共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of cholesterol in pathogenesis of Alzheimer's disease: dual metabolic interaction between amyloid beta-protein and cholesterol 总被引:8,自引:0,他引:8
Michikawa M 《Molecular neurobiology》2003,27(1):1-12
The implication that cholesterol plays an essential role in the pathogenesis of Alzheimer’s disease (AD) is based on the 1993
finding that the presence of apolipoprotein E (apoE) allele ε4 is a strong risk factor for developing AD. Since apoE is a
regulator of lipid metabolism, it is reasonable to assume that lipids such as cholesterol are involved in the pathogenesis
of AD. Recent epidemiological and biochemical studies have strengthened this assumption by demonstrating the association between
cholesterol and AD, and by proving that the cellular cholesterol level regulates synthesis of amyloid β-protein (Aβ). Yet
several studies have demonstrated that oligomeric Aβ affects the cellular cholesterol level, which in turn has a variety of
effects on AD-related pathologies, including modulation of tau phosphorylation, synapse formation and maintenance of its function,
and the neurodegenerative process. All these findings suggest that the involvement of cholesterol in the pathogenesis of AD
is dualistic—it is involved in Aβ generation and in the amyloid cascade, leading to disruption of synaptic plasticity, promotion
of tau phosphorylation, and eventual neurodegeneration. This review article describes recent findings that may lead to the
development of a strategy for AD prevention by decreasing the cellular cholesterol level, and also focuses on the impact of
Aβ on cholesterol metabolism in AD and mild cognitive impairment (MCI), which may result in promotion of the amyloid cascade
at later stages of the AD process. 相似文献
2.
V S Gurevich L V Shatilina I G Kovaleva B G Bershadski? 《Biokhimii?a (Moscow, Russia)》1992,57(2):267-274
The relationship between the cholesterol (Ch) content and the concentration of lipid peroxidation (LPO) products in activated platelets and the effect of these parameters on the structure-function characteristics of platelet membranes were studied. It was found that esterified Ch activates free radical processes occurring in platelets. Nonesterified Ch does not induce the production of primary products of LPO (dienoic conjugates) but promotes the accumulation of a secondary LPO metabolite, malonic dialdehyde, this reaction being mediated via indirect mechanisms. The higher (in comparison with normal) orderliness and orientation of membranes in platelets reflect the increase in the concentration of dienoic conjugates and nonesterified Ch. The observed differences in the aggregability of platelets are due to the changes in the Ch content as well as to the "rigidity" of blood platelets. 相似文献
3.
Retrospective clinical studies indicate that individuals chronically treated with cholesterol synthesis inhibitors, statins, are at lower risk of developing AD (Alzheimer's disease). Moreover, treatment of guinea pigs with high doses of simvastatin or drastic reduction of cholesterol in cultured cells decrease Abeta (beta-amyloid peptide) production. These data sustain the concept that high brain cholesterol is responsible for Abeta accumulation in AD, providing the scientific support for the proposed use of statins to prevent this disease. However, a number of unresolved issues raise doubts that high brain cholesterol is to blame. First, it has not been shown that higher neuronal cholesterol increases Abeta production. Secondly, it has not been demonstrated that neurons in AD have more cholesterol than control neurons. On the contrary, the brains of AD patients show a specific down-regulation of seladin-1, a protein involved in cholesterol synthesis, and low membrane cholesterol was observed in hippocampal membranes of ApoE4 (apolipoprotein E4) AD cases. This effect was also evidenced by altered cholesterol-rich membrane domains (rafts) and raft-mediated functions, such as diminished generation of the Abeta-degrading enzyme plasmin. Thirdly, numerous genetic defects that cause neurodegeneration are due to defective cholesterol metabolism. Fourthly, in female mice, the most brain-permeant statin induces neurodegeneration and high amyloid production. Altogether, this evidence makes it difficult to accept that statins are beneficial through acting as brain cholesterol-synthesis inhibitors. It appears more likely that their advantageous role arises from improved brain oxygenation. 相似文献
4.
How cholesterol is transported among the membranes of the cell is obscure. Similarly, the mechanisms governing the abundance of cell cholesterol are not entirely understood. It may be, however, that a link exists between the intracellular transport of cholesterol and its homeostasis. We propose that cholesterol circulates between the plasma membrane, which contains the bulk of the sterol, and organelle membranes, which contain only traces. A putative sensor translates small fluctuations in plasma membrane cholesterol into relatively large changes in this flux, thereby setting the magnitude of the intracellular pools. The cholesterol concentration in the endoplasmic reticulum and mitochondrial membranes then governs the activities of proteins embedded therein that mediate cholesterol transformations. This arrangement creates a feedback loop through which the intracellular effectors regulate the abundance of plasma membrane cholesterol. 相似文献
5.
6.
The role of inflammation in Alzheimer's disease 总被引:9,自引:0,他引:9
Considerable evidence gained over the past decade has supported the conclusion that neuroinflammation is associated with Alzheimer's disease (AD) pathology. Inflammatory components related to AD neuroinflammation include brain cells such as microglia and astrocytes, the classic and alternate pathways of the complement system, the pentraxin acute-phase proteins, neuronal-type nicotinic acetylcholine receptors (AChRs), peroxisomal proliferators-activated receptors (PPARs), as well as cytokines and chemokines. Both the microglia and astrocytes have been shown to generate beta-amyloid protein (Abeta), one of the main pathologic features of AD. Abeta itself has been shown to act as a pro-inflammatory agent causing the activation of many of the inflammatory components. Further substantiation for the role of neuroinflammation in AD has come from studies that demonstrate patients who took non-steroidal anti-inflammatory drugs had a lower risk of AD than those who did not. These same results have led to increased interest in pursuing anti-inflammatory therapy for AD but with poor results. On the other hand, increasing amount of data suggest that AChRs and PPARs are involved in AD-induced neuroinflammation and in this regard, future therapy may focus on their specific targeting in the AD brain. 相似文献
7.
The role of cholesterol in lipid membranes 总被引:5,自引:0,他引:5
8.
9.
10.
María Recuero M Carmen Vicente Ana Martínez-García María C. Ramos Pedro Carmona-Saez Isabel Sastre Jesús Aldudo Elisabet Vilella Ana Frank María J. Bullido Fernando Valdivieso 《Aging cell》2009,8(2):128-139
Oxidative stress, which plays a critical role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), is intimately linked to aging – the best established risk factor for AD. Studies in neuronal cells subjected to oxidative stress, mimicking the situation in AD brains, are therefore of great interest. This paper reports that, in human neuronal cells, oxidative stress induced by the free radical-generating xanthine/xanthine oxidase (X-XOD) system leads to apoptotic cell death. Microarray analyses showed a potent activation of the cholesterol biosynthesis pathway following reductions in the cell cholesterol synthesis caused by the X-XOD treatment; furthermore, the apoptosis was reduced by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase ( HMGCR ) expression with an interfering RNA. The potential importance of this mechanism in AD was investigated by genetic association, and it was found that HMGCR , a key gene in cholesterol metabolism and among those most strongly upregulated, was associated with AD risk. In summary, this work presents a human cell model prepared to mimic the effect of oxidative stress in neurons that might be useful in clarifying the mechanism involved in free radical-induced neurodegeneration. Gene expression analysis followed by genetic association studies indicates a possible link among oxidative stress, cholesterol metabolism and AD. 相似文献
11.
Sabrina Florent-Béchard Cédric Desbène Pierre Garcia Ahmad Allouche Ihsen Youssef Marie-Christine Escanyé Violette Koziel Marine Hanse Catherine Malaplate-Armand Christophe Stenger Badreddine Kriem Frances T. Yen-Potin Jean Luc Olivier Thierry Pillot Thierry Oster 《Biochimie》2009
In the absence of efficient diagnostic and therapeutic tools, Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble β-amyloid (Aβ) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Aβ oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Aβ-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD incidence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Aβ peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Aβ-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition-based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Aβ oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease. 相似文献
12.
《生物化学与生物物理学报:疾病的分子基础》2020,1866(12):165937
Structurally and functionally active synapses are essential for neurotransmission and for maintaining normal synaptic and cognitive functions. Researchers have found that synaptic dysfunction is associated with the onset and progression of neurodegenerative diseases, such as Alzheimer's disease (AD), and synaptic dysfunction is even one of the main physiological hallmarks of AD. MiRNAs are present in small, subcellular compartments of the neuron such as neural dendrites, synaptic vesicles, and synaptosomes are known as synaptic miRNAs. Synaptic miRNAs involved in governing multiple synaptic functions that lead to healthy brain functioning and synaptic activity. However, the precise role of synaptic miRNAs has not been determined in AD progression. This review emphasizes the presence of miRNAs at the synapse, synaptic compartments and roles of miRNAs in multiple synaptic functions. We focused on synaptic miRNAs alteration in AD, and how the modulation of miRNAs effect the synaptic functions in AD. We also discussed the impact of synaptic miRNAs in AD progression concerning the synaptic ATP production, mitochondrial function, and synaptic activity. 相似文献
13.
Eva Žerovnik 《BioEssays : news and reviews in molecular, cellular and developmental biology》2009,31(6):597-599
Recently opposing effects of cysteine protease inhibitors, the human cystatins, on neurodegeneration have been reported. Human cystatin C is a risk factor for late‐onset Alzheimer's disease (AD), whereas human stefin B (cystatin B) has no direct involvement in AD. Conflicting data show that their target protease, cathepsin B, might be anti‐amyloidogenic, helping in amyloid‐beta (Aβ) clearance or, instead, might be involved in Aβ production. Some reports claim that cystatin C binds soluble Aβ, making transgenic animals healthier, others, in contrast, that deleting cystatins genes may contribute to amyloid pathology in animal models of AD. 相似文献
14.
The role of Abeta peptides in Alzheimer's disease 总被引:1,自引:0,他引:1
The Abeta peptide has been identified as central to the onset and development of Alzheimer's disease (AD) and several hypotheses about toxicity involving Abeta peptides have been proposed including mechanisms of oxidative stress and disruption of calcium homeostasis. The biology, structure and physical properties of Abeta peptides are discussed, as well as existing therapeutics and future strategies for the treatment of AD. 相似文献
15.
The role of complement in Alzheimer's disease pathology 总被引:12,自引:0,他引:12
Complement proteins are integral components of amyloid plaques and cerebral vascular amyloid in Alzheimer brains. They can be found at the earliest stages of amyloid deposition and their activation coincides with the clinical expression of Alzheimer's dementia. This review will examine the origins of complement in the brain and the role of beta-amyloid peptide (Abeta) in complement activation in Alzheimer's disease, an event that might serve as a nidus of chronic inflammation. Pharmacology therapies that may serve to inhibit Abeta-mediated complement activation will also be discussed. 相似文献
16.
17.
Heike Kölsch Reinhard Heun Frank Jessen Julius Popp Frank Hentschel Wolfgang Maier Dieter Lütjohann 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(8):945-950
Cerebral and extracerebral cholesterol metabolism are altered in Alzheimer's disease (AD) as indicated by reduced plasma levels of the cholesterol elimination products 24S-hydroxycholesterol, which is of cerebral origin, and of 27-hydroxycholesterol, which is formed extracerebrally. However, it has to be evaluated, if changes of cholesterol metabolism in the whole body or in the CNS are exclusively due to the altered elimination of cholesterol or are also due to altered de novo synthesis in AD. We investigated CSF and plasma levels of cholesterol and of its precursors lanosterol, lathosterol and desmosterol in AD patients and non-demented controls. We found CSF levels of cholesterol (p = 0.011), absolute levels of all investigated cholesterol precursors (each p < 0.001) and ratios of cholesterol precursors/cholesterol (each < 0.01) to be lower in AD patients as compared to controls. In plasma, the absolute levels of lanosterol (p = 0.026) and lathosterol (p < 0.001) and the ratio of lathosterol/cholesterol (p = 0.002) but none of the other investigated parameters were reduced in AD patients (p > 0.1). Furthermore, ratios of desmosterol/lathosterol in CSF (p = 0.023) and plasma (p = 0.009) were higher in AD patients as compared to controls. Our data support the hypothesis that cholesterol metabolism is altered in AD and further suggest that especially cholesterol de novo synthesis within the CNS of AD patients might be reduced. These findings raise doubt on a beneficial effect of cholesterol lowering treatment in manifest AD. 相似文献
18.
Brown J Theisler C Silberman S Magnuson D Gottardi-Littell N Lee JM Yager D Crowley J Sambamurti K Rahman MM Reiss AB Eckman CB Wolozin B 《The Journal of biological chemistry》2004,279(33):34674-34681
Cholesterol is eliminated from neurons by oxidization, which generates oxysterols. Cholesterol oxidation is mediated by the enzymes cholesterol 24-hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1). Immunocytochemical studies show that CYP46A1 and CYP27A1 are expressed in neurons and some astrocytes in the normal brain, and CYP27A1 is present in oligodendrocytes. In Alzheimer's disease (AD), CYP46A1 shows prominent expression in astrocytes and around amyloid plaques, whereas CYP27A1 expression decreases in neurons and is not apparent around amyloid plaques but increases in oligodendrocytes. Although previous studies have examined the effects of synthetic oxysterols on the processing of amyloid precursor protein (APP), the actions of the naturally occurring oxysterols have yet to be examined. To understand the role of cholesterol oxidation in AD, we compared the effects of 24(S)- and 27-hydroxycholesterol on the processing of APP and analyzed the cell-specific expression patterns of the two cholesterol hydroxylases in the human brain. Both oxysterols inhibited production of Abeta in neurons, but 24(S)-hydroxycholesterol was approximately 1000-fold more potent than 27-hydroxycholesterol. The IC(50) of 24(S)-hydroxycholesterol for inhibiting Abeta secretion was approximately 1 nm. Both oxysterols induced ABCA1 expression with IC(50) values similar to that for inhibition of A beta secretion, suggesting the involvement of liver X receptor. Oxysterols also inhibited protein kinase C activity and APP secretion following stimulation of protein kinase C. The selective expression of CYP46A1 around neuritic plaques and the potent inhibition of APP processing in neurons by 24(S)-hydroxycholesterol suggests that CYP46A1 affects the pathophysiology of AD and provides insight into how polymorphisms in the CYP46A1 gene might influence the pathophysiology of this prevalent disease. 相似文献
19.
目的 探讨miR-106b在阿尔茨海默病(Alzheimer's disease,AD)发病中的作用.方法 取3月龄和6月龄APPswe/PSΔE9小鼠脑组织,进行microRNA芯片的检测;利用real-time PCR检测3、6、9月龄APPswe/PSΔE9小鼠脑组织中miR-106b的表达,对芯片检测结果进行验证;通过构建miR-106b稳定转染细胞系和miR-106b knockdown研究miR-106b与TGFBR2表达之间的关系; 构建TGFBR2 3'UTR-荧光素酶报告载体,验证miR-106b是否可以直接调控TGFBR2蛋白的表达;采用Western blot的方法检测APPswe/ΔPSΔE9小鼠和对照小鼠脑组织中TGFBR2蛋白的表达情况.结果 miR-106b在3月龄和6月龄AD模型小鼠脑组织中表达升高,在9月龄模型小鼠脑组织中表达降低;通过体外实验,我们发现miR-106b与TGFBR2蛋白的表达呈负相关;荧光素酶报告实验表明TGFBR2 3'UTR序列中包含miR-106b的结合位点;TGFBR2蛋白在3、6、9、12月龄AD模型小鼠脑组织中表达均降低.结论 miR-106b可能通过调控TGFBR2蛋白的表达影响TGF-β信号通路,从而参与AD的发病. 相似文献
20.
The photoreceptor rod outer segment (ROS) provides a unique system in which to investigate the role of cholesterol, an essential membrane constituent of most animal cells. The ROS is responsible for the initial events of vision at low light levels. It consists of a stack of disk membranes surrounded by the plasma membrane. Light capture occurs in the outer segment disk membranes that contain the photopigment, rhodopsin. These membranes originate from evaginations of the plasma membrane at the base of the outer segment. The new disks separate from the plasma membrane and progressively move up the length of the ROS over the course of several days. Thus the role of cholesterol can be evaluated in two distinct membranes. Furthermore, because the disk membranes vary in age it can also be investigated in a membrane as a function of the membrane age. The plasma membrane is enriched in cholesterol and in saturated fatty acids species relative to the disk membrane. The newly formed disk membranes have 6-fold more cholesterol than disks at the apical tip of the ROS. The partitioning of cholesterol out of disk membranes as they age and are apically displaced is consistent with the high PE content of disk membranes relative to the plasma membrane. The cholesterol composition of membranes has profound consequences on the major protein, rhodopsin. Biophysical studies in both model membranes and in native membranes have demonstrated that cholesterol can modulate the activity of rhodopsin by altering the membrane hydrocarbon environment. These studies suggest that mature disk membranes initiate the visual signal cascade more effectively than the newly synthesized, high cholesterol basal disks. Although rhodopsin is also the major protein of the plasma membrane, the high membrane cholesterol content inhibits rhodopsin participation in the visual transduction cascade. In addition to its effect on the hydrocarbon region, cholesterol may interact directly with rhodopsin. While high cholesterol inhibits rhodopsin activation, it also stabilizes the protein to denaturation. Therefore the disk membrane must perform a balancing act providing sufficient cholesterol to confer stability but without making the membrane too restrictive to receptor activation. Within a given disk membrane, it is likely that cholesterol exhibits an asymmetric distribution between the inner and outer bilayer leaflets. Furthermore, there is some evidence of cholesterol microdomains in the disk membranes. The availability of the disk protein, rom-1 may be sensitive to membrane cholesterol. The effects exerted by cholesterol on rhodopsin function have far-reaching implications for the study of G-protein coupled receptors as a whole. These studies show that the function of a membrane receptor can be modulated by modification of the lipid bilayer, particularly cholesterol. This provides a powerful means of fine-tuning the activity of a membrane protein without resorting to turnover of the protein or protein modification. 相似文献