首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We expressed recombinant human methionine aminopeptidase type 1 (MAP or MetAP) in a map1 null yeast strain to determine the extent of functional complementation between the two proteins. The human MetAP1 protein fully rescued the slow growth phenotype associated with deletion of yeast MetAP1, suggesting that the yeast and human MetAP1 proteins may have similar roles in vivo. Expression of human MetAP1 in yeast has significance in understanding the function of the human protein, studying its in vivo substrate specificity, and developing specific anti-fungal drugs to target yeast MetAP1.  相似文献   

2.
Methionine aminopeptidase (MetAP) catalyzes the co-translational processing of initiator methionine from nascent proteins. A cellular requirement for MetAP activity is likely due to dysfunction of MetAP substrates that require methionine removal for proper protein function. Glutamine-fructose-6-phosphate aminotransferase (Gfa1) is an essential enzyme in yeast that catalyzes the first and rate-limiting step in hexosamine biosynthesis. The alpha-amino group of Gfa1 Cys-1 has been proposed to act as a nucleophile in the catalytic mechanism. We used two mutational strategies to evaluate whether removal of initiator methionine, catalyzed by MetAP, is required for Gfa1 function. Our results demonstrate that exposure of the alpha-amino group of Cys-1 is required for normal Gfa1 function as failure to do so results in decreased enzyme activity and slow growth. Further, either isoform of MetAP in yeast is sufficient for Gfa1 processing in vivo. These results are the first demonstration of an endogenous yeast protein that requires the exposure of the alpha-amino group by MetAP action for normal function. Additionally, Gfa1 will be a relevant target in therapeutic or physiological applications in which MetAP activity is inhibited.  相似文献   

3.
Eukaryotic methionine aminopeptidase type 2 (MetAP2, MetAP2 gene (MAP2)), together with eukaryotic MetAP1, cotranslationally hydrolyzes initiator methionine from nascent polypeptides when the side chain of the second residue is small and uncharged. In this report, we took advantage of the yeast (Saccharomyces cerevisiae) map1 null strain's reliance on MetAP2 activity for the growth and viability to provide evidence of the first dominant negative mutant of eukaryotic MetAP2. Replacement of the conserved His(174) with alanine within the C-terminal catalytic domain of yeast MetAP2 eliminated detectable catalytic activity against a peptide substrate in vitro. Overexpression of MetAP2 (H174A) under the strong GPD promoter in a yeast map1 null strain was lethal, whereas overexpression under the weaker GAL1 promoter slightly inhibited map1 null growth. Deletion mutants further revealed that the N-terminal region of MetAP2 (residues 2-57) is essential but not sufficient for MetAP2 (H174A) to fully interfere with map1 null growth. Together, these results indicate that catalytically inactive MetAP2 is a dominant negative mutant that requires its N-terminal region to interfere with wild-type MetAP2 function.  相似文献   

4.
Methionine aminopeptidase type 1 (MetAP1) cotranslationally removes N-terminal methionine from nascent polypeptides, when the second residue in the primary structure is small and uncharged. Eukaryotic MetAP1 has an N-terminal zinc finger domain not found in prokaryotic MetAPs. We hypothesized that the zinc finger domain mediates the association of MetAP1 with the ribosomes and have reported genetic evidence that it is important for the normal function of MetAP1 in vivo. In this study, the intracellular role of the zinc finger domain in yeast MetAP1 function was examined. Wild-type MetAP1 expressed in a yeast map1 null strain removed 100% of N-terminal methionine from a reporter protein, while zinc finger mutants removed only 31-35%. Ribosome profiles of map1 null expressing wild-type MetAP1 or one of three zinc finger mutants were compared. Wild-type MetAP1 was found to be an 80S translational complex-associated protein that primarily associates with the 60S subunit. Deletion of the zinc finger domain did not significantly alter the ribosome profile distribution of MetAP1. In contrast, single point mutations in the first or second zinc finger motif disrupted association of MetAP1 with the 60S subunit and the 80S translational complex. Together, these results indicate that the zinc finger domain is essential for the normal processing function of MetAP1 in vivo and suggest that it may be important for the proper functional alignment of MetAP1 on the ribosomes.  相似文献   

5.
Cellular protein synthesis is initiated with methionine in eukaryotes with few exceptions. Methionine aminopeptidases (MetAPs) which catalyze the process of N-terminal methionine excision are essential for all organisms. In mammals, type 2 MetAP (MetAP2) is known to be important for angiogenesis, while type 1 MetAP (MetAP1) has been shown to play a pivotal role in cell proliferation. Our previous high-throughput screening of a commercial compound library uncovered a novel class of inhibitors for both human MetAP1 (HsMetAP1) and human MetAP2 (HsMetAP2). This class of inhibitors contains a pyridinylpyrimidine core. To understand the structure–activity relationship (SAR) and to search for analogues of 2 with greater potency and higher HsMetAP1-selectivity, a total of 58 analogues were acquired through either commercial source or by in-house synthesis and their inhibitory activities against HsMetAP1 and HsMetAP2 were determined. Through this systematic medicinal chemistry analysis, we have identified (1) 5-chloro-6-methyl-2-pyridin-2-ylpyrimidine as the minimum element for the inhibition of HsMetAP1; (2) 5′-chloro as the favored substituent on the pyridine ring for the enhanced potency against HsMetAP1; and (3) long C4 side chains as the essentials for higher HsMetAP1-selectivity. At the end of our SAR campaign, 25b, 25c, 26d and 30a30c are among the most selective and potent inhibitors of purified HsMetAP1 reported to date. In addition, we also performed crystallographic analysis of one representative inhibitor (26d) in complex with N-terminally truncated HsMetAP1.  相似文献   

6.
Methionine aminopeptidase (MetAP) plays an essential role for cell survival. Hence, MetAP is a promising target for developing broad spectrum antibacterial agents. MetAP can be activated in vitro by a number of divalent metals, and X-ray structures show that the active site can accommodate two cations. Herein, we demonstrate bacterial growth inhibition by a compound that targets MetAP by recruitment of a third auxiliary metal. Contrary to previous beliefs, this shows that metal-mediated inhibition is a viable approach for discovering MetAP inhibitors that are effective for therapeutic application.  相似文献   

7.
Methionine aminopeptidase 2 (MetAP2) is responsible for the hydrolysis of the initiator methionine molecule from the majority of newly synthesized proteins. We have cloned the MetAP2 gene from the malaria parasite Plasmodium falciparum (PfMetAP2; GenBank accession number AF348320). The cloned PfMetAP2 has no intron, consists of 1,544 bp and encodes a protein of 354 amino acids with a molecular mass of 40,537 D and an overall base composition of 72.54% A + T. PfMetAP2 has 40% sequence identity with human MetAP2 and 45% identity with yeast MetAP2, and is located in chromosome 14 of P. falciparum. The three-dimensional structure of Pf MetAP2 has been modeled based on the crystal structure of human MetAP2, and several amino acid side chains protruding into the binding pocket that differ between the plasmodial and human enzyme have been identified. The specific MetAP2 inhibitors, fumagillin and TNP-470, potently blocked in vitro growth of P. falciparum and Leishmania donavani, with IC(50) values similar to the prototype drugs. Furthermore, in the case of P. falciparum, the chloroquine-resistant strains are equally susceptible to these two compounds.  相似文献   

8.
In Saccharomyces cerevisiae, the essential function of amino-terminal methionine removal is provided cotranslationally by two methionine aminopeptidases (MetAP1 and MetAP2). To examine the individual processing efficiency of each MetAP in vivo, we measured the degree of N-terminal methionine cleavage from a series of mutated glutathione-S-transferase (GST) proteins isolated from yeast wild-type, a map1 deletion strain, a map2 deletion strain, and a map1 deletion strain overexpressing the MAP2 gene. We found that MetAP1 plays the major role in N-terminal methionine removal in yeast. Both MetAPs were less efficient when the second residue was Val, and MetAP2 was less efficient than MetAP1 when the second residue was Gly, Cys, or Thr. These findings indicate that MetAP1 and MetAP2 exhibit different cleavage efficiencies against the same substrates in vivo. Interestingly, although methionine is considered a stabilizing N-terminal residue, we found that retention of the initiator methionine on the Met-Ala-GST mutant protein drastically reduced its half-life in vivo.  相似文献   

9.
Boxem M  Tsai CW  Zhang Y  Saito RM  Liu JO 《FEBS letters》2004,576(1-2):245-250
We have investigated the physiological function of type 2 methionine aminopeptidases (MetAP2) using Caenorhabditis elegans as a model system. A homolog of human MetAP2 was found in the C. elegans genome, which we termed MAP-2. MAP-2 protein displayed methionine aminopeptidase activity and was sensitive to inhibition by fumagillin. Downregulation of map-2 expression by RNAi led to sterility, resulting from a defect in germ cell proliferation. These observations suggest that MAP-2 is essential for germ cell development in C. elegans and that this ubiquitous enzyme may play important roles in a tissue specific manner.  相似文献   

10.
The identity of the physiological metal cofactor for human methionine aminopeptidase-2 (MetAP2) has not been established. To examine this question, we first investigated the effect of eight divalent metal ions, including Ca(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+), on recombinant human methionine aminopeptidase apoenzymes in releasing N-terminal methionine from three peptide substrates: MAS, MGAQFSKT, and (3)H-MASK(biotin)G. The activity of MetAP2 on either MAS or MGAQFSKT was enhanced 15-25-fold by Co(2+) or Mn(2+) metal ions in a broad concentration range (1-1000 microM). In the presence of reduced glutathione to mimic the cellular environment, Co(2+) and Mn(2+) were also the best stimulators (approximately 30-fold) for MetAP2 enzyme activity. To determine which metal ion is physiologically relevant, we then tested inhibition of intracellular MetAP2 with synthetic inhibitors selective for MetAP2 with different metal cofactors. A-310840 below 10 microM did not inhibit the activity of MetAP2-Mn(2+) but was very potent against MetAP2 with other metal ions including Co(2+), Fe(2+), Ni(2+), and Zn(2+) in the in vitro enzyme assays. In contrast, A-311263 inhibited MetAP2 with Mn(2+), as well as Co(2+), Fe(2+), Ni(2+), and Zn(2+). In cell culture assays, A-310840 did not inhibit intracellular MetAP2 enzyme activity and did not inhibit cell proliferation despite its ability to permeate and accumulate in cytosol, while A-311263 inhibited both intracellular MetAP2 and proliferation in a similar concentration range, indicating cellular MetAP2 is functioning as a manganese enzyme but not as a cobalt, zinc, iron, or nickel enzyme. We conclude that MetAP2 is a manganese enzyme and that therapeutic MetAP2 inhibitors should inhibit MetAP2-Mn(2+).  相似文献   

11.
The angiogenesis inhibitors fumagillin and TNP-470 selectively inhibit the proliferation of endothelial cells, as compared with most other cell types. The mechanism of this selective inhibition remains uncertain, although methionine aminopeptidase-2 (MetAP2) has recently been found to be a target for fumagillin or TNP-470, which inactivates MetAP2 enzyme activity through covalent modification. Primary cultures of human endothelial cells and six other non-endothelial cell types were treated with fumagillin to determine its effect on cell proliferation. Only the growth of endothelial cells was completely inhibited at low concentrations of fumagillin. MetAP1 and MetAP2 levels in these cells were investigated to determine whether differential enzyme expression plays a role in the selective action of fumagillin. Western blot analysis and RT-PCR data showed that MetAP1 and MetAP2 were both expressed in these different types of cells, thus, ruling out differential expression of MetAP1 and MetAP2 as an explanation for the cell specificity of fumagillin. Expression of MetAP2, but not of MetAP1, is regulated. Treatment of human microvascular endothelial cells (HMVEC) with fumagillin resulted in threefold increases of MetAP2 protein in the cells, while MetAP1 remained constant. Similar upregulation of MetAP2 by exposure to fumagillin was also observed in non-endothelial cells, eliminating this response as an explanation for cell specificity. Taken together, these results indicate that while MetAP2 plays a critical role in the effect of fumagillin on endothelial cell proliferation, differential endogenous expression or fumagillin-induced upregulation of methionine aminopeptidases is not responsible for this observed selective inhibition.  相似文献   

12.
Li JY  Chen LL  Cui YM  Luo QL  Gu M  Nan FJ  Ye QZ 《Biochemistry》2004,43(24):7892-7898
Methionine aminopeptidase (MetAP) carries out an essential posttranslational modification of nascent proteins by removing the initiator methionine and is recognized as a potential target for developing antibacterial, antifungal, and anticancer agents. We have established an Escherichia coli expression system for human type I MetAP (HsMetAP1) and characterized the full length HsMetAP1 and its N-terminal-truncated mutants HsMetAP1(Delta1-66) and HsMetAP1(Delta1-135) for hydrolysis of several thiopeptolide and peptide substrates and inhibition by a series of nonpeptidic inhibitors. Although the N-terminal extension with zinc finger motifs in HsMetAP1 is not required for enzyme activity, it has a significant impact on the interaction of the enzyme with substrates and inhibitors. In hydrolysis of the thiopeptolide substrates, a relaxation of stringent specificity for the terminal methionine was observed in the truncated mutants. However, this relaxation of specificity was not detectable in hydrolysis of tripeptide or tetrapeptide substrates. Several nonpeptidic inhibitors showed potent inhibition of the mutant HsMetAP1(Delta1-66) but exhibited only weak or no inhibition of the full length enzyme. With the recombinant HsMetAP1 available, we have identified several MetAP inhibitors with submicromolar inhibitory potencies against E. coli MetAP (EcMetAP1) that do not affect HsMetAP1. These results have demonstrated the possibility of developing MetAP inhibitors as antibacterial agents with minimum human toxicity. In addition, micromolar inhibitors of HsMetAP1 identified in this study can serve as tools for investigating the functions of HsMetAP1 in physiological and pathological processes.  相似文献   

13.
Methionine aminopeptidase (MetAP) carries out the cotranslational N-terminal methionine excision and is essential for bacterial survival. Mycobacterium tuberculosis expresses two MetAPs, MtMetAP1a and MtMetAP1c, at different levels in growing and stationary phases, and both are potential targets to develop novel antitubercular therapeutics. Recombinant MtMetAP1a was purified as an apoenzyme, and metal binding and activation were characterized with an activity assay using a fluorogenic substrate. Ni(II), Co(II) and Fe(II) bound tightly at micromolar concentrations, and Ni(II) was the most efficient activator for the MetAP-catalyzed substrate hydrolysis. Although the characteristics of metal binding and activation are similar to MtMetAP1c we characterized before, MtMetAP1a was significantly more active, and more importantly, a set of inhibitors displayed completely different inhibitory profiles on the two mycobacterial MetAPs in both potency and metalloform selectivity. The differences in catalysis and inhibition predicted the significant differences in active site structure.  相似文献   

14.
Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.  相似文献   

15.
Drug resistance in Gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential target to develop such novel antibiotics. Two putative MetAP genes were identified in A. baumannii genome, but whether they actually function as MetAP enzymes was not known. Therefore, we established an efficient E. coli expression system for their production as soluble and metal-free proteins for biochemical characterization. We demonstrated that both could carry out the metal-dependent catalysis and could be activated by divalent metal ions with the order Fe(II) ≈ Ni(II) > Co(II) > Mn(II) for both. By using a set of metalloform-selective inhibitors discovered on other MetAP enzymes, potency and metalloform selectivity on the A. baumannii MetAP proteins were observed. The similarity of their catalysis and inhibition to other MetAP enzymes confirmed that both may function as competent MetAP enzymes in A. baumannii and either or both may serve as the potential drug target.  相似文献   

16.
17.
The catalytic activity of methionine aminopeptidase-2 (MetAP2) has been pharmacologically linked to cell growth, angiogenesis, and tumor progression, making this an attractive target for cancer therapy. An assay for monitoring specific protein changes in response to MetAP2 inhibition, allowing pharmacokinetic (PK)/pharmacodynamic (PD) models to be established, could dramatically improve clinical decision-making. Candidate MetAP2-specific protein substrates were discovered from undigested cell culture-derived proteomes by MALDI-/SELDI-MS profiling and a biochemical method using (35)S-Met labeled protein lysates. Substrates were identified either as intact proteins by FT-ICR-MS or applying in-gel protease digestions followed by LC-MS/MS. The combination of these approaches led to the discovery of novel MetAP2-specific substrates including thioredoxin-1 (Trx-1), SH3 binding glutamic acid rich-like protein (SH3BGRL), and eukaryotic elongation factor-2 (eEF2). These studies also confirmed glyceraldehye 3-phosphate dehydrogenase (GAPDH) and cyclophillin A (CypA) as MetAP2 substrates. Additional data in support of these proteins as MetAP2-specific substrates were provided by in vitro MetAP1/MetAP2 enzyme assays with the corresponding N-terminal derived peptides and 1D/2D Western analyses of cellular and tissue lysates. FT-ICR-MS characterization of all intact species of the 18 kDa substrate, CypA, enabled a SELDI-MS cell-based assay to be developed for correlating N-terminal processing and inhibition of proliferation. The MetAP2-specific protein substrates discovered in this study have diverse properties that should facilitate the development of reagents for testing in preclinical and clinical environments.  相似文献   

18.
S100A4 is an EF-hand type calcium-binding protein that regulates tumor metastasis and a variety of cellular processes via interaction with different target proteins. Here we report that S100A4 physically interacts with methionine aminopeptidase 2 (MetAP2), the primary target for potent angiogenesis inhibitors, fumagillin and ovalicin. Using a yeast two-hybrid screen, S100A4 was found to interact with the N-terminal half of MetAP2. In vitro pull-down assays showed that S100A4 associates with MetAP2 in a calcium-dependent manner. In addition, the binding site of S100A4 was found located within the region between amino acid residues 170 and 229 of MetAP2. In vivo interaction of S100A4 with MetAP2 was verified by co-immunoprecipitation analysis. Immunofluorescent staining revealed that S100A4 and MetAP2 were co-localized in both quiescent and basic fibroblast growth factor-treated murine endothelial MSS31 cells, in the latter of which a significant change of intracellular distribution of both proteins was observed. Although the binding of S100A4 did not affect the in vitro methionine aminopeptidase activity of MetAP2, the cytochemical observation suggests a possible involvement of S100A4 in the regulation of MetAP2 activity through changing its localization, thereby modulating the N-terminal methionine processing of nascent substrates. These results may offer an essential clue for understanding the functional role of S100A4 in regulating endothelial cell growth and tumor metastasis.  相似文献   

19.
Divalent metal ions play a critical role in the removal of N-terminal methionine from nascent proteins by methionine aminopeptidase (MetAP). Being an essential enzyme for bacteria, MetAP is an appealing target for the development of novel antibacterial drugs. Although purified enzyme can be activated by several divalent metal ions, the exact metal ion used by MetAP in cells is unknown. Many MetAP inhibitors are highly potent on purified enzyme, but they fail to show significant inhibition of bacterial growth. One possibility for the failure is a disparity of the metal used in activation of purified MetAP and the metal actually used by MetAP inside bacterial cells. Therefore, the challenge is to elucidate the physiologically relevant metal for MetAP and discover MetAP inhibitors that can effectively inhibit cellular MetAP. We have recently discovered MetAP inhibitors with selectivity toward different metalloforms of Escherichia coli MetAP, and with these unique inhibitors, we characterized their inhibition of MetAP enzyme activity in a cellular environment. We observed that only inhibitors that are selective for the Fe(II)-form of MetAP were potent in this assay. Further, we found that only these Fe(II)-form selective inhibitors showed significant inhibition of growth of five E. coli strains and two Bacillus strains. We confirmed their cellular target as MetAP by analysis of N-terminal processed and unprocessed recombinant glutathione S-transferase proteins. Therefore, we conclude that Fe(II) is the likely metal used by MetAP in E. coli and other bacterial cells.  相似文献   

20.
Methionine aminopeptidase (MetAP) is a dinuclear metalloprotease responsible for the cleavage of methionine initiator residues from nascent proteins. MetAP activity is necessary for bacterial proliferation and is therefore a projected novel antibacterial target. A compound library consisting of 294 members containing metal-binding functional groups was screened against Rickettsia prowazekii MetAP to determine potential inhibitory motifs. The compounds were first screened against the target at a concentration of 10?µM and potential hits were determined to be those exhibiting greater than 50% inhibition of enzymatic activity. These hit compounds were then rescreened against the target in 8-point dose–response curves and 11 compounds were found to inhibit enzymatic activity with IC50 values of less than 10?µM. Finally, compounds (1–5) were docked against RpMetAP with AutoDock to determine potential binding mechanisms and the results were compared with crystal structures deposited within the PDB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号