首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kuiper PJ 《Plant physiology》1968,43(9):1372-1374
Ion transport properties of grape root lipids were measured as liquid-membrane permeability. Phosphatidylcholine exchanged chloride very slowly against carbonate and bicarbonate but more rapidly against nitrate, phosphate, and sulfate. Exchange of chloride against nitrate was rather low for the phosphatidylcholine and phosphatidylethanolamine lipid fractions; monogalactose diglyceride was by far the most effective chloride transporter studied. Comparison between the lipid composition of the roots of the 5 grape rootstocks and the chloride transport capacity of the specific membranes strongly suggests that, indeed, the chloride transport capacity of the lipids present in the membranes of the root cells accounts for the observed differences in chloride transport to the leaves. Whereas monogalactose diglyceride had a high chloride transport capacity, compared with phosphatidylcholine, the reverse was true for exchange of sodium against potassium. Thus, phosphatidylcholine has more the properties of a cation exchanger, and monogalactose diglyceride those of an anion transporter.  相似文献   

2.
Toxicity to fish (rainbow trout or minnows) of solutions of several pure substances has been measured under controlled conditions. The substances (sodium arsenite, sodium arsenate, sodium picrate, sodium dinitrophenate, zinc sulphate, potassium chromate, potassium dichromate, ammonium chloride, and ammonium sulphate) were dissolved in distilled water, in Watford tap water, or in mixtures of distilled water and tap water.  相似文献   

3.
Previously, chick heme oxygenase-1 (cHO-1) gene was cloned by us and two regions important for induction by sodium arsenite were identified. These two regions were found to contain consensus sequences of an AP-1 (-1580 to -1573) and a MRE/cMyc complex (-52 to -41). In the current study, the roles of these two elements in mediating the sodium arsenite or cobalt chloride dependent induction of cHO-1 were investigated further. DNA binding studies and site-directed mutagenesis studies indicated that both the AP-1 and MRE/cMyc elements are important for the sodium arsenite induction, while cobalt chloride induction involves only the AP-1 element. Electrophoretic mobility shift assays showed that nuclear proteins binding to the AP-1 element was increased by both sodium arsenite or cobalt chloride treatment, whereas the binding of proteins to the MRE/cMyc element showed a high basal expression in untreated cells and the binding activity was only slightly increased by sodium arsenite treatment. Site-directed mutagenesis studies showed that, to completely abolish sodium arsenite induction, both the AP-1 and MRE/cMyc elements must be mutated; mutation of either element alone resulted in only a partial effect. In contrast, a single mutation at AP-1 element was sufficient to reduce the cobalt chloride induction almost completely. The MRE/cMyc complex plays a major role in the basal level expression, and shares some similarities to the upstream stimulatory factor element (USF) identified in the promoter regions of mammalian HO-1 genes and other stress regulated genes. Because sodium arsenite is known to cause oxidative stress and because activation of AP-1 proteins has been shown to be a key step in the oxidative stress response pathway, we also explored the possibility that the induction of the cHO-1 gene by sodium arsenite is mediated through oxidative stress pathway(s) by activation of AP-1 proteins. We found that pretreatment with antioxidants (N-acetyl cysteine or quercetin) reduced the induction of the endogenous cHO-1 message or cHO-1 reporter construct activities induced by sodium arsenite or cobalt chloride. These antioxidants also reduced the protein binding activities to the AP-1 element in the electrophoretic mobility shift assays. In summary, induction of the cHO-1 gene by sodium arsenite or cobalt chloride is mediated by activation of the AP-1 element located at -1,573 to -1,580 of the 5 UTR.  相似文献   

4.
Arsenate was produced when anoxic Mono Lake water samples were amended with arsenite and either selenate or nitrate. Arsenite oxidation did not occur in killed control samples or live samples with no added terminal electron acceptor. Potential rates of anaerobic arsenite oxidation with selenate were comparable to those with nitrate ( approximately 12 to 15 mumol.liter(-1) h(-1)). A pure culture capable of selenate-dependent anaerobic arsenite oxidation (strain ML-SRAO) was isolated from Mono Lake water into a defined salts medium with selenate, arsenite, and yeast extract. This strain does not grow chemoautotrophically, but it catalyzes the oxidation of arsenite during growth on an organic carbon source with selenate. No arsenate was produced in pure cultures amended with arsenite and nitrate or oxygen, indicating that the process is selenate dependent. Experiments with washed cells in mineral medium demonstrated that the oxidation of arsenite is tightly coupled to the reduction of selenate. Strain ML-SRAO grows optimally on lactate with selenate or arsenate as the electron acceptor. The amino acid sequences deduced from the respiratory arsenate reductase gene (arrA) from strain ML-SRAO are highly similar (89 to 94%) to those from two previously isolated Mono Lake arsenate reducers. The 16S rRNA gene sequence of strain ML-SRAO places it within the Bacillus RNA group 6 of gram-positive bacteria having low G+C content.  相似文献   

5.
Potassium dichromate and chromium chloride were analyzed for their ability to induce mitotic gene conversion and point reverse mutation in D7 diploid strain of S. cerevisiae. We used cells from the stationary phase of growth with and without metabolic activation (S9 hepatic fraction) and cells from the logarithmic phase, that contain a high level of cytochrome P-450 and have a greater permeability. In the present work we confirmed the genetic activity of K2Cr2O7 in cells from the stationary phase, with and without S9 fraction and in cells from the logarithmic growth phase. A slight increase in genetic activity was observed in experiments with CrCl3 using phosphate buffer, but no genetic effects were noted in Tris-HCl buffer. Our studies suggest that phosphate ion may be the carrier responsible of the entrance of trivalent chromium in the cells. The higher cellular permeability may account for the different results obtained with both compounds in cells from the stationary and logarithmic phases of growth.  相似文献   

6.
Operons coding for the enzyme arsenite oxidase have been detected in the genomes from Archaea and Bacteria by Blast searches using the amino acid sequences of the respective enzyme characterized in two different beta-proteobacteria as templates. Sequence analyses show that in all these species, arsenite oxidase is transported over the cytoplasmic membrane via the tat system and most probably remains membrane attached by an N-terminal transmembrane helix of the Rieske subunit. The biochemical and biophysical data obtained for arsenite oxidase in the green filamentous bacterium Chloroflexus aurantiacus allow a structural model of the enzyme's membrane association to be proposed. Phylogenies for the two constituent subunits (i.e., the molybdopterin-containing and the Rieske subunit) of the heterodimeric enzyme and their respective homologs in DMSO-reductase, formate dehydrogenase, nitrate reductase, and the Rieske/cytb complexes were calculated from multiple sequence alignments. The obtained phylogenetic trees indicate an early origin of arsenite oxidase before the divergence of Archaea and Bacteria. Evolutionary implications of these phylogenies are discussed.  相似文献   

7.
Summary Golgi preparations were made by consecutive treatment of formalin-fixed brain and liver with potassium dichromate and silver nitrate. Impregnated tissue dissected from thin slices of the blocks were studied by X-ray powder diffraction methods, in a diffractometer and a Guinier camera. Such tissue proved to contain crystalline silver chromate, Ag2CrO4, both while still in the silver nitrate solution and after dehydration in ethanol and clearing in xylene and xylene-Dammar resin. No other compounds containing chromium or silver were detectable. Formalin-fixed tissue merely treated with silver nitrate contained silver chloride, but in impregnated tissue the amount was too scarce to be visible. Hence, silver chloride was no integral part of the Golgi precipitate.A number of mostly ethereal oils traditionally used for clearing histological sections, did not cause the appearance of metallic silver in detectable amount in the Golgi preparations. However, after treatment with clove oil and creosote metallic silver was detected in the tissue.This study was supported by U.S. P.H. S. Grant NS 07998. This aid is gratefully acknowledged.We are indebted to Miss I. Madsen and Mrs. K. Sörensen for technical assistance.  相似文献   

8.
Summary A primarily genetic approach was employed to obtain plasmids in Rhodococcus erythropolis ATCC 12674 which carried genes conferring increased resistance to sodium arsenate and arsenite, cadmium chloride, and chloramphenicol. The plasmids were large, migrating more slowly than chromosomal DNA in agarose gels, and were made up of resistance determinants from the host organism together with part of the genome of nocardiophage Q4. Purified plasmid was used to transform a suitable recipient to increased resistance to sodium arsenate, sodium arsenite, and cadmium chloride.  相似文献   

9.
During the mid-nineteenth century, it was learned that the distillation of coal tar yielded a mixture of benzene and toluene that could be used for the manufacture of “anilines.” Oxidation with dichromate led to the first synthetic aniline dye, mauveine. The second aniline dye, a crimson red color, now is named fuchsine or magenta. This dye was prepared using the same starting material, but different oxidants, e.g., tin chloride, mercury nitrate, arsenic acid, and nitrobenzene. Unlike mauveine, which is now a chemical curiosity, fuchsine is still in use as a biological stain, especially in Schiff's reagent for detecting aldehydes, industrially as a dye in coloring various materials from textile fibers to ball point pen inks, analytically as a visualization agent for thin layer chromatography, and as an antifungal agent.  相似文献   

10.
Mauclaire  L.  Gibert  J. 《Hydrobiologia》1998,390(1-3):141-151
This study describes a micro-assay, based on acid dichromate oxidation, with a resolution of at least 0.5 μg organic carbon and an upper limit of ≤20 μg C. We also document several important properties of acid dichromate assays and establish their effectiveness for quantifying organic carbon and energy content of marine and freshwater organisms. Both the micro-assay and the previously described standard assay are highly sensitive to chloride: absorbance readings were significantly depressed by the presence of only 0.5–1.0 μl of seawater, and the effect of seawater was shown to be due to its chloride content. The amount of chloride contained within the bodies of very small marine organisms may therefore be sufficient to interfere with the assay. Contrary to previous claims, we found that incubating samples with phosphoric acid did not prevent chloride from interfering with the assays. The micro- and standard assays were not sensitive to inorganic carbon and were therefore specific to organic carbon. The assays were effective in estimating total energy content of carbohydrate and lipid material, but underestimated the energy content of protein material by 47–69%. This limitation can be overcome by using a protein micro-assay to correct for underestimation by the acid dichromate assays. Based on our findings, the reliability of acid dichromate oxidation assays for analysing samples of marine organisms is questionable. The assays are effective, however, for analysing chloride-free tissues or extracts. In addition, the assays have considerable potential for determining energy content of small freshwater organisms. In particular, the micro-assay is at least an order of magnitude more sensitive than the standard assay, and constitutes a relatively simple way of measuring energy content of very small samples, such as individual embryos or early juveniles of aquatic animals and plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

12.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

13.
The effect of sodium arsenite and cadmium chloride on adenylate cyclase activity was examined in turkey erythrocyte membranes. Sodium arsenite was a weak inhibitor of adenylate cyclase -7mM produced only 60% inhibition. Its effect, however, was greatly potentiated by equimolar 2,3 dimercaprol- wherein 0.7 mM sodium arsenite inhibited 100% with an apparent Ki of 0.1 mM. Equimolar mercaptoethanol was less effective in potentiating sodium arsenite inhibition. Thus 0.7mM sodium arsenite in the presence of equimolar mercaptoethanol inhibited adenylate cyclase 56%. Excess 2,3 dimercaprol reversed inhibition by sodium arsenite or cadmium chloride. Sodium arsenite or cadmium chloride inhibited all forms of adenylate cyclase activity tested, including nonhormonal stimulation. Equimolar sodium arsenite and dimercaprol, at concentrations that caused 100% inhibition of adenylate cyclase activity, reduced the binding of the beta-receptor specific ligand iodohydroxybenzylpindolol by less than 15%. These results suggest that turkey erythrocyte membranes contain closely juxtaposed thiol groups and that interaction of such groups with arsenate interferes with the catalytic function of adenulate cyclase.  相似文献   

14.
15.
The long-term toxicity of arsenic (As) as a result of exposure to contaminated drinking water might be modified by coinciding exposures to elements like selenium, antimony, or mercury. In this study the influence of tetravalent selenite, trivalent antimonite, and divalent mercury was investigated in vitro using cultured primary rat hepatocytes. The cell vitality was assessed in the 3-[4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] (MTT), assay with concurrent exposures of the cells to up to 50 microM sodium arsenite(III) and a potential modifier [50 microM sodium(IV) selenite, 10 microM antimony(III) chloride, 25 microM mercuric(II) chloride], which indicated an additive increase in the combined cytotoxicity. Sodium arsenite was tested for genotoxicity in the micronucleus test in a concentration range of 0.25 up to 7.5 microM. In this range, the MTT conversion was at least 80%, indicating high cell viability. Adose-dependent induction of micronuclei was observed. The lowest concentration causing a significantly elevated frequency of micronuclei was 1 microM As (p < 0.05). A significant influence (i.e., reduction of the combined genotoxicity as a result of the presence of a potential modifier) was only observed for 10 and 25 microM antimony chloride (p < 0.05, Fisher's exact test). The metabolic methylation of arsenite was not affected by concurrent incubation with any of the potential modifiers.  相似文献   

16.
In the present work, the interactions of bovine serum albumin (BSA) with chromium (III) chloride, potassium dichromate, and chromate were studied by fluorescence, circular dichroism, and UV–vis absorbance spectroscopy. Fluorescence quenching of BSA by chromium (III) was found to be a dynamic process in the beginning, turning static at later stages. Spectroscopic data show that both dichromate and chromate bind in similar electrostatic fashion to BSA and does not follow the fluorescence quenching observation for chromium (III).  相似文献   

17.
Synergistic toxicity between arsenic and methylated selenium compounds   总被引:1,自引:0,他引:1  
Arsenite has been known for half a century to have a protective effect against selenium poisoning. Paradoxically, arsenite inhibits the conversion of inorganic selenium salts to methylated excretory products, although methylation has long been regarded as a detoxification mechanism for selenium. Moreover, there is evidence for a pronounced synergistic toxicity between arsenite and methylated selenium metabolites. We investigated the effect of arsenite on the acute toxicity of a variety of methylated or nonmethylated selenium compounds, as well as methylated forms of sulfur and tellurium. Adult male rats were injected with sodium arsenite (4 mg As/kg bw, s.c.) 10 min prior to injection of the test compounds; at the doses employed, none of the test compounds caused mortality, nor did arsenite, when given alone. When given with arsenite, the following methylated compounds produced toxic signs and high morality at the indicated dosages (mg Se/kg): Methylseleninic acid (2), dimethylselenoxide (2), trimethylselenonium chloride (3), selenobetaine (2), selenobetaine methylester (2, also 1 and 0.5), and Se-methylselenocysteine (2). Toxic signs but not mortality occurred when arsenite was given with selenomethionine (2 mg Se/kg). No enhancement of toxic signs or mortality occurred when arsenite was given with sulfobetaine (0.8 mg S/kg), dimethylsulfide (320 mg S/kg), or the following (nonmethylated) forms of selenium: sodium selenite (2), selenocystine (2), and phenylselenol (2). Arsenite also increased the toxicity of trimethyltelluronium chloride (4.8 mg Te/kg). Like arsenite, periodate-oxidized adenosine (100 mumoles/kg), which is known to inhibit the formation of dimethylselenide and trimethylselenonium ion in vivo, caused increased 24 h mortality when given with various methylated selenium compounds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of arsenite or nickel on the repair of DNA double-strand breaks (DSBs) was studied in gamma-irradiated Chinese hamster ovary cells using pulsed-field gel electrophoresis. After treatment with nickel chloride or arsenite for 2 h, cells were irradiated with gamma rays at a dose of 40 Gy, and the numbers of DNA DSBs were measured immediately after irradiation as well as at 30 min postirradiation. Both arsenite and nickel(II) inhibited repair of DNA DSBs in a concentration-dependent manner; 0.08 mM arsenite significantly inhibited the rejoining of DSBs, while 76 mM nickel was necessary to observe a clear inhibition. The mean lethal concentrations for the arsenite and nickel(II) treatments were approximately 0.12 and 13 mM, respectively. This indicates that the inhibition of repair by arsenite occurred at a concentration at which appreciable cell survival occurred, but that nickel(II) inhibited repair only at cytotoxic concentrations at which the cells lost their proliferative ability. These novel observations provide insight into the mechanisms underlying the effects of combined exposure to arsenite and ionizing radiation in our environment.  相似文献   

19.
The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors.  相似文献   

20.
Low-level arsenite treatment of porcine aortic endothelial cells (PAEC) stimulated superoxide accumulation that was attenuated by inhibitors of NAD(P)H oxidase. To demonstrate whether arsenite stimulated NADPH oxidase, intact PAEC were treated with arsenite for up to 2 h and membrane fractions were prepared to measure NADPH oxidase activity. Arsenite (5 microM) stimulated a twofold increase in activity by 1 h, which was inhibited by the oxidase inhibitor diphenyleneiodonium chloride. Direct treatment of isolated membranes with arsenite had no effect. Analysis of NADPH oxidase components revealed that p67(phox) localized exclusively to membranes of both control and treated cells. In contrast, cytosolic Rac1 translocated to the membrane fractions of cells treated with arsenite or angiotensin II but not with tumor necrosis factor. Immunodepletion of p67(phox) blocked oxidase activity stimulated by all three compounds. However, depleting Rac1 inhibited responses only to arsenite and angiotensin II. These data demonstrate that stimulus-specific activation of NADPH oxidase in endothelial cells was the source of reactive oxygen in endothelial cells after noncytotoxic arsenite exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号