首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication of human cytomegalovirus is controlled by a vigorous CD8 T cell response. The persistent nature of infection is believed to periodically stimulate T cell responses resulting in considerable expansions of virus-specific CD8 T cells over time. In this study, we describe the magnitude and breadth of CD8 T cell responses against the immunodominant viral Ags, IE-1 and pp65, in acute and long-term infection using the IFN-gamma ELISPOT assay. Simultaneously, we have identified several novel MHC class I restricted CD8 T cell epitopes. Acute phase responses in immunocompetent donors appear to be extremely focused as early as 1 week post diagnosis with dominant peptide-specific responses observed against both proteins. These dominant responses remain detectable at all later time points over a 4-year follow-up. Interestingly the IE-1 responses show an increase over time whereas the pp65 responses do not, which contrasts with data showing that responses against both Ags are elevated in elderly individuals. We also observe the rapid emergence of an effector memory phenotype for virus-specific CD8 T cells as observed in persistent infection. Over time the revertant CD45RA(pos) effector cell population is also expanded, and this is more evident in the preferentially expanded IE-1 responses. We postulate that periodic low-level virus reactivation after the acute infection phase preferentially stimulates these responses whereas pp65-specific T cell expansions probably occur during the infrequent episodes of lytic viral replication or secondary infection.  相似文献   

2.
Acquisition of T cell responses during primary CMV infection in lung transplant recipients (LTRs) appear critical for host defense and allograft durability, with increased mortality in donor+/recipient- (D+R-) individuals. In 15 D+R- LTRs studied, acute primary CMV infection was characterized by viremia in the presence or absence of pneumonitis, with viral loads higher in the lung airways/allograft compared with the blood. A striking influx of CD8+ T cells into the lung airways/allograft was observed, with inversion of the CD4+:CD8+ T cell ratio. De novo CMV-specific CD8+ effector frequencies in response to pooled peptides of pp65 were strikingly higher in lung mononuclear cells compared with the PBMC and predominated over IE1-specific responses and CD4+ effector responses in both compartments. The frequencies of pp65-specific cytokine responses were significantly higher in lung mononuclear cells compared with PBMC and demonstrated marked contraction with long-term persistence of effector memory CD8+ T cells in the lung airways following primary infection. CMV-tetramer+CD8+ T cells from PBMC were CD45RA- during viremia and transitioned to CD45RA+ following resolution. In contrast, CMV-specific CD8+ effectors in the lung airways/allograft maintained a CD45RA- phenotype during transition from acute into chronic infection. Together, these data reveal differential CMV-specific CD8+ effector frequencies, immunodominance, and polyfunctional cytokine responses predominating in the lung airways/allograft compared with the blood during acute primary infection. Moreover, we show intercompartmental phenotypic differences in CMV-specific memory responses during the transition to chronic infection.  相似文献   

3.
The interplay of different inflammatory cytokines induced during a dengue (DEN) virus infection plays a role in either protection or increased disease severity. We measured the frequencies and characterized the cytokine responses of DEN virus-specific memory CD4+ T cells in PBMC of six volunteers who received experimental live attenuated monovalent DEN vaccines. IFN-gamma and TNF-alpha responses to inactivated DEN Ags were detected in up to 0.54 and 1.17% of total circulating CD4+ T cells, respectively. Ags from the homologous serotype elicited the highest IFN-gamma response. The ratio of TNF-alpha- to IFN-gamma-producing CD4+ T cells was higher after stimulation with Ags from heterologous DEN serotypes. Peptide-specific CD4+ T cell frequencies of up to 0.089% were detected by direct staining using HLA class II tetramers. IFN-gamma and TNF-alpha responses to individual HLA class II-restricted peptide epitopes were detected in up to 0.05 and 0.27% of CD4+ T cells, respectively. Peptide sequences from the homologous serotype elicited a variety of cytokine response patterns. TNF-alpha- to IFN-gamma-positive CD4+ T cell ratios varied between peptides, but the ratio of the sum of responses was highest against heterologous serotypes. These results demonstrate epitope sequence-specific differences in T cell effector function. These patterns of effector responses may play a role in the immunopathogenesis of DEN hemorrhagic fever.  相似文献   

4.
Oncoretroviral vectors encoding either full-length Ag or a corresponding immunodominant peptide were expressed in Langerhans-type dendritic cells (LCs) differentiated from CD34(+) progenitors. We used human CMV as a model Ag restricted by HLA-A*0201 to define parameters for eventual expression of cancer Ags by LCs for active immunization against tumors. Stimulation by CMVpp65(495-503)-pulsed LCs, CMVpp65(495-503)-transduced LCs, and full-length CMVpp65-transduced LCs respectively increased tetramer-reactive T cells with an effector memory phenotype by 10 +/- 11, 34 +/- 21, and 51 +/- 24-fold (p < 0.05) from CMV-seropositive donors. CMV-specific CD8(+) CTLs achieved respective frequencies of 231 +/- 102, 583 +/- 219, and 714 +/- 281 spot-forming cells per 10(5) input cells (p < 0.01) in ELISPOT assays for IFN-gamma secretion. LCs expressing full-length Ag stimulated greater lytic activity than either peptide-transduced or peptide-pulsed LCs (p < 0.05), all in the absence of exogenous cytokines. pp65-transduced LCs presenting class I and II MHC-restricted epitopes expanded IFN-gamma-secreting CD4(+) T cells, whereas pp65(495-503)-transduced LCs did not. CD4(+) T cell numbers even declined after stimulation by pp65(495-503) peptide-pulsed LCs. CD4(+) T cell depletion confirmed their contribution to the more robust CTL responses. LCs, transduced with a retroviral vector encoding full-length Ag, stimulate potent CTLs directed against multiple epitopes in a CD4(+) Th cell-dependent manner.  相似文献   

5.
Primary CMV infection in lung transplant recipients (LTRs) is associated with increased mortality. We studied 22 donor CMV-positive, recipient-negative (D(+)R(-)) LTRs for the development of posttransplant CMV-specific immunity. We found that 13 of 22 D(+)R(-) LTRs (59.1%) seroconverted (CMV IgG Ab(+)). Using pooled peptides of the immunodominant CMV Ags pp65 and IE1, we detected CMV-specific CD8(+)IFN-gamma(+) T cells in the PBMC of 90% of seroconverted individuals following primary infection by intracellular cytokine staining. In contrast, few seroconverters had detectable CMV-specific CD4(+)IFN-gamma(+) T cells during viral latency. However, the majority of IgG(+) LTRs demonstrated CMV-specific CD4(+) and CD8(+) T cell proliferative responses from PBMC, with CD4(+)IFN-gamma(+) T cells detectable upon re-expansion. Examination of lung allograft mononuclear cells obtained by bronchoalveolar lavage revealed both CMV-specific CD4(+) and CD8(+)IFN-gamma(+) T cells, including patients from whom CD4(+)IFN-gamma(+) T cells were simultaneously undetectable in the PBMC, suggesting differential effector memory populations between these compartments. Moreover, both responses in the PBMC and lung allograft were found to persist, despite substantial immunosuppression, long after primary infection. Clinical correlation in this cohort demonstrated that the acquisition of CMV immunity was associated with freedom from CMV disease (p < or = 0.009) and preservation of allograft function (p < or = 0.02) compared with those who failed to develop CMV immunity. Together, our data reveal immunologic heterogeneity in D(+)R(-) LTRs, with the development and persistence of primary CMV responses that may provide clinical benefit.  相似文献   

6.
T cells play an important role in the control of human CMV (HCMV) infection. Peripheral blood CD4+ T cell proliferative responses to the HCMV lower tegument protein pp65 have been detected in most healthy HCMV carriers. To analyze the clonal composition of the CD4+ T cell response against HCMV pp65, we characterized three MHC class II-restricted peptide epitopes within pp65 in virus carriers. In limiting dilution analysis, we observed high frequencies of pp65 peptide-specific CD4+ T cells, many of which expressed peptide-specific cytotoxicity in addition to IFN-gamma secretion. We analyzed the clonal composition of CD4+ T cells specific for defined HCMV peptides by generating multiple independent peptide-specific CD4+ clones and sequencing the TCR beta-chain. In a given carrier, most of the CD4+ clones specific for a defined pp65 peptide had identical TCR nucleotide sequences. We used clonotype oligonucleotide probing to quantify the size of individual peptide-specific CD4+ clones in whole PBMC and in purified subpopulations of CD45RAhighCD45ROlow and CD45RAlowCD45ROhigh cells. Individual CD4+ T cell clones could be large (0.3-1.5% of all CD4+ T cells in PBMC) and were stable over time. Cells of a single clone were distributed in both the CD45RAhigh and CD45ROhigh subpopulations. In one carrier, the virus-specific clone was especially abundant in the small CD28-CD45RAhigh CD4+ T cell subpopulation. Our study demonstrates marked clonal expansion and phenotypic heterogeneity within daughter cells of a single virus-specific CD4+ T cell clone, which resembles that seen in the CD8+ T cell response against HCMV pp65.  相似文献   

7.
The role of CD4+ T cells in promoting CD8+ T cell effector activity in response to transplant Ags in vivo has not been reported. We used a hepatocellular allograft model known to initiate both CD4-dependent and CD4-independent rejection responses to investigate the contribution of CD4+ T cells to the development, function, and persistence of allospecific CD8+ T cell effectors in vivo. Complete MHC-mismatched hepatocellular allografts were transplanted into C57BL/6 (CD4-sufficient) or CD4 knockout (CD4-deficient) hosts. The development of in vivo allospecific cytotoxicity was determined by clearance of CFSE-labeled target cells. CD8+ T cell cytotoxic effector activity was enhanced in response to allogeneic hepatocellular grafts with a greater magnitude of allocytotoxicity and a prolonged persistence of CTL effector activity in CD4-sufficient hosts compared with CD4-deficient hosts. Cytolytic activity was mediated by CD8+ T cells in both recipient groups. In response to a second hepatocyte transplant, rejection kinetics were enhanced in both CD4-sufficient and CD4-deficient hepatocyte recipients. However, only CD4-sufficient hosts developed recall CTL responses with an augmented magnitude and persistence of allocytotoxicity in comparison with primary CTL responses. These studies show important functional differences between alloreactive CD8+ T cell cytolytic effectors that mature in vivo in the presence or absence of CD4+ T cells.  相似文献   

8.
Sexual contact with HIV-infected semen is a major driving force behind the global HIV pandemic. Little is known regarding the immune correlates of virus shedding in this compartment, although HIV-1-specific CD8+ T cells are present in semen. We collected blood and semen from 27 chronically HIV-infected, therapy-naive men without common sexually transmitted infections or urethral inflammation and measured HIV-1 RNA viral load and cytokine/chemokine levels in both compartments. HIV-1 RNA levels were 10-fold higher in blood than semen, but discordantly high semen shedding was associated with higher semen levels of the proinflammatory cytokines IL-6, IL-8, IL-12, and IFN-gamma. Virus-specific CD8+ T cell epitopes were mapped in blood by IFN-gamma ELISPOT, using an overlapping HIV-1 clade B peptide matrix, and blood and semen CD8+ T cell responses were then assayed ex vivo using intracellular IFN-gamma staining. HIV-specific CD8+ responses were detected in 70% of semen samples, and their frequency was similar to or higher than blood. There was no correlation between the presence of virus-specific CD8+ T cells in semen and levels of HIV-1 RNA shedding. Among participants with detectable CD8+ IFN-gamma semen responses, their relative frequency was not associated with reduced HIV-1 RNA shedding, and their absolute number was correlated with higher levels of HIV-1 RNA semen shedding (r = 0.6; p = 0.03) and of several proinflammatory cytokines. Neither the presence nor the frequency of semen HIV-specific CD8+ T cell IFN-gamma responses in semen correlated with reduced levels of HIV RNA in semen.  相似文献   

9.
CD8(+) T cells use a number of effector mechanisms to protect the host against infection. We have studied human CD8(+) T cells specific for CMV pp65(495-503) epitope, or for staphylococcal enterotoxin B, for the expression patterns of five cytokines and cytolytic effector molecules before and after antigenic stimulation. Ex vivo, the cytolytic molecule granzyme B was detected in a majority of circulating CMV-specific CD8(+) T cells, whereas perforin was rarely expressed. Both were highly expressed after Ag-specific activation accompanied by CD45RO up-regulation. TNF-alpha, IFN gamma, and IL-2 were sequentially acquired on recognition of Ag, but surprisingly, only around half of the CMV-specific CD8(+) T cells responded to antigenic stimuli with production of any cytokine measured. A dominant population coexpressed TNF-alpha and IFN-gamma, and cells expressing TNF-alpha only, IFN-gamma only, or all three cytokines together also occurred at lower but clearly detectable frequencies. Interestingly, perforin expression and production of IFN-gamma and TNF-alpha in CD8(+) T cells responding to staphylococcal enterotoxin B appeared to be largely segregated, and no IL-2 was detected in perforin-positive cells. Together, these data indicate that human CD8(+) T cells can be functionally segregated in vivo and have implications for the understanding of human CD8(+) T cell differentiation and specialization and regulation of effector mechanisms.  相似文献   

10.
Processing of exogenous protein Ags by APC leads predominantly to presentation of peptides on class II MHC and, thus, stimulation of CD4+ T cell responses. However, "cross-priming" can also occur, whereby peptides derived from exogenous Ags become displayed on class I MHC molecules and stimulate CD8+ T cell responses. We compared the efficiency of cross-priming with exogenous proteins to use of peptide Ags in human whole blood using a flow cytometry assay to detect T cell intracellular cytokine production. CD8+ T cell responses to whole CMV proteins were poorly detected (compared with peptide responses) in most CMV-seropositive donors. Such responses could be increased by using higher doses of Ag than were required to achieve maximal CD4+ T cell responses. A minority of donors displayed significantly more efficient CD8+ T cell responses to whole protein, even at low Ag doses. These responses were MHC class I-restricted and dependent upon proteosomal processing, indicating that they were indeed due to cross-priming. The ability to efficiently cross-prime was not a function of the number of dendritic cells in the donor's blood. Neither supplementation of freshly isolated dendritic cells nor use of cultured, Ag-pulsed dendritic cells could significantly boost CD8 responses to whole-protein Ags in poorly cross-priming donors. Interestingly, freshly isolated monocytes performed almost as well as dendritic cells in inducing CD8 responses via cross-priming. In conclusion, the efficiency of cross-priming appears to be poor in most donors and is dependent upon properties of the individual's APC and/or T cell repertoire. It remains unknown whether cross-priming ability translates into any clinical advantage in ability to induce CD8+ T cell responses to foreign Ags.  相似文献   

11.
It is critical to identify the developmental stage of dendritic cells (DCs) that is most efficient at inducing CD8+ T cell responses. Immature DCs can be generated from monocytes with GM-CSF and IL-4, while maturation is accomplished by the addition of stimuli such as monocyte-conditioned medium, CD40 ligand, and LPS. We evaluated the ability of human monocytes and immature and mature DCs to induce CD8+ effector responses to influenza virus Ags from resting memory cells. We studied replicating virus, nonreplicating virus, and the HLA-A*0201-restricted influenza matrix protein peptide. Sensitive and quantitative assays were used to measure influenza A-specific immune responses, including MHC class I tetramer binding assays, enzyme-linked immunospot assays for IFN-gamma production, and generation of cytotoxic T cells. Mature DCs were demonstrated to be superior to immature DC in eliciting IFN-gamma production from CD8+ effector cells. Furthermore, only mature DCs, not immature DCs, could expand and differentiate CTL precursors into cytotoxic effector cells over 7 days. An exception to this was immature DCs infected with live influenza virus, because of the virus's known maturation effect. Finally, mature DCs pulsed with matrix peptide induced CTLs from highly purified CD8+ T cells without requiring CD4+ T cell help. These differences between DC stages were independent of Ag concentrations or the number of immature DCs. In contrast to DCs, monocytes were markedly inferior or completely ineffective stimulators of T cell immunity. Our data with several qualitatively different assays of the memory CD8+ T cell response suggest that mature cells should be considered as immunotherapeutic adjuvants for Ag delivery.  相似文献   

12.
Whether true memory T cells develop in the face of chronic infection such as tuberculosis remains controversial. To address this question, we studied CD8+ T cells specific for the Mycobacterium tuberculosis ESAT6-related Ags TB10.3 and TB10.4. The shared epitope TB10.3/10.4(20-28) is presented by H-2 K(d), and 20-30% of the CD8+ T cells in the lungs of chronically infected mice are specific for this Ag following respiratory infection with M. tuberculosis. These TB10.3/10.4(20-28)-specific CD8+ T cells produce IFN-gamma and TNF and express CD107 on their cell surface, which indicates their likely role as CTL in vivo. Nearly all of the Ag-specific CD8+ T cells in the lungs of chronically infected mice had a T effector cell phenotype based on their low expression of CD62L and CD45RB. In contrast, a population of TB10.3/10.4(20-28)-specific CD8+ T cells was identified in the lymphoid organs that express high levels of CD62L and CD45RB. Antibiotic treatment to resolve the infection led to a contraction of the Ag-specific CD8+ T cell population and was accompanied by an increase in the proportion of CD8+ T cells with a central memory phenotype. Finally, challenge of memory-immune mice with M. tuberculosis was accompanied by significant expansion of TB10.3/10.4(20-28)-specific CD8+ T cells, which suggests that these cells are in fact functional memory T cells.  相似文献   

13.
14.
CD4(+)CD25(+) regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4(+)CD25(-) T cells and are potent suppressors of CD4(+)CD25(-) T cell activation in vitro. We demonstrate that CD4(+)CD25(+) T cells also suppress both proliferation and IFN-gamma production by CD8(+) T cells induced either by polyclonal or Ag-specific stimuli. CD4(+)CD25(+) T cells inhibit the activation of CD8(+) responders by inhibiting both IL-2 production and up-regulation of IL-2Ralpha-chain (CD25) expression. Suppression is mediated via a T-T interaction as activated CD4(+)CD25(+) T cells suppress the responses of TCR-transgenic CD8(+) T cells stimulated with soluble peptide-MHC class I tetramers in the complete absence of APC. These results broaden the immunoregulatory role played by CD4(+)CD25(+) T cells in the prevention of autoimmune diseases, but also raise the possibility that they may hinder the induction of effector CD8(+) T cells to tumor or foreign Ags.  相似文献   

15.
In searching for immunogenic molecules with the potential to induce protective immune responses against tuberculosis, we developed an ex vivo model to study frequency, phenotype, and effector functions of human T lymphocytes recognizing hydrophobic Ags of Mycobacterium tuberculosis (M.Tb). To obtain unbiased results, we characterized T lymphocytes responding to a crude cell wall extract (chloroform methanol extract of M.Tb (M.Tb-CME)) containing a broad spectrum of mycobacterial glycolipids and lipopeptides. A significant proportion of T lymphocytes recognized M.Tb-CME (290 IFN-gamma+ T cells/10(5) PBMCs) and developed to effector memory cells as determined by the expression of CD45RO and the chemokine receptors CXCR3 and CCR5. Expanded lymphocytes fulfilled all criteria required for an efficient immune response against tuberculosis: 1) release of macrophage-activating Th1 cytokines and chemokines required for the spatial organization of local immune responses, 2) cytolytic activity against Ag-pulsed macrophages, and 3) recognition of infected macrophages and killing of the intracellular bacteria. Phenotypically, M.Tb-CME-expanded cells were CD4+ and MHC class II restricted, challenging current concepts that cytotoxic and antimicrobial effector cells are restricted to the CD8+ T cell subset. Pretreatment of M.Tb-CME with protease or chemical delipidation abrogated the biological activity, suggesting that responses were directed toward mycobacterial lipopeptides. These findings suggest that lipidated peptides are presented by M.Tb-infected macrophages and elicit CD4+ cytolytic and antimicrobial T lymphocytes. Our data support an emerging concept to include hydrophobic microbial Ags in vaccines against tuberculosis.  相似文献   

16.
EBV is a candidate trigger of rheumatoid arthritis (RA). We determined both EBV-specific T cell and B cell responses and cell-associated EBV DNA copies in patients with RA and demographically matched healthy virus carriers. Patients with RA showed increased and broadened IgG responses to lytic and latent EBV-encoded Ags and 7-fold higher levels of EBV copy numbers in circulating blood cells. Additionally, patients with RA exhibited substantial expansions of CD8(+) T cells specific for pooled EBV Ags expressed during both B cell transformation and productive viral replication and the frequency of CD8(+) T cells specific for these Ags correlated with cellular EBV copy numbers. In contrast, CD4(+) T cell responses to EBV and T cell responses to human CMV Ags were unchanged, altogether arguing against a defective control of latent EBV infection in RA. Our data show that the regulation of EBV infection is perturbed in RA and suggest that increased EBV-specific effector T cell and Ab responses are driven by an elevated EBV load in RA.  相似文献   

17.
Our previous studies in volunteers immunized with Salmonella enterica serovar Typhi (S. Typhi) have suggested an important role for CD8+ T cells in host defense. In this study we describe a novel subset of nonclassical human HLA-E-restricted S. Typhi-specific CD8+ T cells derived from PBMC of Ty21a typhoid vaccinees. CD3+CD8+CD4-CD56- T cells effectively killed S. Typhi-infected targets regardless of whether they share classical HLA class I molecules with them, by a FAS-independent, granule-dependent mechanism, as evidenced by induction of granzyme B release and the blocking effects of concanamycin and strontium ions. The expression of HLA-E Ags, but not CD1-a, -b, or -c, on the membrane of S. Typhi-infected targets rendered them susceptible to lysis. Moreover, anti-HLA-E Abs partially blocked these responses. We also demonstrated that presentation of S. Typhi Ags via HLA-E could stimulate IFN-gamma production. Increases in the net frequency of IFN-gamma spot-forming cells were observed in the presence of targets coated with peptides that contain S. Typhi GroEL HLA-E binding motifs. These results demonstrate that HLA-E binds nonamer peptides derived from bacterial proteins and trigger CD8+-mediated lysis and IFN-gamma production when exposed to infected targets, raising the possibility that this novel effector mechanism might contribute to host defense against intracellular bacterial infections.  相似文献   

18.
CD8+ T cells have long been considered to be the prototypical cytotoxic lymphocyte subpopulation. However, whether alloreactive CD8+ T cells require traditional cytolytic pathways such as perforin and Fas ligand (FasL) to mediate graft rejection has been a controversial issue. In the present studies, we examined the role of varied effector pathways in CD8+ T cell-mediated rejection of pancreatic islet allografts. Our goal was to systematically determine the relative requirements, if any, of perforin and FasL as well as the proinflammatory cytokine IFN-gamma in triggering graft destruction. To study CD8+ T cell effector pathways independently of other lymphocyte populations, purified alloreactive CD8+ T cells were adoptively transferred into severe combined immune-deficient (SCID) recipients bearing established islet allografts. Results indicate that to reject established islet allografts, primed CD8+ T cells do not require the individual action of the conventional cytotoxic effectors perforin and Fas ligand. In contrast, the ability to produce IFN-gamma is critical for efficient CD8+ T cell-mediated rejection of established islet allografts. Furthermore, alloreactive CD8+ TCR transgenic T cells (2C) also show IFN-gamma dependence for mediating islet allograft rejection in vivo. We speculate from these results that the production of IFN-gamma by alloreactive CD8+ T cells is a rate-limiting step in the process of islet allograft rejection.  相似文献   

19.
It has been generally believed that human CD8+ memory cells are principally found within the CD45ROhigh population. There are high frequencies of CD8+ memory CTL specific for the human CMV tegument phosphoprotein pp65 in PBMC of long-term virus carriers; the large population of memory CTL specific for a given pp65 peptide contains individual CTL clones that have greatly expanded. In this study, we found high frequencies of pp65 peptide-specific memory CTL precursors in the CD45ROhighCD45RA- population, but also appreciable frequencies in the CD45RAhigh subpopulation. Because the majority of CD8+ T cells in PBMC are CD45RAhigh, more of the total pp65-specific memory CTL pool is within the CD45RAhigh than in the CD45ROhigh compartment. Using clonotypic oligonucleotide probes to quantify the size of individual pp65-specific CTL clones in vivo, we found the CD45RAhigh population contributed 6- to 10-fold more than the CD45ROhigh population to the total virus-specific clone size in CD8+ cells. During primary CMV infection, an individual virus-specific CTL clone was initially CD45ROhigh, but after resolution of infection this clone was detected in both the CD45ROhigh and the CD45RAhigh populations. We conclude that CD45RA+ human CD8+ T cells do not solely comprise naive cells, but contain a very significant proportion of memory cells, which can revert from the CD45ROhigh to CD45RAhigh phenotype in vivo.  相似文献   

20.
The cellular immune response contributes to clearance of hepatitis C virus (HCV) and persists for decades after recovery from infection. The immunological basis for the inefficiency of the cellular immune response in chronically infected persons is not known. Here, we used four HLA-A2 tetramers, specific for two HCV core and two HCV NS3 epitopes, to investigate at the single-cell level effector function and phenotype of HCV-specific CD8+ T cells in 20 chronically infected and 12 long-term recovered patients. Overall, HCV-specific, tetramer+ T cells were more frequently found in PBMCs of chronically infected patients than in those of recovered patients. However, when compared with HCV-tetramer+ T cells of recovered patients, they displayed an impaired proliferative capacity. As a result of the impaired proliferative capacity, HCV-specific T cell lines derived from chronically infected patients displayed less peptide-specific cytotoxicity than those from recovered patients. In addition, proliferation and ex vivo IFN-gamma production of HCV-tetramer+ cells, but not influenza-virus-specific T cells, were defective in chronically infected patients and could not be restored by in vitro stimulation with peptide and IL-2. At least three distinct phenotypes of HCV-specific CD8+ T cells were identified and associated with certain functional characteristics. In addition, impairment of proliferative, cytokine, and cytotoxic effector functions of tetramer+ T cells in viremic patients was associated with weak ex vivo HCV-specific CD4+ T cell responses. Thus, the defective functions of HCV-specific CD8+ T cells might contribute to viral persistence in chronically infected patients, and knowledge on their reversibility may facilitate the development of immunotherapeutic vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号