首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Utsunomiya I  Ito M  Oh-ishi S 《Cytokine》1998,10(12):956-963
Levels of inflammatory cytokines tumour necrosis factor (TNF), interleukin 1 (IL-1), IL-6, and cytokine-induced neutrophil chemoattractant (CINC), which is a member of the alpha-chemokine family in rats, were measured in the pleural exudates during zymosan-induced pleurisy to examine the relationship between the local production of cytokines and the inflammatory reaction. All four cytokine levels in the pleural exudate began to increase after 1-2 h, preceding the influx of neutrophils, and peaked after 4-5 h. Thereafter, these cytokine levels declined after 24 h, whereas the exudate volume still continued to increase and leukocyte number reached a plateau. Concomitant injection of actinomycin D (10 microg) with zymosan markedly suppressed the neutrophil infiltration, parallel with CINC production in the pleural exudate at 4 h. A transient elevation of IL-6 level, peaking at 5 h, and subsequent rise in the level of an acute-phase protein, T-kininogen, were also observed in the plasma. When recombinant human TNF-alpha (rhTNF-alpha) (20 000 U) was intrapleurally injected a rapid increase in pleural CINC level, followed by neutrophil infiltration, and a sharp rise in IL-6 level in the plasma, followed by an increase in T-kininogen, were demonstrated. These results suggest that CINC produced in the pleural exudate may participate in neutrophil infiltration, that IL-6 induced in the plasma stimulates T-kininogen production, and that endogenous TNF may be partly involved in the induction of CINC and IL-6 in this zymosan inflammation.  相似文献   

2.
Clearance of neutrophils from inflamed sites is critical for resolution of inflammation, but pathogen-driven neutrophil apoptosis can impair host defenses. We previously showed that pyocyanin, a phenazine toxic metabolite produced by Pseudomonas aeruginosa, accelerates neutrophil apoptosis in vitro. We compared wild-type and pyocyanin-deficient strains of P. aeruginosa in a murine model of acute pneumonia. Intratracheal instillation of either strain of P. aeruginosa caused a rapid increase in bronchoalveolar lavage neutrophil counts up to 18 h after infection. In wild-type infection, neutrophil numbers then declined steadily, whereas neutrophil numbers increased up to 48 h in mice infected with pyocyanin-deficient P. aeruginosa. In keeping with these differences, pyocyanin production was associated with reduced bacterial clearance from the lungs. Neutrophil apoptosis was increased in mice infected with wild-type compared with the phenazine-deficient strain or two further strains that lack pyocyanin production, but produce other phenazines. Concentrations of potent neutrophil chemokines (MIP-2, KC) and cytokines (IL-6, IL-1beta) were significantly lower in wild-type compared with phenazine-deficient strain-infected mice at 18 h. We conclude that pyocyanin production by P. aeruginosa suppresses the acute inflammatory response by pathogen-driven acceleration of neutrophil apoptosis and by reducing local inflammation, and that this is advantageous for bacterial survival.  相似文献   

3.
An inflammatory reaction was induced in vivo by injection of zymosan into the peritoneal cavity of the rabbit. The inflammatory exudate was found to contain oedema-inducing and neutrophil chemoattractant activity when assayed in rabbit skin in vivo, using 125I-albumin and 111In-neutrophils. This activity was additional to that of complement fragment C5a, which was removed by an affinity gel. Two chemoattractants were isolated by cation-exchange, gel-filtration and reversed-phase h.p.l.c. One of these, which ran as a single band of 6-8 kDa on SDS/PAGE, was subjected to N-terminal sequence analysis without reduction and alkylation of cysteine residues. Positive identification of 28 of the first 31 amino acids revealed a rabbit homologue of interleukin-8 (75% sequence identity with human interleukin-8). The demonstration of interleukin-8 as a major neutrophil chemoattractant in an inflammatory reaction in vivo provides the basis for further investigations into the role of this cytokine in the inflammatory process.  相似文献   

4.
After bacterial infection, neutrophils dominate the cellular infiltrate. Their main function is assumed to be killing invading pathogens and resolving the inflammation they cause. Activated neutrophils are also known to release a variety of molecules, including the neutrophil serine proteinases, extracellularly. The release of these proteinases during inflammation creates a proteolytic environment where degradation of different molecules modulates the inflammatory response. Flagellin, the structural component of flagella on many bacterial species, is a virulence factor with a strong proinflammatory activity on epithelial cells and other cell types. In this study we show that both human and mouse neutrophil serine proteinases cleave flagellin from Pseudomonas aeruginosa and other bacterial species. More important, cleavage of P. aeruginosa flagellin by the neutrophil serine proteinases neutrophil elastase and cathepsin G resulted in loss of the biological activity of this virulence factor, as evidenced by the lack of innate host defense gene expression in human epithelial cells. The finding that flagellin is susceptible to cleavage by neutrophil serine proteinases suggests a novel role for these enzymes in the inflammatory response to infection. Not only can these enzymes kill bacteria, but they also degrade their virulence factors to halt the inflammatory response they trigger.  相似文献   

5.
We used the mouse air pouch model of inflammation to study the interaction between cytokines, prostaglandin E(2) (PGE(2)) and cell migration during the various phases of acute local inflammation induced by carrageenan. In serum, the levels of interleukin 1 (IL-1), interleukin 6 (IL-6), tumour necrosis factor (TNF), serum amiloid-A (SAA) and Fe(++) were never different from controls, indicating that no systemic inflammatory changes were induced. Locally the exudate volume and the number of leukocytes recruited into the pouch increased progressively until 7 days after carrageenan. The same was true for PGE(2) production. We could not measure IL-1 but the production of IL-6 and TNF reached a maximum after 5-24 h then quickly decreased. Anti-TNF antibodies inhibited cell migration by 50% 24 h after treatment. Pretreatment with interleukin 10 (IL-10) inhibited TNF production almost completely and cell migration by 60%. Carrageenan-induced inflammation was modulated by anti-inflammatory drugs. Pretreatment with dexamethasone (DEX) or indomethacin (INDO) inhibited cell migration and reduced the concentration of TNF in the exudate. Production of PGE(2) or vascular permeability did not correlate with the number of cells in the pouch. Local TNF seems to play an important role in this model, particularly for leukocyte migration in the first phase of the inflammatory process. In conclusion, the air pouch seems to be a good model for studying the regulation of the early events of local inflammation, particularly the role of cytokines and cell migration.  相似文献   

6.
Minced polyester threads introduced into peritoneal cavity of rats cause a granulomatous inflammation with evidence of macrophage stimulation. Chemotactic agents play an important role in the inflammatory reaction; they are released locally by cells involved in inflammation. In this paper the chemotactic effect of the peritoneal and subcutaneous air pouch fluids from rats bearing the polyester inflammatory process, have been studied on PMN cells "in vitro". The fluids were obtained by washing the cavity of untreated rats or rats injected with polyester, 7 days after the injection. The chemotactic response was assayed by employing modified chemotaxis Boyden chambers (Blind Well Neuro Probe) and polymorphonuclear cells from normal rats. Quantification of the migration was calculated by chemotactic index (A/B) (B = random migration, A = chemotaxis). The results demonstrate that a chemotactic activity is present in peritoneal and subcutaneous air pouch fluids following the inflammatory process. In conclusion the chronic inflammation determines the appearance of chemotactic factors for PMN cells, in the peritoneal cavity and in the air pouch, and the air pouch is a very convenient experimental system with the particular advantage that it permits easy repeated sampling of exudate during the course of an inflammatory response.  相似文献   

7.
According to the widely accepted view, neutrophil elastase (NE), a neutrophil-specific serine protease, is a major contributor to Pseudomonas aeruginosa infection-associated host tissue inflammation and damage, which in severe cases can lead to death. Herein, we provide for the first time compelling evidence that the host rather employs NE to protect itself against P. aeruginosa infection. Using a clinically relevant model of pneumonia, targeted deficiency in NE increased the susceptibility of mice to P. aeruginosa. We found that NE was required for maximal intracellular killing of P. aeruginosa by neutrophils. In investigating the mechanism of NE-mediated killing of P. aeruginosa, we found that NE degraded the major outer membrane protein F, a protein with important functions, including porin activity, maintenance of structural integrity, and sensing of host immune system activation. Consistent with this, the use of an isogenic mutant deficient in outer membrane protein F negated the role of NE in host defense against P. aeruginosa infection.  相似文献   

8.
Proteinases can influence lung inflammation by various mechanisms, including via cleavage and activation of protease-activated receptors (PAR) such as PAR2. In addition, proteinases such as neutrophil and/or Pseudomonas-derived elastase can disarm PAR2 resulting in loss of PAR2 signaling. Currently, the role of PAR2 in host defense against bacterial infection is not known. Using a murine model of acute Pseudomonas aeruginosa pneumonia, we examined differences in the pulmonary inflammatory response between wild-type and PAR2(-/-) mice. Compared with wild-type mice, PAR2(-/-) mice displayed more severe lung inflammation and injury in response to P. aeruginosa infection as indicated by higher bronchoalveolar lavage fluid neutrophil numbers, protein concentration, and TNF-alpha levels. By contrast, IFN-gamma levels were markedly reduced in PAR2(-/-) compared with wild-type mice. Importantly, clearance of P. aeruginosa was diminished in PAR2(-/-) mice. In vitro testing revealed that PAR2(-/-) neutrophils killed significantly less bacteria than wild-type murine neutrophils. Further, both neutrophils and macrophages from PAR2(-/-) mice displayed significantly reduced phagocytic efficiency compared with wild-type phagocytes. Stimulation of PAR2 on macrophages using a PAR2-activating peptide resulted in enhanced phagocytosis directly implicating PAR2 signaling in the phagocytic process. We conclude that genetic deletion of PAR2 is associated with decreased clearance of P. aeruginosa. Our data suggest that a deficiency in IFN-gamma production and impaired bacterial phagocytosis are two potential mechanisms responsible for this defect.  相似文献   

9.
Furudoi S  Yoshii T  Komori T 《Cytokine》2003,24(4):143-149
This study evaluates the local levels of proinflammatory cytokine, tumor necrosis factor alpha (TNF-alpha), and anti-inflammatory cytokine, interleukin-10 (IL-10), in an experimental buccal abscess of a diabetic rat model. We prepared a buccal cavity induced by injection of carrageenin in a diabetic rat (blood glucose, 460.6 +/- 54.7 mg/dl, mean +/- SE) induced by streptozotocin (STZ). The buccal abscess was formed by the direct inoculation of Streptococcus pyogenes S-8 (2 x 10(7) cfu) into the buccal cavity at day 5 after carrageenin injection. Cytokine levels in the exudate of the buccal abscess were measured by enzyme-linked immunosorbent assay for 48 h after infection. Bacterial counts, weighing of exudate, and histological analysis were also performed. The mean TNF-alpha levels in the buccal abscess exudate of the diabetic group, which were generally higher than those of the control group, tended to increase over time until 48 h after infection, while the TNF-alpha levels in the control group peaked at 24 h after infection and then decreased. The IL-10 levels in the diabetic group remained almost unchanged until 48 h after infection, while the IL-10 levels in the control group were significantly higher than in the diabetic group at 12-24 h after infection. The mean ratio of TNF-alpha to IL-10 levels was 1.17-1.67 in the diabetic group, which was higher than the 0.26-0.69 of the control group. The bacterial counts in the buccal abscess and the weight of exudate were significantly higher in the diabetic group compared to the control group at 36-48 h. Histological findings showed that inflammatory cell infiltration was remarkable in the diabetic group compared to that of the control group. These results suggest that the elevated proinflammatory TNF-alpha levels and decreased anti-inflammatory IL-10 levels, which are produced at local infection sites, may at least in part be related to the severity of inflammation in this rat model with diabetes induced by STZ.  相似文献   

10.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

11.
Individuals with alpha(1)-antitrypsin (alpha(1)-AT) deficiency are at risk for early-onset destructive lung disease as a result of insufficient lower respiratory tract alpha(1)-AT and an increased burden of neutrophil products such as elastase. Human neutrophil peptides (HNP), the most abundant protein component of neutrophil azurophilic granules, represent another potential inflammatory component in lung disease characterized by increased numbers of activated or deteriorating neutrophils. The purpose of this study was to determine the role of HNP in lower respiratory tract inflammation and destruction occuring in alpha(1)-AT deficiency. alpha(1)-AT-deficient individuals (n = 33) and healthy control subjects (n = 21) were evaluated by bronchoalveolar lavage. HNP concentrations were significantly higher in alpha(1)-AT-deficient individuals (1,976 +/- 692 vs. 29 +/- 12 nM, P < 0.0001), and levels correlated with markers of neutrophil-mediated lung inflammation. In vitro, HNP produced a dose-dependent cytotoxic effect on alveolar macrophages and stimulated production of the potent neutrophil chemoattractants leukotriene B(4) and interleukin-8 by alveolar macrophages, with a 6- to 10-fold increase in chemoattractant production over negative control cultures (P < 0.05). A synergistic effect was noted between HNP and neutrophil elastase with regard to leukotriene B(4) production. Importantly, the proinflammatory effects of HNP were blocked by alpha(1)-AT. HNP likely play an important role in amplifying and maintaining neutrophil-mediated inflammation in the lungs.  相似文献   

12.
We investigated the impact of inflammatory signaling in airway epithelial cells on host defense against Pseudomonas aeruginosa, a major cause of nosocomial pneumonia. In mice, airway instillation of P. aeruginosa resulted in NF-kappaB activation in the lungs that was primarily localized to the bronchial epithelium at 4 h, but was present in a variety of cell types by 24 h. We modulated NF-kappaB activity in airway epithelium by intratracheal delivery of adenoviral vectors expressing RelA (AdRelA) or a dominant inhibitor of NF-kappaB before P. aeruginosa infection. Bacterial clearance was enhanced by up-regulation of NF-kappaB activity following AdRelA administration and was impaired by treatment with a dominant inhibitor of NF-kappaB. The TNF-alpha concentration in lung lavage was increased by AdRelA treatment and beneficial effects of NF-kappaB up-regulation were abrogated in TNF-alpha-deficient mice. In contrast, NF-kappaB inhibition reduced MIP-2 expression and neutrophil influx following P. aeruginosa infection. Therefore, inflammatory signaling through the NF-kappaB pathway in airway epithelial cells critically regulates the innate immune response to P. aeruginosa.  相似文献   

13.
Dried roots of the plants Acanthopanax senticosus, Angelica sinensis and Scutellaria baicalensis are used in traditional oriental medicine and reportedly possess anti-inflammatory properties. Using the murine air pouch model of inflammation, we investigated the efficacy and mode of action of an extract from these three plants in crystal-induced inflammation. Air pouches were raised on the backs of 8-week-old BALB/c mice. Mice were fed 100 mg/kg body weight of root extracts (A. senticosus:A. sinensis:S. baicalensis mixed in a ratio of 5:4:1 by weight) or vehicle only on days 3–6. Inflammation was elicited on day 6 by injecting 2 mg of monosodium urate (MSU) crystals into the pouch. Neutrophil density and IL-6 and TNF-α mRNA levels were determined in the pouch membrane, and the leukocyte count and IL-6, prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2) levels were determined in the pouch exudate. Treatment with the root extracts led to a reduction in all inflammatory parameters: the leukocyte count in the pouch exudate decreased by 82%; the neutrophil density in the pouch membrane decreased by 68%; IL-6 and TNF-α mRNA levels in the pouch membrane decreased by 100%; the IL-6 concentration in the pouch fluid decreased by 50%; and the PGE2 concentration in the pouch fluid decreased by 69%. Remarkably, the concentration of the potentially anti-inflammatory PGD2 rose 5.2-fold in the pouch exudate (p < 0.005), which led to a normalization of the PGD2:PGE2 ratio. A 3.7-fold rise in hematopoietic PGD synthase (h-PGDS) mRNA paralleled this rise in PGD2 (p = 0.01).  相似文献   

14.
Phagocytosis by neutrophils is the essential step in fighting Pseudomonas infections. The first step in neutrophil recruitment to the site infection is the interaction of P-selectin (on endothelial cells) with P-selectin glycoprotein ligand-1 (PSGL-1) on neutrophils. Pseudomonas aeruginosa secretes various proteases that degrade proteins that are essential for host defence, such as elastase and alkaline protease. Here we identify PA0572 of P. aeruginosa as an inhibitor of PSGL-1 and named this secreted hypothetical protease immunomodulating metalloprotease of P. aeruginosa or IMPa. Proteolytic activity was confirmed by cleavage of recombinant and cell-surface expressed PSGL-1. Functional inhibition was demonstrated by impaired PSGL-1-mediated rolling of IMPa-treated neutrophils under flow conditions. Next to PSGL-1, IMPa targets CD43 and CD44 that are also involved in leucocyte homing. These data indicate that IMPa prevents neutrophil extravasation and thereby protects P. aeruginosa from neutrophil attack.  相似文献   

15.
Pseudomonas aeruginosa colonizes and infects human tissues, although the mechanisms by which the organism evades the normal, predominantly neutrophilic, host defenses are unclear. Phenazine products of P. aeruginosa can induce death in Caenorhabditis elegans. We hypothesized that phenazines induce death of human neutrophils, and thus impair neutrophil-mediated bacterial killing. We investigated the effects of two phenazines, pyocyanin and 1-hydroxyphenazine, upon apoptosis of neutrophils in vitro. Pyocyanin induced a concentration- and time-dependent acceleration of neutrophil apoptosis, with 50 microM pyocyanin causing a 10-fold induction of apoptosis at 5 h (p < 0.001), a concentration that has been documented in sputum from patients colonized with P. aeruginosa. 1-hydroxyphenazine was without effect. In contrast to its rapid induction of neutrophil apoptosis, pyocyanin did not induce significant apoptosis of monocyte-derived macrophages or airway epithelial cells at time points up to 24 h. Comparison of wild-type and phenazine-deleted strains of P. aeruginosa showed a highly significant reduction in neutrophil killing by the phenazine-deleted strain. In clinical isolates of P. aeruginosa pyocyanin production was associated with a proapoptotic effect upon neutrophils in culture. Pyocyanin-induced neutrophil apoptosis was not delayed either by treatment with LPS, a powerfully antiapoptotic bacterial product, or in neutrophils from cystic fibrosis patients. Pyocyanin-induced apoptosis was associated with rapid and sustained generation of reactive oxygen intermediates and subsequent reduction of intracellular cAMP. Treatment of neutrophils with either antioxidants or synthetic cAMP analogues significantly abrogated pyocyanin-induced apoptosis. We conclude that pyocyanin-induced neutrophil apoptosis may be a clinically important mechanism of persistence of P. aeruginosa in human tissue.  相似文献   

16.
Toll-like receptors (TLR) induce distinct patterns of host responses through myeloid differentiation factor 88 (MyD88)-dependent and/or -independent pathways, depending on the nature of the pathogen. Pseudomonas aeruginosa is a cause of serious lung infection in immunocompromised individuals and cystic fibrosis patients. The role of the TLR-MyD88 pathway in P. aeruginosa-induced lung infection in vivo was examined in this study. MyD88-/- mice demonstrated an impaired clearance of P. aeruginosa from the lung. Little or no neutrophil recruitment was observed in the airways of MyD88-/- mice following P. aeruginosa lung infection. This observation was associated with a reduced production of inflammatory mediators that affect neutrophil recruitment, including macrophage-inflammatory protein-2, tumor necrosis factor, and interleukin-1beta in the airways of MyD88-/- mice. Similarly, MyD88-/- mice showed inhibited NF-kappaB activation in the lung following P. aeruginosa infection. Interestingly, P. aeruginosa infection induced a 7.5-fold increase of TLR2 mRNA expression in the lungs of MyD88+/+ mice. Furthermore, host responses to P. aeruginosa lung infection in TLR2-/- and TLR4 mutant mice were partially inhibited compared with the responses of respective control mice. Taken together, our results indicate that the MyD88-dependent pathway is essential for the development of early host responses to P. aeruginosa infection, leading to the clearance of this bacterium, and that TLR2 and TLR4 are involved in this process.  相似文献   

17.
Chronic endobronchial inflammation and bacterial infection are the main causes of morbidity and mortality in cystic fibrosis (CF), an autosomal recessive genetic disorder associated with improper function of chloride channels. Inflammation in CF lung is greatly amplified after Pseudomonas aeruginosa infection. In this study the relationship between P. aeruginosa status and inflammatory markers has been investigated. Seventeen CF children in acute lung exacerbation were examined. CF patients without P. aeruginosa infection were characterized by elevated activity of sputum elastase, reduced response of peripheral blood lymphocytes to PHA and significant resistance to the antiproliferative action of glucocorticoids. These parameters were normalized after antibiotic treatment. The patients with prolonged P. aeruginosa infection demonstrated extremely high levels of elastase activity and elevated amounts of sputum IL-8 and TNF-alpha. Although antibiotic treatment resulted in clinical improvement, it failed to suppress excessive immune response in the lung. The data indicate that CF patients with prolonged P. aeruginosa need the modified treatment, which should include immunomodulating drugs and protease inhibitors as well as antibacterial therapy.  相似文献   

18.
In a two-hit model of acid aspiration lung injury, mice were subjected to nonlethal cecal ligation and puncture (CLP). After 48 h, intratracheal (IT) acid was administered, and mice were killed at several time points. Recruitment of neutrophils in response to acid was documented by myeloperoxidase assay and neutrophil counts in bronchoalveolar lavage (BAL) fluid and peaked at 8 h post-IT injection. Albumin in BAL fluid, an indicator of lung injury, also peaked at 8 h. When the contributions of the two hits were compared, neutrophil recruitment and lung injury occurred in response to acid but were not greatly influenced by addition of another hit. Neutrophil sequestration was preceded by elevations in KC and macrophage inflammatory protein-2alpha in plasma and BAL fluid. KC levels in BAL fluid were higher and peaked earlier than macrophage inflammatory protein-2alpha levels. When KC was blocked with specific antiserum, neutrophil recruitment was significantly reduced, whereas albumin in BAL fluid was not affected. In conclusion, murine KC mediated neutrophil recruitment but not lung injury in a two-hit model of aspiration lung injury.  相似文献   

19.
IL-1 and IL-6 activities were measured in the pleural exudate of rats during carrageenin-induced pleurisy to examine the relationship of the local production of cytokines to the inflammatory reaction. Time courses of appearance of the cytokines and inflammatory parameters in the exudate were compared. IL-1 activity and exudate volume started to increase at 1 h after the carrageenin injection, and then slightly later IL-6 activity and leukocyte number began to increase. IL-1 showed peak activity of approximately 700 U at 3 h and IL-6, of 6000 U at 5 h in the exudate, whereas exudate volume and number of polymorphonuclear leukocytes continued to increase thereafter. Furthermore, IL-6 level in the plasma of the carrageenin-injected rats showed a peak at 4 h (30 U/ml), and when rhIL-1 alpha (100,000 U) was intrapleurally injected, the more rapid increase in plasma IL-6 level was demonstrated at 1 h (30 U/ml). This latter rise was neutralized with simultaneous injection of anti-rhIL-1 alpha antibody. These facts indicate the possibility that IL-1 produced in the exudate or injected could rapidly propagate a signal to induce IL-6 production in the circulation. It took several hours to transmit an inflammatory signal that stimulated the liver to synthesize the acute-phase protein, T-kininogen. The time lag from the peak induction of IL-1 to the T-kininogen-increase in the pleurisy corresponded well to the interval for T-kininogen-increase by exogenous rhIL-1 alpha injection. These results strongly suggest that the initial inflammatory stimulus induces sequentially IL-1, IL-6, and T-kininogen production in this carrageenin inflammation.  相似文献   

20.
Earlier studies from this laboratory have indicated that CNS exerts a modulatory influence over acute inflammation in rats. The present study examines the existence of a similar modulatory effect of CNS on a subacute inflammatory paradigm, the croton oil-induced granuloma pouch in rats. The inflammatory exudate, collected on 6th day after croton oil administration, was found to be substantially less in intracerebroventricular (icv) cannulated and artificial cerebrospinal fluid administered rats as compared to their uncannulated saline (ip) administered counterparts. This effect may be due to stress induced by cannulation. Centrally administered pharmacological agents which attenuate central monoaminergic, cholinergic or prostaglandin systems had insignificant effects on the inflammatory exudate. However, induced increase in central noradrenergic activity was found to attenuate the inflammation when the treatment was done before, but not 48 hr after, the induction of the inflammation. In contrast, induced increase in central serotonergic activity had no effect on the volume of the inflammatory exudate at either time period. Steady state levels of rat brain noradrenaline and serotonin, but not dopamine, were enhanced by the inflammatory procedure. However, these effects may be attributed to the stress induced by croton oil inflammation. The investigation indicates that the modulatory influence of CNS remains limited to the acute phase of inflammation, being exerted mainly by the central noradrenergic system. Once the inflammation has progressed, this modulatory influence of CNS is no longer apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号