首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In the activity of the high-Mr beta-glucosidase A (beta-D-glucoside glucohydrolase, EC 3.2.1.21) obtained from culture filtrates of Botryodiplodia theobromae Pat. on o-nitrophenyl beta-D-glucopyranoside as substrate, both Vmax. and Km increased non-linearly with increasing concentration of glycerol, and the Vmax./Km(app.) ratio decreased non-linearly with increasing concentration of glycerol. 2. No increase in rate was observed with phenyl beta-D-glucopyranoside as substrate in the presence of up to 250 mM-glycerol, indicating that glucosylation is rate-limiting with this substrate. 3. With o-nitrophenyl beta-D-glucopyranoside, p-nitrophenyl beta-D-glucopyranoside and phenyl beta-D-glucopyranoside as substrates, kappa cat. values of 793.7 s-1, 62.8 s-1 and 5.4 s-1 respectively were calculated. 4. With o-nitrophenyl beta-D-glucopyranoside and phenyl beta-D-glucopyranoside as substrate, alpha-deuterium kinetic isotope effects of 1.9 +/- 0.03 and 1.01 +/- 0.01 respectively were found; in the presence of 200 mM-glycerol the values were 1.21 +/- 0.03 and 1.02 +/- 0.01 respectively. 5. In the presence of a large excess of o-nitrophenyl beta-D-glucopyranoside [( S] = 35.7 Km), the amount of o-nitrophenol and also of the transglucosylation product formed by beta-glucosidase action increased non-linearly, whereas that of glucose formed decreased non-linearly with increasing glycerol concentration. 6. All these results were found to fit the data calculated from rate equations derived on the basis of the proposed mechanism of enzyme action involving two ion-pair intermediates and a covalent alpha-D-glucosyl-enzyme in the reaction sequence [Umezurike (1987) Biochem. J. 241, 455-462].  相似文献   

2.
1. The hydrolysis of o-nitrophenyl beta-D-glucopyranoside by the high-molecular-weight beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) of Botryodiplodia theobromae Pat in the absence or presence of added dioxan was found to be dependent on the ionization of two groups, which appeared to be a carboxyl group and an imidazole group. 2. Dioxan increased the Michaelis constant, Km, but decreased the maximum velocity, V.  相似文献   

3.
Extraction of control human spleen glucocerebrosidase with sodium cholate and butan-l-ol reversibly inactivates the enzyme in terms of its ability to hydrolyse the water-soluble substrate 4-methylumbelliferyl beta-D-glucopyranoside (MUGlc). The acidic brain lipid galactocerebroside 3-sulphate (sulphatide) reconstitutes beta-glucosidase activity in a strongly concentration-dependent manner. In this study we show that sulphatide exhibits three critical micellar concentrations (CMCs): CMC1, 3.72 microM; CMC2, 22.6 microM; CMC3, 60.7 microM. We designate the aggregates formed at these CMCs as primary, secondary and tertiary micelles respectively. From the results of kinetic studies performed at various sulphatide concentrations (0.012-248 microM), we found that sulphatide monomers (less than 3 microM) decreased the Km (for MUGlc) of control glucocerebrosidase from 11 to 4.6 mM, and lowered the Vmax. 2-fold. However, secondary and tertiary micelles were required for expression of high control glucocerebrosidase activities. Glucocerebrosidase prepared from the spleen of a patient with non-neuronopathic type 1 Gaucher's disease exhibited a very low Km (2.8 mM) even in the absence of exogenous lipid, and sulphatide monomers had no effect on the mutant enzyme's Km or Vmax. However, secondary or tertiary micelles markedly increased the Vmax. of the type 1 glucocerebrosidase to 60% of the corresponding control enzyme value. In contrast, for the glucocerebrosidase of the neuronopathic type 2 case, although sulphatide decreased the Km from 9.2 to 1.7 mM, the Vmax. never reached more than 5% that of the control enzyme, even at high concentrations of sulphatide. In addition, we found that secondary and tertiary sulphatide micelles enhanced the rate of inactivation of all three glucocerebrosidase preparations by chymotrypsin. Collectively, these results indicate the presence of two sulphatide-binding sites on glucocerebrosidase: one that enhances substrate binding, and another that enhances catalysis.  相似文献   

4.
We have isolated from guinea-pig liver a broad-specificity beta-glucosidase of unknown function that utilizes as its substrate non-physiological aryl glycosides (e.g. 4-methylumbelliferyl beta-D-glucopyranoside, p-nitrophenyl beta-D-glucopyranoside). The present paper documents that this enzyme can be inhibited by various naturally occurring glycosides, including L-picein, dhurrin and glucocheirolin. In addition, L-picein, which acts as a competitive inhibitor of the broad-specificity beta-glucosidase (Ki 0.65 mM), is also a substrate for this enzyme (Km 0.63 mM; Vmax. 277,000 units/mg). Heat-denaturation, kinetic competition studies, chromatographic properties and pH optima all argue strongly that the broad-specificity beta-glucosidase is responsible for the hydrolysis of both the non-physiological aryl glycosides and L-picein. This paper demonstrates that beta-glucosidase can catalyse the hydrolysis of a natural glycoside, and may provide a key to understanding the function of this enigmatic enzyme. A possible role in the metabolism of xenobiotic compounds is discussed.  相似文献   

5.
The effects of pH and temperature on Michaelis constant (Km) and maximum velocity (Vmax.) and of NaCl on the activity of the high-molecular-weight beta-glucosidase (beta-D-glucoside glucohydrolase EC 3.2.1.21) from cultures of Botryodiplodia theobromae Pat. have been studied. 2. Donor binding and inhibition of activity by glucose were dependent on the ionization of a group (pK 6.0) that appeared to be an imidazole group. 3. Catalytic activity and the stimulation of activity by glycerol were dependent on the ionization of two groups, which appeared to be a carboxy group and an imidazole group. 4. The Arrhenius activation energy (Ea) calculated from results obtained at pH 4.0 and 5.0 was about 45--46kJ.mol-1. 5. The enthalpies (delta H0) calculated from results obtained at pH 4.0 and 5.0 were similar (about -4kJ.mol-1), whereas at pH 6.5 the value was about -33kJ.mol-1. 6. The entropies (delta S0) calculated from these results at 37 degrees C were -21, -22 and -118J.K-1.mol-1 at pH 4.0, 5.0 and 6.5 respectively. A low concentration of NaCl (16.6 mM) stimulated enzymic activity and decreased the Km for the donor, whereas high concentrations (up to 500 mM) inhibited enzymic activity, increased the Km and had no effect on Vmax. 8. Plots of initial velocity data obtained in the presence of dioxan as 1/v against the ratio of the molar concentration of dioxan to that of water were linear. 9. The results are discussed in terms of the enzyme mechanism.  相似文献   

6.
1. The kinetic mechanism of beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) of Botryodiplodia theobromae Pat. has been studied in the presence of competing glucosyl acceptors. 2. Glycerol, fructose, sucrose, cellobiose and to a much lesser extent, maltose can act as glucosyl acceptors, apart from water. 3. Evidence confirming and supporting the kinetic mechanism previously postulated (Umezurike, G.M. (1971) Biochim. Biophys. Acta. 250, 182-191) is presented. 4. A theoretical kinetic analysis of the behaviour of the enzyme in the presence of two alternative glucosyl acceptors in addition to water is found to be consistent with experimental observation, suggesting a system in which both donor and acceptors bind to the enzyme in a random fashion to form ternary complexes. 5. The results are discussed in terms of the mechanism of group-transfer reactions.  相似文献   

7.
The activity of the high-molecular-weight beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) obtained from culture filtrates of Botryodiplodia theobromae Pat. was affected by added NaCl in such a way that an initial phase of stimulation was followed by a phase of rapid non-linear decrease in velocity and finally by a phase of slow linear decrease in velocity as the concentration of NaCl was increased. In the presence of 0.014 M-sodium acetate/acetic acid buffer (pH 5.0) there was a slight increase in enzymic activity in the presence of low concentrations of dioxan (up to about 10% dioxan) and a rapid decrease in enzymic activity at higher dioxan concentrations, but both effects were mitigated in the presence of 0.1 M buffer. The order of efficiency of added glucosyl acceptors in beta-glucosidase-catalysed reactions was found to be fructose greater than sucrose greater than glycerol greater than methanol. The enzyme was inactivated by the active-site-directed compound conduritol-B-epoxide; but this inactivation was concentration-dependent, was prevented by 10 mM-glucose, and involved an acidic group with pKa 4.3. A rate equation has been derived on the assumption of a mechanism of action involving a solvent-separated and an intimate glucosyl cation-carboxylate ion-pair intermediate and an alpha-glucosyl enzyme intermediate [Umezurike, G. M. (1981) Biochem. J. 199, 203-209]. Calculations based on the application of the derived rate equation and the calculated kinetic parameters show that the rate equation explains the peculiar properties of beta-glucosidase in the presence of added glucosyl acceptors or of NaCl.  相似文献   

8.
Human acid beta-glucosidase (glucosylceramidase; EC 3.2.1.45) cleaves the glycosidic bonds of glucosyl ceramide and synthetic beta-glucosides. Conduritol B epoxide (CBE) and its brominated derivative are mechanism-based inhibitors which bind covalently to the catalytic site of acid beta-glucosidase. Procedures using brominetritiated CBE and monospecific anti-human placental acid beta-glucosidase IgG were developed to determine the molar concentrations of functional acid beta-glucosidase catalytic sites in pure placental enzyme preparations from normal sources; kcat values then were calculated from Vmax = [Et]kcat using glucosyl ceramide substrates with dodecanoyl (2135 +/- 45 min-1) and hexanoyl (3200 +/- 410 min-1) fatty acid acyl chains and 4-alkyl-umbelliferyl beta-glucoside substrates with methyl (2235 +/- 197 min-1), heptyl (1972 +/- 152 min-1), nonyl (2220 +/- 247 min-1), and undecyl (773 +/- 44 min-1) alkyl chains. The respective kcat values for acid beta-glucosidase in a crude normal splenic preparation were about 60% of these values. In comparison, the kcat values of the mutant splenic acid beta-glucosidase from two Type 1 Ashkenazi Jewish Gaucher disease (AJGD) patients were about 1.5-3-fold decreased and had Km values for each substrate which were similar to those for the normal acid beta-glucosidase. The interaction of the normal and Type 1 AJGD enzymes with CBE in a 1:1 stoichiometry conformed to a model with reversible EI complexes formed prior to covalent inactivation. With CBE, the equal kmax values (maximal rate of inactivation) for the normal (0.051 +/- 0.009 min-1) and Type 1 AJGD (0.058 +/- 0.016 min-1) enzymes were consistent with the minor differences in kcat. In contrast, the Ki value (dissociation constant) (839 +/- 64 microM) for the Type 1 AJGD enzymes was about 5 times the normal Ki value (166 +/- 57 microM). These results indicated that the catalytically active Type 1 AJGD acid beta-glucosidase had nearly normal hydrolytic capacity and suggested an amino acid substitution in or near the acid beta-glucosidase active site leading to an in vivo instability of the mutant enzymatic activity.  相似文献   

9.
1. The hydrolysis of o-nitrophenyl beta-D-glucopyranoside by the high-molecular-weight beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) from Botryodiplodia theobromae Pat. has been studied in the presence of added dioxan. 2. At donor saturation, the maximum rate of hydrolysis in the presence of up to 50%(v/v) dioxan was pH4.3-4.5 (pH of the buffer system in water) in McIlvaine's buffer. 3. Increasing dioxan concentrations progressively decreased the maximum rate of hydrolysis. 4. The rate of enzyme-catalysed reaction was enhanced at high donor concentrations, but inhibited at low donor concentrations in the presence of glycerol, methanol, fructose of sucrose. 5. The hydrolytic reaction was found to proceed with retention of configuration at the anomeric carbon atom. 6. The kinetics of the enzyme-catalysed process in the presence of added acceptors indicated that water was necessary for the maintenance of the active enzyme conformation apart from its acceptor function.  相似文献   

10.
An iridoid β-glucoside, namely plumieride coumarate glucoside, was isolated from the Plumeria obtusa (white frangipani) flower. A β-glucosidase, purified to homogeneity from P. obtusa, could hydrolyze plumieride coumarate glucoside to its corresponding β-O-coumarylplumieride. Plumeria β-glucosidase is a monomeric glycoprotein with a molecular weight of 60.6 kDa and an isoelectric point of 4.90. The purified β-glucosidase had an optimum pH of 5.5 for p-nitrophenol (pNP)-β-D-glucoside and for its natural substrate. The Km values for pNP-β-D-glucoside and Plumeria β-glucoside were 5.04±0.36 mM and 1.02±0.06 mM, respectively. The enzyme had higher hydrolytic activity towards pNP-β-D-fucoside than pNP-β-D-glucoside. No activity was found for other pNP-glycosides. Interestingly, the enzyme showed a high specificity for the glucosyl group attached to the C-7" position of the coumaryl moiety of plumieride coumarate glucoside. The enzyme showed poor hydrolysis of 4-methylumbelliferyl-β-glucoside and esculin, and did not hydrolyze alkyl-β-glucosides, glucobioses, cyanogenic-β-glucosides, steroid β-glucosides, nor other iridoid β-glucosides. In conclusion, the Plumeria β-glucosidase shows high specificity for its natural substrate, plumieride coumarate glucoside.  相似文献   

11.
1. Michaelis-Menten parameters for the hydrolysis of p-nitrophenyl alpha-L-arabinofuranoside were measured as a function of pL (pH or pD) in both 1H2O and 2H2O. 2. The variation of both Vmax. and Vmax./Km with pL is sigmoid, the pK governing Vmax. shifting from 6.34 +/- 0.05 in 1H2O to 6.84 +/- 0.07 in 2H2O, and that governing Vmax./Km from 5.89 +/- 0.03 in 1H2O to 6.38 +/- 0.05 in 2H2O. 3. In the plateau regions there is a small inverse solvent isotope effect on Vmax./Km (0.92), and one of 1.45 on Vmax. 4. The variation of Vmax. with isotopic composition is strictly linear, indicating that the isotope effect arises from the transfer of a single proton.  相似文献   

12.
To determine the mode of action of the beta-glucosidase from Trichoderma reesei a method was developed for synthesizing [1-3H]cello-oligosaccharides with specific radioactivities of approximately 3000 Ci/mol. The beta-glucosidase removed glucosyl residues from the non-reducing end of the [1-3H]cello-oligosaccharides in a multiple attack mode with little tendency to attack the substrates repetitively. Values of Km were lower for longer cello-oligosaccharides, whereas values of V remained essentially constant. A subsite map, constructed using values of V/Km for the cello-oligosaccharides, showed that the substrate-binding region comprises primarily three subsites.  相似文献   

13.
M H O'Leary  J A Limburg 《Biochemistry》1977,16(6):1129-1135
Pig heart NADP+-dependent isocitrate dehydrogenase requires a metal ion for activity. Under optimum conditions (pH 7.5, Mg2+ present), the carbon isotope effect is k12/k13 = 0.9989 +/- 0.0004 for the carboxyl carbon undergoing decarboxylation and hydrogen isotope effects are VmaxH/VmaxD = 1.09 +/- 0.04 and (Vmax/Km)H/(Vmax/Km)D = 0.76 +/- 0.12 with threo-D,L-[2-2H]isocitric acid. Deuterium isotope effects measured by the equilibrium perturbation technique under the same conditions are VH/VD = 1.20 for the forward reaction and 1.02 for the reverse reaction. Under these conditions the rate-determining step in the enzymatic reaction must be product release. Dissociation of isocitrate from the enzyme-isocitrate complex and the enzyme-NADP+ complex must be two or more orders of magnitude slower than the chemical steps. The catalytic activity of the enzyme is about tenfold lower in the presence of Ni2+ than in the presence of Mg2+. The carbon isotope effect in the presence of Ni2+ at pH 7.5 is k12/k13 = 1.0051 +/- 0.0012 and the hydrogen isotope effects are VmaxH/VmaxD = 0.98 +/- 0.07 and (Vmax/Km)H/(Vmax/Km)D = 1.11 +/- 0.14. Thus, the rate decrease caused by substitution of Ni2+ for Mg2+ must result from the effects of metal on substrate and product binding and dissociation, rather than effects of metal on catalysis. However, a more detailed analysis of the carbon isotope effects reveals that there is also a large metal effect on the rate of the decarboxylation step, consistent with the view that the carbonyl oxygen of the oxalosuccinate intermediate is coordinated to the metal during decarboxylation.  相似文献   

14.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

15.
The optimisation of cellulase and beta-glucosidase production by a basidiomycete species was studied and cellulase and cellobiase production by this and Trichoderma viride (and its mutants) in shake flasks were compared. The former produced an active cellulase comparable to that of T. viride when tested on filter paper, carboxymethylcellulose, and cotton; however, it produced 20 to 26 times larger amounts of cellobiase. Both cellulase and beta-glucosidase were obtained in good yield only when cellulose was the carbon source. The production of these enzymes was not repressed by readily assimilated carbon sources in the presence of cellulose. Only traces of cellulase and beta-glucosidase were formed on glucose, fructose, maltose, and cellobiose although good growth was obtained on these substrates. These enzymes were not induced on sophorose, lactose, mannitol, or glycerol and growth was poor on these substrates. Cellobiose octaacetate was a less effective inducer of cellulase and beta-glucosidase than was cellulose.  相似文献   

16.
The lipid requirement of membrane-bound rat liver beta-glucosidase was investigated using 4-methylumbelliferyl-beta-D-glucopyranoside as the substrate. The enzyme was solubilized and delipidated by sequential extraction of a crude lysosomal fraction from rat liver lysosomes with sodium cholate and ice-cold butan-1-ol. Neither saturated nor unsaturated phosphatidylcholine activated this enzyme. In contrast, acidic phospholipids like phosphatidylglycerol (PtdGro) and phosphatidylserine (PtdSer) were effective activators. For the PtdGro series, fatty acid composition was important, with the shorter chain or unsaturated fatty acid-containing PtdGro species being the best activators. Heat-stable factor (HSF) from Gaucher spleen by itself (1-2 micrograms) had no effect on enzyme activity. However, the same amount of HSF when combined with 10 micrograms of PtdSer markedly stimulated beta-glucosidase activity. In the presence of HSF, di-9-cis-octadecenoyl-PtdGro (1 microgram) or -PtdSer (5 micrograms) provided maximum protection of beta-glucosidase against heat (60 degrees C) inactivation. In the absence of phospholipids, HSF had no effect on the rate of inactivation of the enzyme by the suicide inhibitor conduritol B epoxide (t0.5, 12 +/- 0.5 min); the maximum rate of inactivation was achieved in the presence of a mixture of PtdGro (2.5-5 micrograms) and HSF (t0.5, 2.8 min). The combination of PtdSer (10 micrograms) and HSF (1.3 micrograms) lowered the Km for 4-methylumbelliferyl-beta-D-glucopyranoside from 24 to 2.7 mM. Inhibition of the enzyme by the glucocerebrosidase substrate analogues N-hexyl-O-glucosylsphingosine and glucosylsphingosine was influenced by the activator substances. The inclusion of PtdSer and HSF in the beta-glucosidase assay medium lowered the Ki of N-hexyl-O-glucosylsphingosine 20-fold. The same combination of activators decreased the I0.5 of the enzyme for glucosylsphingosine from 89.4 to 7.6 microM. A study of log (Vmax./Km) versus pH indicated that the PtdSer-HSF pair creates the active site of beta-glucosidase, making apparent three ionizable groups on the enzyme with pK values in the range 4.5-5.1.  相似文献   

17.
A beta-glucosidase has been purified from culture filtrates of the fungus Trichoderma reesei QM9414 grown on microcrystalline cellulose. The beta-glucosidase was purified using two successive DEAE-Sephadex anion-exchange chromatography steps, followed by SP-Sephadex cation-exchange chromatography and concanavalin-A--agarose chromatography. Evidence for homogeneity is provided by polyacrylamide disc gel electrophoretic patterns, which show a single protein band. Sedimentation equilibrium analysis yielded a molecular mass of 74.6 +/- 2.4 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis yielded a single protein band with a molecular mass of 81.6 kDa. Thus, the enzyme appears to be a single, monomeric polypeptide. The beta-glucosidase is isoelectric at pH 8.5. The enzyme is rich in basic amino acids and contains few half-cystine and methionine residues. The purified beta-glucosidase contains less than 1% by weight of neutral carbohydrate. The beta-glucosidase catalyzes the hydrolysis of cellobiose, p-nitrophenyl beta-D-glucopyranoside and 4-methylumbelliferyl beta-D-glucopyranoside; the values of V/Km for each substrate were determined to be 2.3 X 10(4), 6.9 X 10(5) and 2.9 X 10(6) M-1 S-1 respectively. The enzyme is optimally active from pH 4.5 to 5.0 and is labile at higher hydrogen ion concentrations. The beta-glucosidase has an unusually high affinity for D-glucose (Ki = 700 microM). Comparison of inhibition constants for cello-oligosaccharides suggests that the substrate-binding region of the beta-glucosidase comprises multiple subsites.  相似文献   

18.
The kinetic properties and inhibitor sensitivity of the Na+-H+ exchange activity present in the inner membrane of rat heart and liver mitochondria were studied. (1) Na+-induced H+ efflux from mitochondria followed Michaelis-Menten kinetics. In heart mitochondria, the Km for Na+ was 24 +/- 4 mM and the Vmax was 4.5 +/- 1.4 nmol H+/mg protein per s (n = 6). Basically similar values were obtained in liver mitochondria (Km = 31 +/- 2 mM, Vmax = 5.3 +/- 0.2 nmol H+/mg protein per s, n = 4). (2) Li+ proved to be a substrate (Km = 5.9 mM, Vmax = 2.3 nmol H+/mg protein per s) and a potent competitive inhibitor with respect to Na+ (Ki approximately 0.7 mM). (3) External H+ inhibited the mitochondrial Na+-H+ exchange competitively. (4) Two benzamil derivatives of amiloride, 5-(N-4-chlorobenzyl)-N-(2',4'-dimethyl)benzamil and 3',5'-bis(trifluoromethyl)benzamil were effective inhibitors of the mitochondrial Na+-H+ exchange (50% inhibition was attained by approx. 60 microM in the presence of 15 mM Na+). (5) Three 5-amino analogues of amiloride, which are very strong Na+-H+ exchange blockers on the plasma membrane, exerted only weak inhibitory activity on the mitochondrial Na+-H+ exchange. (6) The results indicate that the mitochondrial and the plasma membrane antiporters represent distinct molecular entities.  相似文献   

19.
Kinetic and molecular properties of the Ca2+/H+ antiporter in the vacuolar membrane of mung bean hypocotyls were examined and compared with Ca2+-ATPase. Ca2+ transport activities of both transporters were assayed separately by the filtration method using vacuolar membrane vesicles and 45Ca2+. Ca2+ uptake in the presence of ATP and bafilomycin A1, namely Ca2+-ATPase, showed a relatively low Vmax (6 nmol.min-1.mg-1 protein) and a low Km for Ca2+. The Ca2+/H+ antiporter activity driven by H+-pyrophosphatase showed a high Vmax (25 nmol.min-1.mg-1) and a relatively high Km for Ca2+. The cDNA for mung bean Ca2+/H+ antiporter (VCAX1) codes for a 444 amino-acid polypeptide. Two peptide-specific antibodies of the antiporter clearly reacted with a 42-kDa protein from vacuolar membranes and a cell lysate from a Escherichia coli transformant in which VCAX1 was expressed. These observations directly demonstrate that a low-affinity, high-capacity Ca2+/H+ antiporter and a high-affinity Ca2+-ATPase coexist in the vacuolar membrane. It is likely that the Ca2+/H+ antiporter removes excess Ca2+ in the cytosol to lower the Ca2+ concentration to micromolar levels after stimuli have increased the cytosolic Ca2+ level, the Ca2+-ATPase then acts to lower the cytosolic Ca2+ level further.  相似文献   

20.
Both cyclooxygenase and peroxidase reactions of prostaglandin H synthase were studied in the presence and absence of diethyldithiocarbamate and glycerol at 4 degrees C in phosphate buffer (pH 8.0). Diethyldithiocarbamate reacts with the high oxidation state intermediates of prostaglandin H synthase; it protects the enzyme from bleaching and loss of activity by its ability to act as a reducing agent. For the reaction of diethyldithiocarbamate with compound I, the second-order rate constant k2,app, was found to fall within the range of 5.8 x 10(6) +/- 0.4 x 10(6) M-1.s-1 less than k2,app less than 1.8 x 10(7) +/- 0.1 x 10(7) M-1.s-1. The reaction of diethyldithiocarbamate with compound II showed saturation behavior suggesting enzyme-substrate complex formation, with kcat = 22 +/- 3 s-1, Km = 67 +/- 10 microM, and the second-order rate constant k3,app = 2.0 x 10(5) +/- 0.2 x 10(5) M-1.s-1. In the presence of both diethyldithiocarbamate and 30% glycerol, the parameters for compound II are kcat = 8.8 +/- 0.5 s-1, Km = 49 +/- 7 microM, and k3,app = 1.03 x 10(5) +/- 0.07 x 10(5) M-1.s-1. The spontaneous decay rate constants of compounds I and II (in the absence of diethyldithiocarbamate) are 83 +/- 5 and 0.52 +/- 0.05 s-1, respectively, in the absence of glycerol; in the presence of 30% glycerol they are 78 +/- 5 and 0.33 +/- 0.02 s-1, respectively. Neither cyclooxygenase activity nor the rate constant for compound I formation using 5-phenyl-4-pentenyl-1-hydroperoxide is altered by the presence of diethyldithiocarbamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号