpyruvate is a very potent inhibitor. α-Ketoisovalerate, α-keto-β-methylvalerate, α-ketobutyrate, and α-ketononanoate also inhibit the α-ketoisocaproate decarboxylase activity. The data indicate that the soluble α-ketoisocaproate decarboxylase is an oxidase. Rat liver cytosol preparations consumed oxygen when either α-ketoisocaproate or α-keto-γ-methiolbutyrate were added. None of the other α-keto acids tested stimulated oxygen consumption. 1-14C-Labeled α-keto-γ-methiolbutyrate is also decarboxylated by cytosol preparations. The α-ketoisocaproate oxidase was purified 20-fold from a 70,000g supernatant fraction of a rat liver homogenate. In these preparations the activity was increased 4-fold by the addition of dithiothreitol, ferrous iron, and ascorbate. The major product of this enzyme activity is β-hydroxyisovalerate. Isovalerate is not a free intermediate in the reaction. The data indicate an alternative pathway for metabolism of α-ketoisocaproate which produces β-hydroxyisovalerate.  相似文献   

16.
Vitreoscilla is a gram-negative bacterium that contains a unique bacterial hemoglobin that is relatively autoxidizable. It also contains a catalase whose primary function may be to remove hydrogen peroxide produced by this autoxidation. This enzyme was purified and partially characterized. It is a protein of 272,000 Da with a probable A2B2 subunit structure, in which the estimated molecular size of A is 68,000 Da and that of B, 64,000 Da, and an average of 1.6 molecules of protoheme IX per tetramer. The turnover number for its catalase activity was 27,000 s-1 and the Km for hydrogen peroxide was 16 mM. The peroxidase activity measured using o-dianisidine was 0.6% that of the catalase activity. Cyanide, which inhibited both catalase and peroxidase activities, bound the heme in a noncooperative manner. Azide inhibited the catalase activity but stimulated the peroxidase activity. An apparent compound II was formed by the reaction of the enzyme with ethyl hydrogen peroxide. The enzyme was reducible by dithionite, and the ferrous enzyme reacted with CO. The cellular content of Vitreoscilla hemoglobin varies during the growth cycle and in cells grown under different conditions, but the ratio of hemoglobin to catalase activity remained relatively constant, indicating possible coordinated biosynthesis and supporting the putative role of Vitreoscilla catalase as a scavenger of peroxide generated by Vitreoscilla hemoglobin.  相似文献   

17.
Antibacterial and antifungal activity was investigated for strains of Acidovorax spp., Burkholderia spp., Herbaspirillum rubrisubalbicans and Ralstonia solanacearum ; strains representing 118 species and pathovars of Xanthomonas were also tested for phytotoxic capacity. Antibacterial activity was present in all Burkholderia spp. except B. andropogonis , in biovars II and III of R. solanacearum but not in biovars I and IV, and in two strains of Xanthomonas. Little antibacterial activity was recorded for Acidovorax spp. Antifungal activity was expressed by most strains of A. avenae ssp. avenae and A. avenae ssp. cattleyae. Weak or variable antifungal reactions were given by strains of A. avenae ssp. citrulli and no activity was expressed by A. konjaci. Most strains of B. caryophylli, B. cepacia, B. gladioli pv. agaricicola, B. gladioli pv. alliicola, B. gladioli pv. gladioli , B. glumae and B. plantari produced extensive inhibition zones against Rhodotorula mucilaginosa. Strains of H. rubrisubalbicans and R. solanacearum gave negative, weak or variable reactions. Strains of Xanthomonas spp. exhibited no antifungal activity. In all cases antifungal activity was caused by a low molecular weight toxin. Three Xanthomonas strains exhibited phytotoxic activity. The ecological implications of these data are discussed.  相似文献   

18.
An insecticidal protein produced by Bacillus sphaericus A3-2 was purified to elucidate its structure and mode of action. The active principle purified from the culture broth of A3-2 was a protein with a molecular mass of 53 kDa that rapidly intoxicated German cockroaches (Blattela germanica) at a dose of about 100 ng when injected. The insecticidal protein sphaericolysin possessed the undecapeptide motif of cholesterol-dependent cytolysins and had a unique N-terminal sequence. The recombinant protein expressed in Escherichia coli was equally as potent as the native protein. Sphaericolysin-induced hemolysis resulted from the protein's pore-forming action. This activity as well as the insecticidal activity was markedly reduced by a Y159A mutation. Also, coapplication of sphaericolysin with cholesterol abolished the insecticidal action, suggesting that cholesterol binding plays an important role in insecticidal activity. Sphaericolysin-lysed neurons dissociated from the thoracic ganglia of the German cockroaches. In addition, sphaericolysin's activity in ganglia was suppressed by the Y159A mutation. The sphaericolysin-induced damage to the cockroach ganglia was greater than the damage to the ganglia of common cutworms (Spodoptera litura), which accounts, at least in part, for the higher sensitivity to sphaericolysin displayed by the cockroaches than that displayed by cutworms.  相似文献   

19.
Alkaline phosphatase activity in rat hepatoma cells (R-Y121B) cultured in a monolayer at 0.5% serum was enhanced by serum, bovine serum albumin, casein and gamma-globulin, but ovalbumin, polyvinylpyrrolidone, dexamethasone, insulin and dibutyrylcyclic AMP showed little effect on alkaline phosphatase activity. In addition, cycloheximide, actinomycin D, chloroquine, dinitrophenol and potassium cyanide also increased the enzyme activity, although the incorporation of [14C]leucine into cellular proteins was almost completely inhibited in the presence of these cytotoxic substances. When R-Y121B cell homogenates were incubated at 37 degrees C, alkaline phosphatase activity increased in a pH-dependent manner: the maximal increase was observed at pH 7.1. The magnitudes of the increase differed among cell homogenates and a 4- to 10-fold increase was observed. Alkaline phosphatase in R-Y121B cells was apparently heat-stable, but that in the cells obtained from various treatments was heat labile and the latter activity decreased to less than 50% of the initial activity after 15 min of incubation at 56 degrees C. Alkaline phosphatase in the control and also in the treated cells was more sensitive to L-homoarginine than L-phenylalanine. The Lineweaver-Burk plot showed that the increases in the enzyme activity were accompanied by changes not only in V but also in Km for alkaline phosphatase reaction. Finally, it has been suggested that the increases in alkaline phosphatase activity under various conditions are due to the conversion of the molecule with a low enzyme activity to the molecule with a high enzyme activity in R-Y121B cells.  相似文献   

20.
Enzymatic activities in the hemolymph of healthy and Bonamia-infected Ostrea edulis and Crassostrea gigas were studied with a commercial kit for the detection of 19 enzymes: 15 and 16 enzymes, respectively, were detected in the hemolymph of O. edulis and C. gigas and 10 of them showed relatively high activity levels. Most of them existed in both the cell-free fraction of the hemolymph and in the hemocytes. The cell-free hemolymph fraction of Bonamia ostreae-infected European flat oysters showed an elevated enzymatic activity level compared with that of healthy individuals. C. gigas hemocytes possessed higher enzymatic activity levels than O. edulis hemocytes. Differences in enzymatic activities existed in granulocytes and hyalinocytes in both oyster species. The enzyme release from oyster hemocytes seemed to be selective. The infection by B. ostreae induced enzymatic activity variations in European flat oysters. Higher enzyme levels within hemocytes may contribute partly to the natural resistance of C. gigas to the infection by B. ostreae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号